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Almost three decades have passed since the first posttraumatic stress disorder (PTSD) neuroimaging study was published. Since
then, the field of clinical neuroscience has made advancements in understanding the neural correlates of PTSD to create more
efficacious treatment strategies. While gold-standard psychotherapy options are available, many patients do not respond to them,
prematurely drop out, or never initiate treatment. Therefore, elucidating the neurobiological mechanisms that define the disorder
can help guide clinician decision-making and develop individualized mechanisms-based treatment options. To this end, this
narrative review highlights progress made in the last decade in adult and youth samples on three outstanding questions in PTSD
research: (1) Which neural alterations serve as predisposing (pre-exposure) risk factors for PTSD development, and which are
acquired (post-exposure) alterations? (2) Which neural alterations can predict treatment outcomes and define clinical
improvement? and (3) Can neuroimaging measures be used to define brain-based biotypes of PTSD? While the studies highlighted
in this review have made progress in answering the three questions, the field still has much to do before implementing these
findings into clinical practice. Overall, to better answer these questions, we suggest that future neuroimaging studies of PTSD
should (A) utilize prospective longitudinal designs, collecting brain measures before experiencing trauma and at multiple follow-up
time points post-trauma, taking advantage of multi-site collaborations/consortiums; (B) collect two scans to explore changes in
brain alterations from pre-to-post treatment and compare changes in neural activation between treatment groups, including
longitudinal follow up assessments; and (C) replicate brain-based biotypes of PTSD. By synthesizing recent findings, this narrative
review will pave the way for personalized treatment approaches grounded in neurobiological evidence.

Molecular Psychiatry; https://doi.org/10.1038/s41380-024-02558-w

INTRODUCTION
In 2013, the American Psychiatric Association revised the
posttraumatic stress disorder (PTSD) criteria in the 5th edition of
its “Diagnostic Statistical Manual of Mental Disorders” (DSM-5).
While the DSM-IV classified PTSD under “Anxiety Disorders,” the
DSM-5 has repositioned it within a newly established category of
“Trauma-and Stressor-Related Disorders.” According to the DSM-5,
traumatic events are defined as exposure to actual or threatened
death, serious injury, or a threat to the physical integrity of oneself
or others, either directly (witnessing trauma) or indirectly (learning
that trauma happened to a close relative or friend) [1]. In addition
to trauma exposure (i.e., criterion A), four symptom clusters that
characterize the disorder are persistent re-experiencing the
trauma (i.e., criterion B), avoiding people, places, or thoughts
related to the trauma (i.e., criterion C), negative thoughts and
feelings that began or worsened after the trauma (i.e., criterion D);
and trauma-related increased in arousal and reactivity (i.e.,
criterion E). Symptoms must last at least one month, not be
caused by drugs or other illnesses, and cause significant functional
impairment. The DSM-5 introduced a developmental subtype of

PTSD specifically for children aged six years or younger, aligning
closely with adult diagnostic criteria. However, it adapts criterion A
for this age group, allowing for indirect exposure to trauma, such
as through witnessing an event or learning about a traumatic
event affecting a parent or caregiver [1].

EPIDEMIOLOGY AND PROGNOSIS
Worldwide, up to 70% of the adult population will experience at
least one traumatic event (as defined by criterion A) in their
lifetime [2], and the prevalence of PTSD ranges from 2 to 9% [3].
Indeed, four post-traumatic symptom trajectories have been
highlighted in literature: resiliency, recovery, chronic, and delayed
onset, the most common being the resiliency trajectory [4, 5].
Similarly, childhood trauma exposure is common, with up to two-
thirds of youth reported having experienced a traumatic event
and almost 5% of trauma-exposed youth meeting the criteria for
PTSD [6–8]. It is important to note that females are more prone to
developing PTSD than males [9, 10]. This disparity is theorized to
be attributed to trauma one is exposed to, with females

Received: 18 September 2023 Revised: 4 April 2024 Accepted: 8 April 2024

1Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA. 2Department of Psychiatry, McLean Hospital, Belmont, MA, USA.
3Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA. 4Department of Psychiatry, Yale University School of Medicine, New Haven, CT,
USA. 5US Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA. ✉email: cecilia.a.hinojosa@emory.edu

www.nature.com/mpMolecular Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02558-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02558-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02558-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02558-w&domain=pdf
http://orcid.org/0000-0002-2577-6142
http://orcid.org/0000-0002-2577-6142
http://orcid.org/0000-0002-2577-6142
http://orcid.org/0000-0002-2577-6142
http://orcid.org/0000-0002-2577-6142
http://orcid.org/0000-0003-3629-5851
http://orcid.org/0000-0003-3629-5851
http://orcid.org/0000-0003-3629-5851
http://orcid.org/0000-0003-3629-5851
http://orcid.org/0000-0003-3629-5851
https://doi.org/10.1038/s41380-024-02558-w
mailto:cecilia.a.hinojosa@emory.edu
www.nature.com/mp


experiencing more interpersonal violence than males [11].
However, even when controlling for trauma type, females still
exhibit greater PTSD prevalence [11]. This suggests that biological
factors may contribute to this disparity. Given this, more studies
are introducing sex as a biological variable to explore this disparity
further. For in-depth reviews, see [12, 13].
PTSD is a debilitating disorder in many aspects across the

lifespan. A PTSD diagnosis contributes to billions in annual
productivity loss [14] and increased medical problems [15] and
is associated with a variety of co-occurring disorders, including
substance use disorders [16], depression, and anxiety [17]. For
individuals diagnosed with PTSD, many treatment options are
available. The most empirically supported options are trauma-
focused interventions [18]. Of psychotherapy options available, up
to half of the patients who complete treatment will show clinically
meaningful improvement [19–21], and many patients prematurely
drop out of treatment before receiving an adequate dose [22].
Furthermore, many patients fail to seek treatment altogether,
especially in marginalized groups [23]. Given the considerable
overlap between PTSD, depression, and anxiety, and because
research still has not identified pharmaceutical targets specific for
PTSD, sertraline and paroxetine are FDA-approved pharmacologi-
cal options for PTSD, both with limited efficacy [24]. Research on
using psychedelics to treat PTSD has skyrocketed and looks
promising, though more research is needed to determine efficacy
and validate safe implementation procedures [25, 26]. Psychother-
apeutic treatments have shown a greater benefit than pharma-
cological intervention alone [27]. Determining the superiority of
combining psychotherapy with pharmacological treatment needs
further exploration [28]. To improve the efficacy of current
treatment options and to design novel, more efficacious treatment
options, we must understand the neural alterations that
contribute to the development of PTSD, improve with treatment,
and potentially define biotypes of the disorder.

CURRENT NARRATIVE REVIEW
Given the influx of neuroimaging data published since the first
neuroimaging paper using a PTSD sample in 1995 [29], an
extensive library of reviews and meta-analyses has examined this
literature [30–40]. Our narrative review builds upon this previous
literature by exploring progress made in the past decade on three
major questions in the field: (1) Which neural alterations serve as
predisposing (pre-exposure) risk factors for PTSD development,
and which are acquired (post-exposure)? (2) Which neural
alterations can predict treatment outcomes and define clinical
improvement? and (3) Can neuroimaging measures be used to
define brain-based biotypes of PTSD? This review will examine
structural and functional magnetic resonance imaging (MRI)
literature using univariate, bivariate, and network-based
approaches in adult and youth PTSD populations. Following a
brief overview of neural alterations in PTSD, we will address each
question above by synthesizing current findings, identifying gaps,
and discussing limitations. We included articles published in peer-
reviewed journals and were found using in-house expertise and
searches of databases including PubMed. We will conclude by
highlighting the review’s limitations and suggest future directions.
Tables 1–2 provide an overview of neuroimaging findings for
questions 1 and 2 (respectively), and Figs. 1–2 illustrate these
findings. We will begin by describing different neuroimaging
techniques.

NEUROIMAGING TECHNIQUES
Structural techniques
Structural MRI of PTSD populations typically determines altera-
tions in the morphometry of brain regions in patients versus
controls (trauma-exposed non-PTSD [TENC] or healthy controls

[HC]). Morphometric measures include subcortical and cortical
gray matter volumes, thickness, and white matter microstructure.
There are two analysis pipelines one can follow: (1) surface-based,
which identifies borders between pial and white matter surfaces,
and (2) voxel-based, which labels each voxel in cortical and
subcortical tissues and allows for calculating subcortical structures
and total intracranial volume [41]. Thus, structural volume can be
measured by contrasting volume inside the pial surface from the
white surface and regions, not part of the cortex, or by measuring
total cortical labeled voxels. Cortical thickness is measured by
contrasting the distance between the pial and the white surface
[41]. Generally, smaller volumes and lower cortical thickness are
representative of poorer structural integrity. Diffusion tensor
imaging is a structural tool used to measure the structural
integrity of white matter tracts via the diffusivity of water
molecules along the axial direction of white matter fibers. The
pattern of diffusivity can be computed using scalar measures such
as fractional anisotropy (FA), whereby lower FA values illustrate a
reduced axonal packing density [42].

Functional techniques
Functional MRI (fMRI) can be used as an indirect proxy to measure
brain activation with great spatial and limited temporal resolution.
Researchers record activation during the presentation of different
tasks designed to induce activation in regions responsible for
given functions. There are many different approaches one can
take to analyze fMRI data, which can be categorized into three
general techniques. The simplest technique is univariate analyses,
which examine the activation of single voxels in response to
various tasks. As techniques developed with time, more research-
ers have also included bivariate analyses, which calculate the
temporal association of two regions based on activation. This
includes task-based and resting-state functional connectivity (FC),
which measure spontaneous changes in brain activation during
the completion or absence of a task, respectively. Finally, recent
years have seen an increase in network-based approaches, which
measure activation across many brain regions and networks.
Network-based approaches in fMRI studies typically conceptualize
the human brain as a network of interconnected functional
components that operate in a coordinated dynamic fashion [43].
By employing such methods, researchers can overcome the
limitations of traditional univariate and bivariate approaches by
mitigating the bias of preselecting target regions a priori and
allowing a more comprehensive investigation of large-scale brain
organization (rather than isolated regions or simplistic circuits). In
this narrative review, we will focus on the two primary tools for
network-based analysis of neuroimaging data in PTSD: (1)
independent component analysis (ICA), which isolates individual
functional networks within the whole brain, and (2) graph theory
methods, which examine properties of networks (e.g., nodes and
edges of a graph) and characterize them based on their
intercorrelations.

NEURAL ALTERATIONS IN PTSD
Adults
PTSD is the only DSM diagnosis with a known origin (i.e.,
experiencing trauma). Given the importance of traumatic memory
in the development of the disorder, early neuroimaging studies
sought to discover alterations in structure and function of brain
regions implicated in fear learning and memory (e.g., amygdala
and hippocampus) in patients with PTSD compared to controls.
These discoveries have created “classical” neurocircuitry models of
PTSD that emphasize an inability of cortical regions to successfully
regulate subcortical regions important in initiating a fear response
[33]. Research over the last decade has noted diminished
structural integrity in areas associated with executive functions,
including reduced cortical volumes in the anterior cingulate cortex

C.A. Hinojosa et al.

2

Molecular Psychiatry



Ta
bl
e
1.

St
u
d
ie
s
th
at

as
se
ss

n
eu

ra
l
al
te
ra
ti
o
n
s
th
at

ar
e
p
re
d
is
p
o
si
n
g
(p
re
-e
xp

o
su
re
)
ri
sk

fa
ct
o
rs

fo
r
PT

SD
d
ev

el
o
p
m
en

t
o
r
ac
q
u
ir
ed

(p
o
st
-e
xp

o
su
re
).

St
ud

y
ID

Ta
sk

Pa
ti
en

t
sa
m
p
le

(n
)

C
om

p
ar
is
on

sa
m
p
le

(n
)

Tr
au

m
a
ty
p
e

R
eg

io
n
of

in
te
re
st

D
ir
ec
ti
on

of
fi
n
d
in
g

Lo
n
g
it
u
d
in
al

Pr
o
sp
ec
ti
ve

St
u
d
ie
s

St
ru
ct
u
ra
l
St
u
d
ie
s

A
d
u
lt
s

A
d
m
o
n
et

al
.

[6
8]

sM
R
I

So
ld
ie
rs

w
h
o
se

h
ip
p
o
ca
m
p
u
s
vo

lu
m
e

d
ec
re
as
ed

af
te
r
tr
au

m
a

ex
p
o
su
re

(n
=
22

;M
)

So
ld
ie
rs

w
h
o
se

h
ip
p
o
ca
m
p
u
s
vo

lu
m
e

in
cr
ea
se
d
af
te
r
tr
au

m
a

ex
p
o
su
re

(n
=
11

;M
)

C
o
m
b
at
-r
el
at
ed

H
ip
p
o
ca
m
p
u
s

↓

K
o
ch

et
al
.

[1
16

]
sM

R
I

B
as
el
in
e
(n

=
32

1;
16

1
M
/

16
0
F)

Fo
llo

w
-u
p

(n
=
20

4;
15

2
M
/5
2
F)

Po
lic
e-
re
la
te
d

H
ip
p
o
ca
m
p
u
s

(d
en

ta
te

g
yr
u
s)

↓

—
—

—
—

—
B
as
al

n
u
cl
eu

s
o
f

am
yg

d
al
a

↑

Se
ki
g
u
ch

ie
t
al
.

[1
15

]
sM

R
I

(n
=
42

;3
3
M
/9

F)
—

N
at
u
ra
l
d
is
as
te
r
(e
ar
th
q
u
ak
e)

vA
C
C

↓

—
—

—
—

—
O
FC

↓

Se
ki
g
u
ch

ie
t
al
.

[1
14

]
sM

R
I

(n
=
37

;2
8
M
/9

F)
—

N
at
u
ra
l
d
is
as
te
r
(e
ar
th
q
u
ak
e)

H
ip
p
o
ca
m
p
u
s

↓

Fu
n
ct
io
n
al

St
u
d
ie
s

A
d
u
lt
s

A
d
m
o
n
et

al
.

[6
8]

FC
d
u
ri
n
g
b
ac
kw

ar
d

m
as
ke
d
p
h
o
to
g
ra
p
h
s
o
f

m
ili
ta
ry

m
ed

ic
al

o
r
ci
vi
lia
n

co
n
te
n
t

So
ld
ie
rs

w
h
o
se

h
ip
p
o
ca
m
p
u
s
vo

lu
m
e

d
ec
re
as
ed

af
te
r
tr
au

m
a

ex
p
o
su
re

(n
=
22

;M
)

So
ld
ie
rs

w
h
o
se

h
ip
p
o
ca
m
p
u
s
vo

lu
m
e

in
cr
ea
se
d
af
te
r
tr
au

m
a

ex
p
o
su
re

(n
=
11

;M
)

C
o
m
b
at
-r
el
at
ed

H
ip
p
o
ca
m
p
u
s-

vm
PF

C
↓

A
d
m
o
n
et

al
.

[1
32

]
R
is
ky

an
ti
ci
p
at
io
n
o
f

p
u
n
is
h
m
en

t
(n

=
24

;1
2
M
/1
2
F)

—
C
o
m
b
at
-r
el
at
ed

A
m
yg

d
al
a

↑

—
R
ew

ar
d
o
u
tc
o
m
e

—
—

—
N
u
cl
eu

s
ac
cu

m
b
en

s
↓

Z
h
an

g
et

al
.

[1
33

]
rs
-F
C

(n
=
32

1;
14

2
M
/4
8
F)

—
Po

lic
e-
re
la
te
d

Sa
lie
n
ce

n
et
w
o
rk
-

an
te
ri
o
r
ce
re
b
el
lu
m

↑

Lo
n
g
it
u
d
in
al

Po
st
-t
ra
u
m
a
St
u
d
ie
s

St
ru
ct
u
ra
l
St
u
d
ie
s

A
d
u
lt

B
en

-Z
io
n
et

al
.

[1
19

]
sM

R
I

(n
=
17

1;
84

M
/8
7
F)

—
M
VA

(n
=
10

8)
;B

ic
yc
le

ac
ci
d
en

ts
(n

=
13

);
Ph

ys
ic
al

as
sa
u
lt
s
(n

=
11

)

H
ip
p
o
ca
m
p
u
s

↓

B
en

-Z
io
n
et

al
.

[1
20

]
sM

R
I

R
em

is
si
o
n

(n
=
71

;3
3
M
/3
8
F)

N
o
n
-r
em

is
si
o
n
(n

=
29

;
11

M
/1
8
F)

M
VA

(n
=
89

);
A
ss
au

lt
/b
ra
w
l

(n
=
5)
;O

th
er

(n
=
6)

Su
b
ic
u
lu
m

↓

—
—

—
—

—
C
A
1

↓

Fa
n
ie

t
al
.[
12

4]
sM

R
I

N
o
PT
A
at

6
m
o
n
th
s

(n
=
21

;1
2
M
/9

F)
PT

SD
(n

=
10

;5
M
/5

F)
M
VA

(n
=
24

);
Pe

d
es
tr
ia
n
ac
ci
d
en

t
(n

=
3)
;

B
ic
yc
le

ac
ci
d
en

t
(n

=
2)
;

Se
xu

al
as
sa
u
lt
(n

=
1)

U
n
ci
n
at
e
fa
sc
ic
u
lu
s

↓

sM
R
I

—
H
ip
p
o
ca
m
p
u
s

↓

C.A. Hinojosa et al.

3

Molecular Psychiatry



Ta
bl
e
1.

co
n
ti
n
u
ed

St
ud

y
ID

Ta
sk

Pa
ti
en

t
sa
m
p
le

(n
)

C
om

p
ar
is
on

sa
m
p
le

(n
)

Tr
au

m
a
ty
p
e

R
eg

io
n
of

in
te
re
st

D
ir
ec
ti
on

of
fi
n
d
in
g

Li
n
d
g
re
n
et

al
.

[1
21

]
Lo

w
p
er
ce
iv
ed

st
re
ss

(n
=
76

;4
5
M
/3
1
F)

M
o
d
er
at
e
to

h
ig
h

p
er
ce
iv
ed

st
re
ss

(n
=
35

;
18

M
/1
7
F)

H
ar
n
et
t
et

al
.

[1
23

]
sM

R
I

(n
=
10

9;
33

M
/7
6
F)

—
M
VA

(n
=
85

);
N
o
n
-m

o
to
ri
ze
d
co

lli
si
o
n
(n

=
1)
;

Fa
ll<

10
fe
et

(n
=
4)
;B

u
rn

(n
=
1)
;

A
n
im

al
-r
el
at
ed

(n
=

1)

U
n
ci
n
at
e
Fa
sc
ic
u
lu
s

↓

K
en

n
is
et

al
.

[1
25

]
sM

R
I

(n
=
57

;M
)

—
C
o
m
b
at
-r
el
at
ed

D
o
rs
al

ci
n
g
u
lu
m

↑

W
ei
s,
W
eb

b
et

al
.[
12

2]
sM

R
I

(n
=
21

5;
11

8
M
/9
7
F)

—
M
ix
ed

H
ip
p
o
ca
m
p
u
s

N
o
ch

an
g
e

X
ie

et
al
.[
11

7]
sM

R
I

(n
=
44

;1
3
M
/3
1
F)

—
M
VA

H
ip
p
o
ca
m
p
u
s

↓

Q
u
id
é
et

al
.

[1
18

]
sM

R
I

(n
=
27

;F
)

—
Se

xu
al

as
sa
u
lt

H
ip
p
o
ca
m
p
u
s

↓

Fu
n
ct
io
n
al

St
u
d
ie
s

A
d
u
lt

B
el
le
au

et
al
.

[1
39

]
rs
-F
C

TE (n
=
54

;1
9
M
/3
5
F)

—
M
VA

(n
=
41

);
Ph

ys
ic
al

A
ss
au

lt
(n

=
10

);
O
th
er

ty
p
e
o
f
n
o
n
-v
eh

ic
u
la
r

in
ci
d
en

t
(n

=
3)

A
m
yg

d
al
a-

ce
re
b
el
lu
m

↓

—
—

—
—

—
A
m
yg

d
al
a-
p
o
st

ce
n
tr
al

g
yr
u
s
FC

↓

B
en

-Z
io
n
et

al
.

[1
40

]
G
am

b
lin

g
ta
sk

R
ew

ar
d
>
p
u
n
is
h
m
en

t
Ti
m
ep

o
in
t
1
(n

=
13

2;
69

M
/6
3
F)

Ti
m
ep

o
in
t
2
(n

=
11

5;
60

M
/5
5
F)

Ti
m
ep

o
in
t
3
(n

=
11

2;
56

M
/5
6
F)

M
VA

(n
=
11

8)
;A

ss
au

lt
/b
ra
w
l

(n
=
10

);
O
th
er

tr
au

m
a
ty
p
es

(n
=
5)

Ve
n
tr
al

st
ri
at
u
m

↓

—
R
ew

ar
d
>
p
u
n
is
h
m
en

t
—

—
—

A
m
yg

d
al
a

↓

D
u
et

al
.[
14

3]
rs
-F
C

B
as
el
in
e
(n

=
21

;1
3
M
/8

F)
;

Fo
llo

w
-u
p
(n

=
21

;1
3
M
/

8
F)

H
C

(n
=
21

;1
3
M
/8

F)
N
at
u
ra
l
d
is
as
te
r
(e
ar
th
q
u
ak
e)

Fr
o
n
to
-li
m
b
ic
-s
tr
ia
ta
l

n
et
w
o
rk
-D
M
N

↑

H
ar
n
et
t
et

al
.

[1
41

]
Pa

vl
o
vi
an

fe
ar

co
n
d
it
io
n
in
g

ta
sk

TE (n
=
20

;1
4
M
/6

F)
H
C

(n
=
19

;1
4
M
/5

F)
M
VA

(n
=
9)
;F
al
l
(n

=
5)
;

B
u
rn

(n
=
3)
;

K
n
ife

st
ab

w
o
u
n
d
(n

=
1)
;

A
n
im

al
ac
ci
d
en

t
(n

=
1)
;

M
ec
h
an

ic
al

ac
ci
d
en

t
(n

=
1)

PF
C

↓

—
—

—
—

—
In
fe
ri
o
r
p
ar
ie
ta
l
lo
b
e

↓

K
en

n
is
et

al
.

[1
25

]
Em

o
ti
o
n
al

p
ro
ce
ss
in
g
ta
sk

-N
eg

at
iv
e
im

ag
es

Sh
o
rt
-t
er
m

fo
llo

w
-u
p

(n
=
28

;M
)

Lo
n
g
-t
er
m

fo
llo

w
u
p

(n
=
28

;M
)

C
o
m
b
at
-r
el
at
ed

tr
au

m
a

d
A
C
C

↑

Po
w
er
s
et

al
.

[1
42

]
St
o
p
-s
ig
n
al

an
ti
ci
p
at
io
n

ta
sk

-R
ea
ct
iv
e
in
h
ib
it
io
n

TE (n
=
23

;1
5
M
/8

F)
—

M
VA

(n
=
12

);
p
ed

es
tr
ia
n
ve
rs
u
s

au
to

(n
=
5)
;

A
ss
au

lt
(n

=
1)
;G

u
n
sh
o
t
w
o
u
n
d

(n
=
1)
;

St
ab

b
in
g
(n

=
1)
;I
n
d
u
st
ri
al
/h
o
m
e

ac
ci
d
en

t
(n

=
1)
;A

n
im

al
b
it
e/

at
ta
ck

(n
=
1)
;

B
ik
e
ac
ci
d
en

t
(n

=
1)

rI
FG

↓

C.A. Hinojosa et al.

4

Molecular Psychiatry



Ta
bl
e
1.

co
n
ti
n
u
ed

St
ud

y
ID

Ta
sk

Pa
ti
en

t
sa
m
p
le

(n
)

C
om

p
ar
is
on

sa
m
p
le

(n
)

Tr
au

m
a
ty
p
e

R
eg

io
n
of

in
te
re
st

D
ir
ec
ti
on

of
fi
n
d
in
g

—
R
es
p
o
n
se

in
h
ib
it
io
n

—
—

—
vm

PF
C

↓

St
ev
en

s
et

al
.

[1
38

]
Fe
ar
fu
l
fa
ce

p
ro
ce
ss
in
g
ta
sk

- Fe
ar
fu
l
>
n
eu

tr
al

TE (n
=
31

;1
6
M
/1
5
F)

—
M
VA

(n
=
22

);
Pe

d
es
tr
ia
n
s
h
it
b
y

ve
h
ic
le

(n
=
1)
;M

o
to
rc
yc
le

o
r

b
ic
yc
le

ac
ci
d
en

t
(n

=
3)
;S

ex
u
al

as
sa
u
lt
(n

=
2)

A
m
yg

d
al
a

↑

—
Fe
ar
fu
l
>
n
eu

tr
al

—
—

—
vA

C
C

↓

Ta
n
ri
ve
rd
i
et

al
.[
13

5]
Fe
ar
fu
l
fa
ce

p
ro
ce
ss
in
g
ta
sk

– Fe
ar
fu
l
>
n
eu

tr
al

TE (n
=
11

6;
40

M
/7
6
F)

—
M
VA

(n
=
87

);
Ph

ys
ic
al

as
sa
u
lt

(n
=
15

);
Se

xu
al

as
sa
u
lt
(n

=
2)
;F
al
l
(n

=
6)
;

N
o
n
m
o
to
ri
ze
d
co

lli
si
o
n
(n

=
2)
;

B
u
rn
s
(n

=
1)
;

O
th
er

(n
=
4)

H
ip
p
o
ca
m
p
u
s

↓

va
n
R
o
o
ij
et

al
.

[1
36

]
G
o
/N

o
G
o
ta
sk

-N
o
g
o
>
g
o

O
ri
g
in
al

sa
m
p
le

(n
=
27

;
14

M
/1
3
F)

R
ep

lic
at
io
n
sa
m
p
le

(n
=
31

;2
0
M
/1
1
F)

M
VA

(n
=
38

);
M
o
to
rc
yc
le

co
lli
si
o
n

(n
=
1)
;

N
o
n
-s
ex
u
al

as
sa
u
lt
(n

=
2)
;

Pe
d
es
tr
ia
n
vs
.a

u
to

(n
=
7)
;

In
d
u
st
ri
al
/h
o
m
e
ac
ci
d
en

t
(n

=
3)
;

B
ic
yc
le

ac
ci
d
en

t
(n

=
3)
;

Se
xu

al
as
sa
u
lt
(n

=
3)

H
ip
p
o
ca
m
p
u
s

↓

va
n
R
o
o
ij
et

al
.

[1
34

]
Fe
ar

in
h
ib
it
io
n
ta
sk

TE (N
=
28

;1
8
M
/1
0
F)

—
M
VA

(n
=
13

);
B
ik
e
ac
ci
d
en

ts
(n

=
1)
;N

o
n
-s
ex
u
al

as
sa
u
lt
(n

=
1)
;

Se
xu

al
as
sa
u
lt
(n

=
1)
;P

ed
es
tr
ia
n

ve
rs
u
s
au

to
(n

=
7)
;

G
u
n
sh
o
t
w
o
u
n
d
(n

=
1)
;

St
ab

b
in
g
(n

=
1)
;I
n
d
u
st
ri
al
/h
o
m
e

ac
ci
d
en

t
(n

=
2)
;A

n
im

al
b
it
e/

at
ta
ck

(n
=
1)

H
ip
p
o
ca
m
p
u
s

↓

W
an

g
et

al
.

[1
37

]
Fe
ar
fu
l
fa
ce

p
ro
ce
ss
in
g

PT
SD

(n
=
16

;6
M
/1
0
F)

TE
N
C

(n
=
22

;6
M
/1
6
F)

M
VA

(n
=
38

)
d
m
PF

C
↑

Yo
u
th

G
eo

rg
e
et

al
.

[1
48

]
Em

o
ti
o
n
p
ro
ce
ss
in
g
ta
sk

-
Th

re
at
en

in
g
im

ag
es

PT
SD

(n
=
23

;1
3
M
/1
0
F)

Ty
p
ic
al
ly

d
ev

el
o
p
in
g
yo

u
th

(n
=
28

;9
M
/1
9
F)

Se
xu

al
ab

u
se

(n
=
11

);
A
cc
id
en

t
(n

=
3)
;

Tr
au

m
at
ic

n
ew

s
(n

=
4)
;

W
it
n
es
s
d
o
m
es
ti
c
vi
o
le
n
ce

(n
=
5)

H
ip
p
o
ca
m
p
u
s

↑

—
N
eu

tr
al

im
ag

es
—

—
—

H
ip
p
o
ca
m
p
u
s

↓

Th
re
e
G
ro
u
p
St
u
d
ie
s

St
ru
ct
u
ra
l
St
u
d
ie
s

A
d
u
lt
s

Lu
o
et

al
.[
12

7]
sM

R
I

PT
SD

(n
=
57

;2
0
M
/3
7
F)

TE
N
C

(n
=
11

;6
M
/5

F)
;

H
C

(n
=
39

;1
9
M
/2
0
F)

Lo
st

o
n
ly

ch
ild

H
ip
p
o
ca
m
p
u
s

↓

Lu
o
et

al
.[
12

6]
sM

R
I

PT
SD

(n
=
57

;2
0
M
/3
7
F)

TE
N
C

(n
=
11

;6
M
/5

F)
;H

C
(n

=
39

;1
9
M
/2
0
F)

Lo
st

o
n
ly

ch
ild

C
A
2

↓

C.A. Hinojosa et al.

5

Molecular Psychiatry



Ta
bl
e
1.

co
n
ti
n
u
ed

St
ud

y
ID

Ta
sk

Pa
ti
en

t
sa
m
p
le

(n
)

C
om

p
ar
is
on

sa
m
p
le

(n
)

Tr
au

m
a
ty
p
e

R
eg

io
n
of

in
te
re
st

D
ir
ec
ti
on

of
fi
n
d
in
g

—
—

—
—

—
C
A
3

↓

—
—

—
—

—
C
A
4

↓

—
—

—
—

—
D
en

ta
te

g
yr
u
s

↓

—
—

—
—

—
Su

b
ic
u
lu
m

↓

Po
st
el

et
al
.

[1
30

]
sM

R
I

PT
SD

(n
=
53

;2
2
M
/3
1
F)

TE
N
C

(n
=
39

;2
1
M
/1
8
F)
;H

C
(n

=
56

;2
6
M
/3
0
F)

Te
rr
o
ri
st

at
ta
ck

H
ip
p
o
ca
m
p
u
s

↓

va
n
R
o
o
ij
et

al
.

[1
29

]
sM

R
I

PT
SD

(n
=
47

;M
)

TE
N
C

(n
=
25

;M
)

H
C

(n
=
25

;M
)

C
o
m
b
at
-r
el
at
ed

H
ip
p
o
ca
m
p
u
s

↓

Z
h
an

g
et

al
.

[1
28

]
sM

R
I

PT
SD

(n
=
69

;2
2
M
/4
7
F)

TE
N
C

(n
=
76

;2
0
M
/5
6
F)
;H

C
(n

=
57

;2
3
M
/3
3
F)

N
at
u
ra
l
d
is
as
te
r
(e
ar
th
q
u
ak
e)

H
ip
p
o
ca
m
p
u
s

↓

—
—

—
—

—
A
m
yg

d
al
a

↓

Fu
n
ct
io
n
al

St
u
d
ie
s

A
d
u
lt

C
h
en

et
al
.

[1
45

]
rs
-F
C

PT
SD

(n
=
27

;7
M
/2
0
F)

TE
N
C

(n
=
33

;7
M
/2
6
F)
;H

C
(n

=
30

;7
M
/2
3
F)

N
at
u
ra
l
d
is
as
te
r
(t
yp

h
o
o
n
)

d
A
C
C
-p
o
st
ce
n
tr
al

g
yr
u
s

↑

Su
lli
va
n
et

al
.

[1
44

]
Th

in
k-
n
o
-t
h
in
k
ta
sk

PT
SD

(n
=
16

;1
5
M
/1

F)
TE

N
C

(n
=
19

;1
8
M
/1

F)
;H

C
(n

=
13

;1
1
M
/2

F)

C
o
m
b
at
-r
el
at
ed

tr
au

m
a
(n

=
10

);
A
d
u
lt
p
h
ys
ic
al
/s
ex
u
al

as
sa
u
lt

(n
=
1)
;A

cc
id
en

t/
M
VA

/fi
re

(n
=
4)
;

D
ea
th

o
f
so
m
eo

n
e
(n

=
1)

M
id
d
le

Fr
o
n
ta
l
G
yr
u
s

↓

Tw
in

St
u
d
ie
s

A
d
u
lt

D
ah

lg
re
n
et

al
.

[1
46

]
St
re
ss
fu
l
>
n
eu

tr
al

sc
ri
p
t-

d
ri
ve
n
im

ag
er
y

Ex
P+

(n
=
12

;M
)

U
xP

+
(n

=
12

;M
)

Ex
P-

(n
=
14

M
)

U
xP

-
(n

=
14

M
)

C
o
m
b
at
-r
el
at
ed

M
FG

↓

H
in
o
jo
sa

et
al
.

[1
47

]
Em

o
ti
o
n
al

fa
ce

vi
ew

in
g

Ex
P+

(n
=
12

;M
)

U
xP

+
(n

=
12

;M
)

Ex
P-

(n
=
15

M
)

U
xP

-
(n

=
15

M
)

C
o
m
b
at
-r
el
at
ed

A
m
yg

d
al
a

↑

—
—

—
—

—
M
FG

↓

CA
C
o
rn
u
am

m
o
n
is
,
dA

CC
d
o
rs
al

an
te
ri
o
r
ci
n
g
u
la
te

co
rt
ex
,
D
M
N

d
ef
au

lt
m
o
d
e
n
et
w
o
rk
,
dm

PF
C
d
o
rs
o
m
ed

ia
l
p
re
fr
o
n
ta
l
co

rt
ex
,
Ex
P
+

tr
au

m
a-
ex
p
o
se
d

PT
SD

,
Ex
P-

tr
au

m
a-
ex
p
o
se
d

n
o
n
-P
TS

D
,
F
fe
m
al
e,

FC
fu
n
ct
io
n
al
co

n
n
ec
ti
vi
ty
,H

C
h
ea
lt
h
y
co

n
tr
o
l,
M

m
al
e,
M
FG

m
ed

ia
lf
ro
n
ta
lg

yr
u
s,
M
VA

m
o
to
r
ve

h
ic
le

ac
ci
d
en

t,
O
FC

o
rb
it
o
fr
o
n
ta
lc
o
rt
ex
,P
FC

p
re
fr
o
n
ta
lc
o
rt
ex
,P
TA

p
o
st
-t
ra
u
m
a
an

h
ed

o
n
ia
,P
TS
D
p
o
st
tr
au

m
at
ic
st
re
ss

d
is
o
rd
er
,
rIF
G
ri
g
h
t
in
fe
ri
o
r
fr
o
n
ta
l
g
yr
u
s,
rs
-F
C
re
st
in
g
-s
ta
te

fu
n
ct
io
n
al

co
n
n
ec
ti
vi
ty
,
sM

RI
st
ru
ct
u
ra
l
m
ag

n
et
ic

re
so
n
an

ce
im

ag
in
g
,
TE

tr
au

m
a-
ex
p
o
se
d
,
TE
N
C
tr
au

m
a-
ex
p
o
se
d
n
o
n
-P
TS

D
co

n
tr
o
l,
U
xP

+
tr
au

m
a-

u
n
ex
p
o
se
d
PT

SD
co

tw
in
,U

xP
-
tr
au

m
a-
u
n
ex
p
o
se
d
n
o
n
-P
TS

D
co

tw
in
,v
A
CC

ve
n
tr
al

(r
o
st
ra
l)
an

te
ri
o
r
ci
n
g
u
la
te

co
rt
ex
,v
m
PF
C
ve
n
tr
o
m
ed

ia
l
p
re
fr
o
n
ta
l
co

rt
ex
.

C.A. Hinojosa et al.

6

Molecular Psychiatry



Ta
bl
e
2.

N
eu

ra
l
p
re
d
ic
to
rs

o
f
p
o
si
ti
ve

tr
ea
tm

en
t
re
sp
o
n
se

an
d
ch

an
g
e
af
te
r
tr
ea
tm

en
t.

St
ud

y
ID

Ta
sk

Pa
ti
en

t
Sa

m
p
le

C
on

tr
ol

Sa
m
p
le

Tr
au

m
a
Ty

p
e

R
eg

io
n
of

In
te
re
st

D
ir
ec
ti
on

of
Fi
n
d
in
g

Tr
ea

tm
en

t
ty
p
e

B
as
el
in
e
Pr
ed

ic
to
rs

o
f
PT

SD
Sy
m
p
to
m

Im
p
ro
ve
m
en

t

St
ru
ct
u
ra
l
St
u
d
ie
s

A
d
u
lt

G
ra
zi
an

o
et

al
.

[1
52

]
D
TI
-F
A

PT
SD

(n
=
21

;
F)

In
te
rp
er
so
n
al

vi
o
le
n
ce

In
te
rn
al

ca
p
su
le

Lo
w
er

FA
at

b
as
el
in
e

p
re
d
ic
te
d
g
re
at
er

sy
m
p
to
m

re
d
u
ct
io
n

12
w
ee

ks
o
f
C
PT

;t
re
at
m
en

t
im

p
ro
ve
m
en

t
w
as

u
se
d

u
si
n
g
ch

an
g
e
sc
o
re
s:

p
o
st
tr
ea
tm

en
t-

p
re
tr
ea
tm

en
t
C
A
PS

—
—

—
—

—
Po

st
er
io
r
lim

b
o
f
th
e

in
te
rn
al

ca
p
su
le

Lo
w
er

FA
at

b
as
el
in
e

p
re
d
ic
te
d
g
re
at
er

sy
m
p
to
m

re
d
u
ct
io
n

—

—
—

—
—

—
C
in
g
u
la
te

g
yr
u
s

Lo
w
er

FA
at

b
as
el
in
e

p
re
d
ic
te
d
g
re
at
er

sy
m
p
to
m

re
d
u
ct
io
n

—

—
—

—
—

—
Su

p
er
io
r
lo
n
g
it
u
d
in
al

fa
sc
ic
u
lu
s

Lo
w
er

FA
at

b
as
el
in
e

p
re
d
ic
te
d
g
re
at
er

sy
m
p
to
m

re
d
u
ct
io
n

—

—
—

—
—

—
Sp

le
n
iu
m

o
f
th
e
co

rp
u
s

ca
llo

su
m

Lo
w
er

FA
at

b
as
el
in
e

p
re
d
ic
te
d
g
re
at
er

sy
m
p
to
m

re
d
u
ct
io
n

—

Fu
n
ct
io
n
al

St
u
d
ie
s

A
d
u
lt

H
in
o
jo
sa

et
al
.

[1
53

]
Em

o
ti
o
n
al

fa
ce
-

vi
ew

in
g

PT
SD

(n
=
16

;
6
M
/1
0
F)

—
—

A
m
yg

d
al
a

Le
ss
er

p
re
-t
re
at
m
en

t
am

yg
d
al
a
ac
ti
va
ti
o
n
in

re
sp
o
n
se

to
fe
ar
fu
l
vs
.

h
ap

p
y
fa
ci
al

ex
p
re
ss
io
n
s
w
as

ea
ch

re
la
te
d
to

g
re
at
er

sy
m
p
to
m
at
ic

im
p
ro
ve
m
en

t
w
it
h
PE

A
g
re
at
er

d
ec
lin

e
in

am
yg

d
al
a
re
sp
o
n
se
s

fr
o
m

th
e
fi
rs
t
to

th
e
la
st

fe
ar
fu
l
fa
ci
al

ex
p
re
ss
io
n

b
lo
ck

w
as

as
so
ci
at
ed

w
it
h
g
re
at
er

im
p
ro
ve
m
en

t

8
se
ss
io
n
s
o
f
PE

;t
re
at
m
en

t
im

p
ro
ve
m
en

t
w
as

m
ea
su
re
d
u
si
n
g
ch

an
g
e

sc
o
re
s;
p
o
st
tr
ea
tm

en
t-

p
re
tr
ea
tm

en
t
SP

R
IN
T.

—
—

—
—

—
rA
C
C
/v
m
PF

C
G
re
at
er

p
re
-t
re
at
m
en

t
ac
ti
va
ti
o
n
in

re
sp
o
n
se

to
fe
ar
fu
l
ve

rs
u
s
h
ap

p
y

fa
ci
al

ex
p
re
ss
io
n
s
w
as

ea
ch

re
la
te
d
to

g
re
at
er

sy
m
p
to
m
at
ic

im
p
ro
ve
m
en

t
w
it
h
PE

—

K
o
rg
ao

n
ka
r
et

al
.[
15

7]
Pa

ir
w
is
e

in
tr
in
si
c
ta
sk
-

fr
ee

FC

PT
SD

(n
=
36

;
19

M
/1
7
F)

Tr
ea
tm

en
t

H
C

(n
=
36

;1
8
M
/

18
F)

C
h
ild

h
o
o
d
ab

u
se

(n
=
3)
;M

VA
(n

=
5)
;

p
o
lic
e-
re
la
te
d
(n

=
10

);

C
in
g
u
lo
-o
p
er
cu

la
r,
D
M
N
,

d
o
rs
al

at
te
n
ti
o
n
,a

n
d

sa
lie
n
ce

n
et
w
o
rk
s

Lo
w
er

p
re
-t
re
at
m
en

t
in
tr
an

et
w
o
rk

in
tr
in
si
c

co
n
n
ec
ti
vi
ty

is

9
se
ss
io
n
s
o
f
TF

-C
BT

;
R
es
p
o
n
d
er
s
d
efi

n
ed

as

C.A. Hinojosa et al.

7

Molecular Psychiatry



Ta
bl
e
2.

co
n
ti
n
u
ed

St
ud

y
ID

Ta
sk

Pa
ti
en

t
Sa

m
p
le

C
on

tr
ol

Sa
m
p
le

Tr
au

m
a
Ty

p
e

R
eg

io
n
of

In
te
re
st

D
ir
ec
ti
on

of
Fi
n
d
in
g

Tr
ea

tm
en

t
ty
p
e

re
sp
o
n
d
er
s

(n
=
25

;1
2
M
/

13
F)

Tr
ea
tm

en
t

n
o
n
-

re
sp
o
n
d
er
s

(n
=
11

;7
M
/

4
F)

as
sa
u
lt
(n

=
14

);
w
it
n
es
s

(n
=
3)

as
so
ci
at
ed

w
it
h

tr
ea
tm

en
t

im
p
ro
ve
m
en

t

h
av
in
g
at

le
as
t
50

%
im

p
ro
ve
m
en

t
in

sy
m
p
to
m
s.

—
—

—
—

—
C
in
g
u
lo
-o
p
er
cu

la
r,
D
M
N
,

d
o
rs
al

at
te
n
ti
o
n
,a

n
d

fr
o
n
to
p
ar
ie
ta
l
n
et
w
o
rk
s

Lo
w
er

p
re
-t
re
at
m
en

t
in
tr
an

et
w
o
rk

in
tr
in
si
c

co
n
n
ec
ti
vi
ty

is
as
so
ci
at
ed

w
it
h

tr
ea
tm

en
t

im
p
ro
ve
m
en

t

—

—
—

—
—

—
C
in
g
u
lo
-o
p
er
cu

la
r,
d
o
rs
al

at
te
n
ti
o
n
,a

n
d

fr
o
n
to
p
ar
ie
ta
l
n
et
w
o
rk
s

w
it
h
au

d
it
o
ry

an
d
vi
su
al

n
et
w
o
rk
s

Lo
w
er

p
re
-t
re
at
m
en

t
in
tr
an

et
w
o
rk

in
tr
in
si
c

co
n
n
ec
ti
vi
ty

is
as
so
ci
at
ed

w
it
h

tr
ea
tm

en
t

im
p
ro
ve
m
en

t

—

—
—

—
—

—
B
as
al

g
an

g
lia

re
g
io
n
s
o
f

th
e
su
b
co

rt
ic
al

n
et
w
o
rk

w
it
h
th
e
D
M
N
,c
in
g
u
lo
-

o
p
er
cu

la
r,
fr
o
n
to
p
ar
ie
ta
l,

an
d
sa
lie
n
ce

n
et
w
o
rk
s

Lo
w
er

p
re
-t
re
at
m
en

t
in
tr
an

et
w
o
rk

in
tr
in
si
c

co
n
n
ec
ti
vi
ty

is
as
so
ci
at
ed

w
it
h

tr
ea
tm

en
t

im
p
ro
ve
m
en

t

—

—
—

—
—

—
V
is
u
al

an
d
so
m
at
o
m
o
to
r

n
et
w
o
rk
s

Lo
w
er

p
re
-t
re
at
m
en

t
in
tr
an

et
w
o
rk

in
tr
in
si
c

co
n
n
ec
ti
vi
ty

is
as
so
ci
at
ed

w
it
h

tr
ea
tm

en
t

im
p
ro
ve
m
en

t

—

N
o
rb
u
ry

et
al
.

[1
54

]
Em

o
ti
o
n
al

fa
ce
-

vi
ew

in
g

PT
SD

M
id
az
o
la
m

(n
=
10

;2
M
/

8
F)

PT
SD

K
et
am

in
e

(n
=
10

;1
M
/

10
F)

Se
xu

al
vi
o
le
n
ce

(n
=
10

);
p
h
ys
ic
al

vi
o
le
n
ce

o
r
ab

u
se

(n
=
6)
;w

it
n
es
se
d

vi
o
le
n
ce

o
r
d
ea
th
;

co
m
b
at

ex
p
o
su
re

(n
=
4)
;

vm
PF

C
-a
m
yg

d
al
a

co
n
n
ec
ti
vi
ty

Lo
w
er

b
as
el
in
e
w
as

re
la
te
d
to

g
re
at
er

PT
SD

sy
m
p
to
m

im
p
ro
ve
m
en

t

M
id
az
o
la
m

ve
rs
u
s
K
et
am

in
e

(D
ru
g
tr
ea
tm

en
t)
;c
h
an

g
e

sc
o
re
s
w
er
e
p
o
si
ti
ve

m
ea
n
in
g
b
as
el
in
e
m
in
u
s

o
u
tc
o
m
e
vi
si
t
sc
o
re
s.

—
—

—
—

—
rA
C
C

Lo
w
er

b
as
el
in
e
d
u
ri
n
g

em
o
ti
o
n
al

fa
ce
-v
ie
w
in
g

an
d
em

o
ti
o
n
al

co
n
fl
ic
t

re
g
u
la
ti
o
n
ta
sk
s
an

d
in

in
d
iv
id
u
al
s
w
it
h
m
o
re

d
is
ti
n
ct

re
p
re
se
n
ta
ti
o
n

o
f
fe
ar
fu
l
vs
.n

eu
tr
al

fa
ce
s
ac
ro
ss

rA
C
C

vo
xe
ls

—

Yu
an

et
al
.

[1
56

]
rs
-f
M
RI

PT
SD

(n
=
22

;
5
M
/1
7
F)

—
N
at
u
ra
l
d
is
as
te
r

(e
ar
th
q
u
ak
e)

Pr
ec
u
n
eu

s
D
is
cr
im

in
at
in
g
re
g
io
n
in

re
m
it
te
d
ve
rs
u
s

12
w
ee

ks
o
f
tr
ea
tm

en
t
w
it
h

p
ar
o
xe
ti
n
e;

re
m
it
te
d

C.A. Hinojosa et al.

8

Molecular Psychiatry



Ta
bl
e
2.

co
n
ti
n
u
ed

St
ud

y
ID

Ta
sk

Pa
ti
en

t
Sa

m
p
le

C
on

tr
ol

Sa
m
p
le

Tr
au

m
a
Ty

p
e

R
eg

io
n
of

In
te
re
st

D
ir
ec
ti
on

of
Fi
n
d
in
g

Tr
ea

tm
en

t
ty
p
e

R
em

it
te
d

(n
=
9;

1
M
/8

F)
Pe

rs
is
te
n
t

p
at
ie
n
ts

(n
=
11

;4
M
7F

)

p
er
si
st
en

t
p
at
ie
n
ts

re
ve
al
ed

b
y
co

m
b
in
ed

A
LF
F
an

d
D
C

p
at
ie
n
ts

d
efi

n
ed

b
y
a
C
A
PS

im
p
ro
ve
m
en

t
o
f
50

%
o
r

g
re
at
er
,p

er
si
st
en

t
p
at
ie
n
ts

w
it
h
<
50

%
im

p
ro
ve
m
en

t.

—
—

—
—

—
d
m
PF

C
D
is
cr
im

in
at
in
g
re
g
io
n
in

re
m
it
te
d
ve
rs
u
s

p
er
si
st
en

t
p
at
ie
n
ts

re
ve
al
ed

b
y
co

m
b
in
ed

A
LF
F
an

d
D
C

—

—
—

—
—

—
Fr
o
n
ta
l
o
rb
it
al

co
rt
ex

D
is
cr
im

in
at
in
g
re
g
io
n
in

re
m
it
te
d
ve
rs
u
s

p
er
si
st
en

t
p
at
ie
n
ts

re
ve
al
ed

b
y
co

m
b
in
ed

A
LF
F
an

d
D
C

—

—
—

—
—

—
Su

p
p
le
m
en

ta
ry

m
o
to
r

ar
ea

D
is
cr
im

in
at
in
g
re
g
io
n
in

re
m
it
te
d
ve
rs
u
s

p
er
si
st
en

t
p
at
ie
n
ts

re
ve
al
ed

b
y
co

m
b
in
ed

A
LF
F
an

d
D
C

—

—
—

—
—

—
C
er
eb

el
lu
m

D
is
cr
im

in
at
in
g
re
g
io
n
in

re
m
it
te
d
ve
rs
u
s

p
er
si
st
en

t
p
at
ie
n
ts

re
ve
al
ed

b
y
co

m
b
in
ed

A
LF
F
an

d
D
C

—

—
—

—
—

—
Li
n
g
u
al

g
yr
u
s

D
is
cr
im

in
at
in
g
re
g
io
n
in

re
m
it
te
d
ve
rs
u
s

p
er
si
st
en

t
p
at
ie
n
ts

re
ve
al
ed

b
y
co

m
b
in
ed

A
LF
F
an

d
D
C

—

Yo
u
th

C
is
le
r
et

al
.

[1
61

]
C
o
g
n
it
iv
e

re
ap

p
ra
is
al

ta
sk

– R
ea
p
p
ra
is
al

d
u
ri
n
g
n
eg

at
iv
e

im
ag

es
>

vi
ew

in
g

n
eg

at
iv
e

im
ag

es

PT
SD

(n
=
34

;
F)

A
ss
au

lt
iv
e
vi
o
le
n
ce

A
m
yg

d
al
a-
in
su
la

FC
D
ec
re
as
ed

FC
12

se
ss
io
n
s
o
f
TF

-C
BT
.

G
ar
re
tt

et
al
.

[1
58

]
Fa
ci
al

ex
p
re
ss
io
n
ta
sk

w
it
h
sc
ra
m
b
le
d

im
ag

es

PT
SD

(n
=
20

;
2
M
/1
8
F)

H
C

(n
=
20

;2
M
/

18
F)

In
te
rp
er
so
n
al

vi
o
le
n
ce

Po
st
er
io
r
ci
n
g
u
la
te

Lo
w
er

ac
ti
va
ti
o
n

p
re
d
ic
te
d
b
et
te
r

tr
ea
tm

en
t

12
se
ss
io
n
s
o
f
TF

-C
BT
.

Sy
m
p
to
m

im
p
ro
ve
m
en

t
b
as
ed

o
n
50

%
o
r
b
et
te
r.

—
—

—
—

—
M
id
-c
in
g
u
la
te

Lo
w
er

ac
ti
va
ti
o
n

p
re
d
ic
te
d
b
et
te
r

tr
ea
tm

en
t

—

—
—

—
—

—
H
ip
p
o
ca
m
p
u
s

—

C.A. Hinojosa et al.

9

Molecular Psychiatry



Ta
bl
e
2.

co
n
ti
n
u
ed

St
ud

y
ID

Ta
sk

Pa
ti
en

t
Sa

m
p
le

C
on

tr
ol

Sa
m
p
le

Tr
au

m
a
Ty

p
e

R
eg

io
n
of

In
te
re
st

D
ir
ec
ti
on

of
Fi
n
d
in
g

Tr
ea

tm
en

t
ty
p
e

Lo
w
er

ac
ti
va
ti
o
n

p
re
d
ic
te
d
b
et
te
r

tr
ea
tm

en
t

Z
h
u
to
vs
ky

et
al
.[
15

9]
rs
-F
C

R
es
p
o
n
d
er
s

(n
=
21

;1
0
M
/

12
F)

N
o
n
-

re
sp
o
n
d
er

(n
=
19

;5
M
/

14
F)

Se
xu

al
ab

u
se

(n
=
13

);
D
o
m
es
ti
c
vi
o
le
n
ce

(n
=
5)
;

C
o
m
m
u
n
it
y
vi
o
le
n
ce

(n
=
10

);
A
cc
id
en

ts
/M

ed
ic
al

(n
=
5)
;

O
th
er

(n
=
7)

Su
p
er
io
r
te
m
p
o
ra
l
g
yr
u
s

N
et
w
o
rk

d
is
ti
n
g
u
is
h
ed

b
et
w
ee

n
re
sp
o
n
d
er
s

an
d
n
o
n
-r
es
p
o
n
d
er
s

w
it
h
76

.2
%

ac
cu

ra
cy

TF
-C
BT

o
r
EM

D
R.

Im
p
ro
ve
m
en

t
ra
te
d
30

%
sy
m
p
to
m
s

B
ra
in

C
h
an

g
es

R
el
at
ed

to
Sy
m
p
to
m

Im
p
ro
ve
m
en

t

St
ru
ct
u
ra
l
St
u
d
ie
s

A
d
u
lt

B
o
ss
in
i
et

al
.

[1
63

]
V
B
M

PT
SD

(n
=
19

;
9
F/
10

M
)

N
at
u
ra
l
d
is
as
te
r
(n

=
3)
;

su
d
d
en

d
ea
th

o
f
a

fa
m
ily

m
em

b
er

(n
=
5)
;

M
VA

(n
=
2)
;a

ss
au

lt
/

ro
b
b
er
y
(n

=
6)
;t
er
ro
ri
st

at
ta
ck

(n
=
4)

Pa
ra
h
ip
p
o
ca
m
p
al

g
yr
u
s

In
cr
ea
se

in
vo

lu
m
e

12
EM

D
R
se
ss
io
n
s
o
ve

r
th
re
e
m
o
n
th
s

—
—

—
—

—
Th

al
am

u
s

D
ec
re
as
e
in

vo
lu
m
e

—

B
u
tl
er

et
al
.

[1
65

]
V
B
M

PT
SD

(n
=
20

;
M
)

—
C
o
m
b
at
-r
el
at
ed

H
ip
p
o
ca
m
p
u
s

In
cr
ea
se

in
vo

lu
m
e

12
EM

D
R
se
ss
io
n
s;
p
at
ie
n
ts

as
si
g
n
ed

to
a
th
er
ap

y
g
ro
u
p
o
r
a
w
ai
t-
lis
t
co

n
tr
o
l

g
ro
u
p

B
u
tl
er

et
al
.

[1
64

]
V
B
M

PT
SD

(n
=
40

;
M
)

EM
D
R
+
Te
tr
is

(n
=
20

;M
)

EM
D
R
(n

=
20

;
M
)

—
C
o
m
b
at
-r
el
at
ed

H
ip
p
o
ca
m
p
u
s

W
h
o
le
-b
ra
in

an
al
ys
is
:

Si
g
n
ifi
ca
n
t
in
cr
ea
se

in
G
M
V
af
te
r
th
er
ap

y
in

th
e
Te
tr
is
g
ro
u
p
.

R
O
I
an

al
ys
is
:C

o
m
p
ar
ed

to
th
e
co

n
tr
o
l
g
ro
u
p
,

la
rg
er

vo
lu
m
es

in
th
e

h
ip
p
o
ca
m
p
u
s
w
er
e

fo
u
n
d
in

th
e
Te
tr
is

g
ro
u
p
af
te
r
th
er
ap

y

Ev
er
y
d
ay

fo
r
6
w
ee

ks
Te
tr
is

+
12

EM
D
R
se
ss
io
n
s
ve

rs
u
s

12
EM

D
R
se
ss
io
n

o
n
ly

g
ro
u
p

K
en

n
is
et

al
.

[1
66

]
D
TI

PT
SD

(n
=
39

;
M
)

TE
N
C
(n

=
22

;
M
)

C
o
m
b
at
-r
el
at
ed

D
o
rs
al

ci
n
g
u
lu
m

A
ft
er

tr
ea
tm

en
t,
h
ig
h
er

FA
va
lu
es

in
th
e
d
o
rs
al

ci
n
g
u
lu
m

w
er
e
fo
u
n
d
in

p
at
ie
n
ts

w
it
h
p
er
si
st
en

t
PT

SD
ve
rs
u
s
p
at
ie
n
ts

w
it
h
re
m
it
te
d
PT

SD
an

d
co

m
b
at

co
n
tr
o
ls

A
p
p
ro
x.

9
se
ss
io
n
s
Tr
au

m
a-

fo
cu

se
d
th
er
ap

y,
TF

-C
BT

o
r
EM

D
R

Le
vy
-G
ig
i
et

al
.

[1
62

]
Vo

lu
m
et
ri
c

an
al
ys
es

PT
SD

(n
=
39

;
30

F/
9
M
)

TE
N
C
(n

=
31

;
20

F/
11

M
)

En
vi
ro
n
m
en

ta
l
d
is
as
te
r

(n
=
22

);
vi
o
le
n
t
cr
im

e
(n

=
13

);
tr
af
fi
c
ac
ci
d
en

t
(n

=
23

);
co

m
b
at

(n
=
6)
;

em
er
g
en

cy
se
rv
ic
e

w
o
rk
er
s
(n

=
6)

H
ip
p
o
ca
m
p
u
s

C
lin

ic
al

im
p
ro
ve
m
en

t
d
u
ri
n
g
C
BT

in
PT

SD
w
as

as
so
ci
at
ed

w
it
h

in
cr
ea
se
d
h
ip
p
o
ca
m
p
al

si
ze

an
d
el
ev

at
ed

FK
B
P5

g
en

e
ex
p
re
ss
io
n
.A

n
d

12
w
ee

kl
y
1.
5
h
o
u
r
Tr
au

m
a-

fo
cu

se
d
C
BT

se
ss
io
n
s

C.A. Hinojosa et al.

10

Molecular Psychiatry



Ta
bl
e
2.

co
n
ti
n
u
ed

St
ud

y
ID

Ta
sk

Pa
ti
en

t
Sa

m
p
le

C
on

tr
ol

Sa
m
p
le

Tr
au

m
a
Ty

p
e

R
eg

io
n
of

In
te
re
st

D
ir
ec
ti
on

of
Fi
n
d
in
g

Tr
ea

tm
en

t
ty
p
e

th
es
e
va
lu
es

w
er
e

si
g
n
ifi
ca
n
tl
y
co

rr
el
at
ed

w
it
h
cl
in
ic
al

im
p
ro
ve
m
en

t
(t
h
o
u
g
h

FK
B
P5

w
as

th
e
p
ri
m
ar
y

p
re
d
ic
to
r)

Fu
n
ct
io
n
al

St
u
d
ie
s

A
d
u
lt

Fo
n
zo

et
al
.

[1
68

]
D
C
M
-e
ff
ec
ti
ve

co
n
n
ec
ti
vi
ty

PT
SD

(n
=
66

)
Im

m
ed

ia
te

Tr
ea
tm

en
t

(n
=
36

;1
3/

23
F)

Pa
ti
en

t
w
ai
tl
is
t

(n
=
30

;1
0
M
/

20
F)

N
at
u
ra
l
d
is
as
te
r
(n

=
4)
;

p
h
ys
ic
al

as
sa
u
lt

(n
=
16

);
as
sa
u
lt
w
/

w
ea
p
o
n
(n

=
5)
;s
ex
u
al

as
sa
u
lt
(n

=
21

);
co

m
b
at

ex
p
o
su
re

(n
=
8)
;i
n
ju
ry
/

ill
n
es
s/
su
ff
er
in
g
(n

=
12

)

A
m
yg

d
al
a

Tr
ea
tm

en
t
d
ec
re
as
ed

le
ft
fr
o
n
ta
l
in
h
ib
it
io
n
o
f

th
e
am

yg
d
al
a
an

d
la
rg
er

d
ec
re
as
es

w
er
e

as
so
ci
at
ed

w
it
h
la
rg
er

sy
m
p
to
m

re
d
u
ct
io
n
s

9
to

12
se
ss
io
n
s
o
f
PE

o
r

Tr
ea
tm

en
t
w
ai
ti
n
g
lis
t

Le
ro
y
et

al
.

[1
69

]
G
ra
n
g
er

ca
u
sa
lit
y

PT
SD

R
es
p
o
n
d
er
s

(n
=
16

;7
M
/

9
F)

PT
SD

N
o
n
-

re
sp
o
n
d
er
s

(n
=
14

;8
M
/

6
F)

Li
fe

th
re
at

(n
=
2)
;M

VA
,

w
o
rk

ac
ci
d
en

t
(n

=
3)
;

p
h
ys
ic
al

as
sa
u
lt
(n

=
3)
;

se
xu

al
tr
au

m
a/
ra
p
e

(n
=
5)
;T
er
ro
ri
st

at
ta
ck

(n
=
3)

A
n
te
ri
o
r
in
su
la

-
su
p
er
io
r

fr
o
n
ta
l
g
yr
u
s,
an

te
ri
o
r
an

d
p
o
st
er
io
r
su
p
ra
m
ar
g
in
al

g
yr
i,
an

te
ri
o
r
an

d
p
o
st
er
io
r

ci
n
g
u
la
te
,c
en

tr
al

o
p
er
cu

lu
m

an
d
ri
g
h
t

am
yg

d
al
a

R
ed

u
ce
d
in
fl
u
en

ce
sh
o
w
ed

g
re
at
er

cl
in
ic
al

im
p
ro
ve
m
en

t

Tr
au

m
at
ic

m
em

o
ry

re
ac
ti
va
ti
o
n
th
er
ap

y
+

p
ro
p
ra
n
o
lo
l
o
r
tr
au

m
at
ic

re
ac
ti
va
ti
o
n
th
er
ap

y
+

p
la
ce
b
o.

O
n
ce

a
w
ee

k
fo
r
6

co
n
se
cu

ti
ve

w
ee

ks
;h

av
in
g

at
le
as
t
a
33

%
d
ec
re
as
e
in

PC
L-
5
q
u
es
ti
o
n
s
1-
to
-5

sc
o
re

co
m
p
ar
ed

to
b
as
el
in
e

K
o
rg
ao

n
ka
r
et

al
.[
15

7]
Pa

ir
w
is
e

in
tr
in
si
c
ta
sk
-

fr
ee

FC

PT
SD

(n
=
36

;
19

M
/1
7
F)

Tr
ea
tm

en
t

re
sp
o
n
d
er
s

(n
=
25

;1
2
M
/

13
F)

Tr
ea
tm

en
t

n
o
n
-

re
sp
o
n
d
er
s

(n
=
11

;7
M
/

4
F)

H
C

(n
=
36

;1
8
M
/

18
F)

C
h
ild

h
o
o
d
ab

u
se

(n
=
3)
;M

VA
(n

=
5)
;

p
o
lic
e-
re
la
te
d
(n

=
10

);
as
sa
u
lt
(n

=
14

);
w
it
n
es
s

(n
=
3)

So
m
at
o
m
o
to
r
an

d
vi
su
al

n
et
w
o
rk
s

C
o
n
n
ec
ti
vi
ty

in
cr
ea
se
d

in
tr
ea
tm

en
t

re
sp
o
n
d
er
s
fr
o
m

p
re
-t
o

p
o
st
-t
re
at
m
en

t

9
se
ss
io
n
s
o
f
TF

-C
BT

;
R
es
p
o
n
d
er
s
d
efi

n
ed

as
h
av
in
g
at

le
as
t
50

%
im

p
ro
ve
m
en

t
in

sy
m
p
to
m
s

Sa
n
ta
rn
ec
ch

i
et

al
.[
17

1]
rs
-F
C

PT
SD

(n
=
37

;
19

M
/1
2
F)

TF
-C
BT

(n
=
14

;
9
M
/5

F)
EM

D
R
(n

=
17

;
10

M
/7

F)

—
N
at
u
ra
l
d
is
as
te
r

(e
ar
th
q
u
ak
e)

Su
p
er
io
r
m
ed

ia
l
fr
o
n
ta
l

g
yr
u
s
–
te
m
p
o
ra
l
p
o
le

In
cr
ea
se
d
co

n
n
ec
ti
vi
ty

TF
-C
BT

(1
0
se
ss
io
n
s)

an
d

EM
D
R
(4

se
ss
io
n
s)
;

—
—

—
—

—
C
u
n
eu

s-
te
m
p
o
ra
l
p
o
le

D
ec
re
as
ed

co
n
n
ec
ti
vi
ty

—

V
u
p
er

et
al
.

[1
67

]
rs
-F
C

PT
SD

Tr
ea
tm

en
t

co
m
p
le
te
rs

(n
=
26

;F
)

PT
SD

In
te
n
t-

to
-t
re
at

(n
=
42

;F
)

TE
N
C
(n

=
18

;
F)

In
te
rp
er
so
n
al

vi
o
le
n
ce

D
M
N

D
ec
re
as
ed

co
n
n
ec
ti
vi
ty

in
PT

SD
p
ar
ti
ci
p
an

ts
af
te
r
C
PT

12
se
ss
io
n
s
o
f
C
PT

;i
n
te
n
t-

to
-t
re
at

sa
m
p
le

—
—

—
—

—
C
EN

C.A. Hinojosa et al.

11

Molecular Psychiatry



(ACC) [44, 45] and frontal cortical regions [44, 46] in PTSD patients
and in subcortical structures, including the amygdala and
hippocampus (see [39, 47] for recent reviews). Furthermore, PTSD
patients, compared to controls, have shown reduced white matter
integrity in the uncinate fasciculus (UF) [48–50], corpus callosum,
corticospinal tract, and enhanced white matter integrity in the
inferior fronto-occipital fasciculus, and inferior temporal gyrus (for
review see [51]), highlighting the structural disconnect between
cortical and subcortical regions. Functional studies also support
classical neurocircuitry models, with greater amygdala alongside
reduced activation in brain regions associated with emotional
regulation (e.g., ventromedial prefrontal cortex [vmPFC], inferior,
superior, medial frontal gyrus [MFG], ACC, dorsolateral PFC [dlPFC],
and dorsomedial PFC [dmPFC]) during emotion-related tasks
[52–62], extinction recall [63], and fear generalization [64, 65].
Limitations of these classical neurocircuitry models of PTSD
include the deficiency of the models to understand the biological
bases of PTSD systems holistically rather than focusing on fear
processes alone (see [35] for an in-depth discussion).
Network-level neural alterations in PTSD are present. Specifi-

cally, disruptions in connectivity structure or activation profiles
within the salience network (SN), default mode network (DMN),
and central executive network (CEN) may underlie univariate and
bivariate impairments in PTSD patients. For example, hyperarousal
and hyperreactivity symptoms were linked to increased activation
of the amygdala and dACC, two critical nodes of the SN
[33, 66, 67]. Further, intrusive symptoms, impaired fear extinction,
and deficits in emotional regulation are associated with decreased
activation of the hippocampus and vmPFC, two nodes of the DMN
[31, 33, 68]. Decreased activation of nodes within the CEN, such as
the IFG and MFG in PTSD, are present [32].
Numerous neuroimaging studies have employed ICA metho-

dology to test alterations in large-scale networks in adults with
PTSD (see reviews [69–74]). Overall, results are mixed and provide
limited support for classical neurocircuitry models of PTSD. Within
the DMN, most studies report decreased activation and con-
nectivity at rest in PTSD patients [75–77], possibly associated with
re-experiencing and dissociative symptoms [71, 78]. However, one
study reported higher integration of the amygdala with the DMN
in PTSD patients during a threat-processing task [79]. Research
typically suggests increased activation and connectivity [83, 84]
within the SN, potentially linked to hyperarousal and hypervigi-
lance symptoms. In contrast, other findings indicate decreased SN
connectivity in PTSD [48, 77]. The CEN seems to show reduced
activation and connectivity among PTSD patients [32, 76].
In addition to alterations within each network, some recent

evidence points to aberrant connectivity patterns between
networks in PTSD. For example, Zhang and colleagues (2015)
[77] reported decreased FC between the SN and DMN, possibly
explaining previous contrasting findings regarding the connectiv-
ity of the SN in PTSD. As the SN is believed to facilitate the
transition between the DMN and CEN in response to external
cognitive demands [80], the reduced connectivity between the SN
and DMN might suggest a compromised ability in PTSD to shift
between a self-referential state and a cognitive control mode. In
another study, PTSD patients showed increased excitatory
influence of the executive central network (ECN, like the CEN)
on the posterior DMN. Finally, Akiki et al. (2017) [71] suggested
that PTSD is characterized by impaired SN, incapable of DMN-CEN
modulation, and weakened top-down regulation of the SN by
the CEN.
Several neuroimaging studies of PTSD used graph theory

approaches in resting-state data to examine possible alternations
in local and global connectivity patterns. One study found that
PTSD patients exhibit a transformation from a random or regular
network to a “small-world” network, compared to TENC [81]. The
concept of “small-world” networks describes a network topology
in which most nodes are not neighbors of one another, but still,Ta
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nodes can be reached from every other by a small number of
steps [82]. Furthermore, these patients show increased centrality
in the DMN and SN [81] (i.e., amount of nodes with many paths
passing through them). Indeed, more severe PTSD symptoms
were linked to DMN alteration, including decreased FC strength
[83], decreased functional integration, and increased segregation
within the DMN [84]. Additionally, reduced within-network
connectivity and decreased connectional density within a
hippocampus-PFC network are associated with more severe re-
experiencing symptoms in combat-exposed veterans [85]. These
studies suggest a complex interplay of network alterations
in PTSD.

Youth
In normative brain development, gray matter volume is shaped
like an inverted U, whereby matter increases from birth to
childhood, then around early adolescence, starts to decline until
adulthood [86]. This development pattern is due to synaptic
proliferation and pruning, which makes the child’s brain more
efficient [87]. White matter generally increases throughout child-
hood and adolescence and then levels off [86]. This pattern
represents increases in myelination over time to maximize
neuronal transmission speed and adjust the timing and synchrony
of neural spikes [88]. In total volume, including gray and white
matter, young brains grow in size until late childhood/early
adolescence, when they start to asymptote [89].
In pediatric samples, PTSD and TENC youth typically exhibit

overall smaller amygdala [90–92] and hippocampal volumes
[91, 93], including smaller CA2/3 hippocampal subfields [90, 94].
Studies report that youth with PTSD have smaller vmPFC volumes
than TENC or HC youth [91, 95]. One study found no differences in
the structure of the medial PFC (mPFC) between youth with PTSD
and TENC [96], indicating that more work needs to be done to
disentangle how maltreatment and PTSD relate to volume. Heyn
and colleagues [97] (2022) explored sex differences in volume in
female and male youth. Female youth with PTSD showed

increased volume and surface area in the ventrolateral PFC and
frontal pole regions. In contrast, male youth showed smaller
volumes of these regions that predicted more severe symptoms
one year later [97]. Additionally, youth with PTSD, compared to
controls, had age- and sex-related differences in the UF, inferior
longitudinal fasciculus, and cingulum bundle [98]. Finally, a review
found that youth with PTSD had lower FA in the corpus callosum,
including the anterior and posterior midbody, the isthmus, and
the splenium [99], and increased PTSD symptoms have been
related to lower FA in these regions [100].
Our comprehension of the typical developmental trajectories of

brain function in youth remains limited. Univariate investigations
have focused mostly on associations between childhood trauma
and brain activation. In the past decade, a movement towards
employing consistent brain atlases and pre-processing methods
has emerged, particularly for comparing studies with limited
sample sizes [101]. That said, the literature reviewed here will be
specific to youth with PTSD and is, therefore, sparse.
In task-based fMRI, greater activation in the amygdala and dACC

in response to emotional faces and threatening images have been
found in youth with PTSD versus controls [102, 103]. Greater
activation has been found in the ACC and frontal brain regions in
maltreated youth than in HC during the presentation of negative
stimuli [104]. Furthermore, there is an interesting pattern of
decreased FC while viewing angry faces and increased FC while
viewing happy faces, specifically between the dACC-dmPFC,
amygdala-dmPFC, and amygdala-vlPFC [102]. Youth with PTSD
showed increased PCC-vmPFC resting-state FC, which may
indicate problems in self-referential tasks or memory consolida-
tion [105]. In another resting-state study, youth with PTSD showed
decreased PCC-hippocampus FC and increased PCC-insula and
PCC-cerebellum FC [106].
Network-based analyses have had limited application in youth

PTSD populations. This could be for numerous reasons, including
low sample sizes and the novelty of computational imaging
methods. The handful of studies that have used ICA and graph

Fig. 1 A pictorial overview of findings from Question 1: which neural alterations serve as predisposing (pre-exposure) risk factors for
PTSD development, and which are acquired (post-exposure) alterations? Blue dots represent decreased activation. Red triangles represent
increased activation. Solid blue represents decreased volume. Solid blue lines represent decreased structural integrity. Red lines represented
increased structural integrity. Functional connectivity findings are depicted with arrows, with blue lines (–) that represent decreased functional
connectivity and red lines (+) that represent increased functional connectivity. dACC dorsal anterior cingulate cortex, dmPFC dorsomedial
prefrontal cortex, Hippo hippocampus, mPFC medial prefrontal cortex, OFC orbitofrontal cortex, rACC rostral anterior cingulate cortex, VS
ventral striatum.

C.A. Hinojosa et al.

13

Molecular Psychiatry



theory methods to identify alterations in youth with PTSD have
identified a greater anticorrelation between DMN and task-
positive network (TPN), indicative of difficulty switching between
internal (DMN) and external (TPN) stimuli [105]. In one study of
resting-state whole-brain connectivity in youth exposed to an
earthquake, the PTSD group (compared to TENC) showed an
increased clustering coefficient and a normalized characteristic
path length and local efficiency, suggesting a shift toward regular
networks [107]. Further, the authors found enhanced nodal
centralities in the DMN and SN, which may be related to altered
processing of negative emotions. They also found reduced
centralities in the CEN, which may indicate worse goal-directed
behaviors. In contrast, Xu and colleagues (2018) [108] reported a
lower clustering coefficient among youth with PTSD compared to

TENC. They further found increases in centralities in the attention
and DMN and decreases in the salience and sensorimotor
networks [109].

QUESTION 1: WHICH NEURAL ALTERATIONS SERVE AS
PREDISPOSING (PRE-EXPOSURE) RISK FACTORS FOR PTSD
DEVELOPMENT, AND WHICH ARE ACQUIRED (POST-
EXPOSURE)?
An important goal in the PTSD field is to uncover whether the
neural alterations in PTSD discussed above are predisposing risk
factors that make an individual more susceptible to developing
PTSD after experiencing trauma or acquired characteristics of the
disorder. Uncovering these distinctions will enable the

Fig. 2 A pictorial overview of findings from Question 2: Which neural alterations can predict treatment outcomes and define clinical
improvement? A Brain measures at baseline that predict a positive treatment response. B Brain measures associated with a positive response
to treatment. Blue dots represent decreased activation. Red triangles represent increased activation. Solid blue represents decreased volume.
Solid red represents greater volume. Solid blue lines represent decreased structural integrity. Functional connectivity findings are depicted
with arrows, with blue lines (–) equating to decreased functional connectivity and red lines (+) equating to greater functional connectivity.
dACC dorsal anterior cingulate cortex, dlPFC dorsolateral prefrontal cortex, Hippo hippocampus, OFC orbitofrontal cortex, PCC posterior
cingulate cortex, rACC rostral anterior cingulate cortex, vmPFC ventromedial prefrontal cortex.
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development of preventative interventions or the creation of
more efficacious treatment options that target specific targets
affected by the disorder. Many methodological approaches are
used to disentangle predisposed from acquired neural alterations
in PTSD [110]. The most methodologically sound techniques
include prospective longitudinal studies, which collect neuroima-
ging data from participants either before trauma exposure or in
the early aftermath of trauma and follow these participants at
various time points post-trauma. Examples include the Neurobe-
havioral Moderators of Posttraumatic Disease Trajectories
(NMPTDT) [111] and the Advancing Understanding of Recovery
After Trauma (AURORA) studies [112]. While prospective long-
itudinal study designs are optimal for answering this question,
they are hard to execute as they are often time-consuming,
expensive, and have inherently poor participant attrition rates (see
[111]). Further, though it is the goal to recruit participants before
or in the early aftermath of trauma, participants may endorse
childhood trauma experienced years before study participation,
confounding the data collected.
Twin-pair designs have also been used to answer this question.

Usually, these studies include monozygotic twin pairs, where one
twin has PTSD from combat-related trauma, while their co-twin
did not experience combat trauma nor has a PTSD diagnosis. A
separate monozygotic twin pair contains a cotwin who experi-
enced combat-related trauma but did not develop PTSD, and their
cotwin did not experience combat-related trauma nor develop
PTSD [113]. Again, limitations exist in this design, including an
inability to determine whether the findings are attributed to
heredity or shared environments.
Lastly, while not optimal, cross-sectional studies that explore

brain alterations in three groups, PTSD, TENC, and HC, can provide
some insight into whether alterations are PTSD-specific or related
to trauma exposure.

Structural neuroimaging
Adults. Few structural imaging studies have used prospective
longitudinal designs in the past decade. Studies that scanned
participants pre-trauma and post-trauma found reduced hippo-
campal volume [68, 114], post-pre-trauma orbitofrontal cortex
(OFC) volume, and pre-trauma ventral ACC were related to greater
PTSD symptom severity post-trauma [115]. It is important to
highlight that these studies had relatively small sample sizes
(n < 50). One large study (n= 210) that scanned police recruits
found smaller pre-trauma dentate gyrus volume was associated
with greater PTSD symptom severity post-trauma and that
experiencing more police-related trauma between scan assess-
ments was related to an increase in the volume of the basal
nucleus of the amygdala [116]. It should be noted that the studies
reviewed consisted of resilient individuals, with many participants
without a PTSD diagnosis.
Numerous recent longitudinal studies have investigated how

structural neuroimaging data collected shortly after trauma
correlate with or predict PTSD symptoms. Most of these studies
supported the hypothesis that decreased hippocampal volume
early post-trauma is a risk factor for the development of chronic
PTSD [117–121]. However, one study found no associations
between hippocampal volume, or any of its subregions, and PTSD
symptoms across time [122]. These differences are likely due to
differences in trauma experienced, the timing of neuroimaging
measurements, analytic strategy, and other sample characteristics
[122]. Reduced FA of the UF [123, 124] and greater FA of the dorsal
cingulum [125] collected early post-trauma predicted greater
PTSD symptoms at 3 months, 6 months, and 4 years later
(respectively).
Cross-sectional studies comparing three groups - PTSD, TENC,

and HC - found reduced hippocampal [126–128] and right
amygdala volume [128] in the PTSD and TENC groups compared
to the HC group. However, one study found that only the PTSD

group showed significantly less hippocampal volume compared to
the TENC and HC groups [129]. When examining hippocampal
subregions, the CA1 and CA2-3/DG were significantly smaller in
PTSD patients than in TENC and HC groups [130]. Differences in
findings may be attributed to different trauma types endured, as
has been found previously [131]. For example, the studies that
found differences only in the PTSD group used samples that
experienced combat-related trauma [129] or a terrorist attack
[130] versus the loss of a loved one [126, 127] or a natural disaster
[128].

Functional MRI
Adults. Using a prospective longitudinal study design, Admon
and colleagues (2013) found that service members who exhibited
reduced hippocampal volume post-pre-trauma also displayed
reduced hippocampus-vmPFC FC, which was related to greater
PTSD symptoms post-trauma [68]. In a separate study from the
same research group, the authors found that greater amygdala
activation in response to risk anticipation at pre- and post-trauma
was related to more PTSD symptoms post-trauma [132] and
reduced nucleus accumbens activation to reward post-trauma was
related to greater PTSD symptoms post-trauma [132]. Zhang and
colleagues (2022) [133] recently used a network-based approach
to measure stress-induced connectivity, changing patterns of
large-scale brain networks at baseline to the subsequent symptom
development post-trauma. In this prospective sample of police
trainees, increased coupling between the SN and anterior
cerebellum was observed in participants with greater PTSD
symptoms (particularly intrusion symptoms) [133]. Nevertheless,
as this work focused on a relatively healthy and resilient sample,
future studies in more severe PTSD samples are needed.
Greater hippocampal activation, collected early post-trauma,

during fear extinction [134], but not when looking at fearful versus
neutral face stimuli [135], predicted more severe PTSD symptoms
at 3 months post-trauma. In comparison, lesser hippocampal
activation during response inhibition predicted greater PTSD
symptom severity post-trauma [136]. Highlighting the unique
contribution of the hippocampus in these different constructs.
Greater amygdala activation early post-trauma when viewing
fearful facial expressions significantly predicted symptoms at 3
[137] and 12 months post-trauma [138]. In combat veterans,
greater dACC activation to negative images predicted greater
PTSD symptom severity four years later [125]. Similarly, more
negative amygdala-cerebellum FC at rest and amygdala-post-
central gyrus FC during trauma recall at 2 weeks post-trauma
predicted 6-month PTSD symptom severity post-trauma [139]. In a
longitudinal study of n= 171 recent trauma survivors, PTSD
severity at 14 months after trauma was associated with decreased
neural activity in the ventral striatum (VS) and the amygdala
toward rewards versus punishments at 1 month after trauma
[140]. Surprisingly, decreased VS activity and connectivity with the
vmPFC were more predictive of PTSD symptoms compared to the
amygdala’s activity, highlighting the important role of reward
processing in PTSD development or recovery [140]. Similarly,
lesser activation in cortical regions early post-trauma during fear
conditioning [141] and response inhibition [142] is related to
greater PTSD symptoms 3 and 6 month post-trauma, respectively.
However, greater dmPFC activation to fearful versus neutral face
stimuli early post-trauma was associated with greater PTSD
symptoms 3 months later [137]. Finally, a longitudinal study
showed that while FC changes at 3 weeks post-trauma involved
the DMN and frontal–limbic–striatal network, only changes in the
DMN persisted at the 2 year follow-up [143].
Using a three-group design, one study examined the neural

correlates of memory suppression in PTSD and found that the
PTSD and TENC groups exhibited disrupted MFG activation while
attempting memory suppression compared to HC, suggesting that
disruptions in the MFG are apparent even in those trauma-
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exposed, regardless of PTSD status [144]. Regional parameters of
the insular lobe, putamen, and precuneus of typhoon-related
PTSD patients, TENC, were abnormal compared to HCs [145].
Recent twin studies have shown that PTSD patients exhibit

reduced activation in the rostral ACC and MFG compared to their
non-trauma-exposed cotwins and trauma-exposed individuals
without PTSD. This diminished response, observed during
exposure to trauma-related cues and to surprised faces, indicates
that changes in these cortical areas are likely acquired traits of the
disorder [146, 147].

Youth. One study found that increased hippocampal activation
to threatening images over one year predicted a non-remitting
PTSD trajectory, compared to a remission trajectory and HC
groups [148].

Summary
Overall, across longitudinal prospective study designs and studies
utilizing three groups, hippocampal alterations (lesser hippocampal
volume and function) appear to be a pre-exposure risk factor for the
development of PTSD [68, 114, 116–121, 126–130, 134–136]. Creat-
ing interventions that promote hippocampal neurogenesis will be
important to use to prevent the development of PTSD early after
trauma. Furthermore, alterations in cortical regions such as the
vmPFC, ACC, and MFG are apparent early after trauma and predictive
of later PTSD symptoms [115, 125, 137, 138, 141, 142, 144–147]. As
such, interventions introduced early post-trauma that promote
greater FC between frontal-limbic networks can potentially
strengthen these connections. There are many limitations to the
studies reviewed above, including limited sample sizes, many of the
longitudinal studies reviewed included participants with sub-
threshold PTSD, and there was not much variability concerning
trauma type. Thus, the generalizability of the findings across trauma
types is questionable. For a pictorial overview of findings, see Fig. 1.

QUESTION 2: WHICH NEURAL CORRELATES PREDICT
TREATMENT OUTCOMES AND DEFINE TREATMENT
IMPROVEMENT?
To date, while trauma-focused cognitive behavioral therapies are
gold-standard treatment options for PTSD, many people do not
respond well to treatment [19, 20]. Uncovering the neural
mechanisms that predict symptom improvement and define
treatment response will be crucial in helping guide clinician-
decision making and provide a more precision-medicine approach
to treatment. Given the recent reviews published on this topic
[40, 149–151], we review studies not included in these reviews,
provide an overall summary of findings, and discuss limitations.

Baseline prediction of PTSD symptom improvement
Adults. In females who developed PTSD as a result of inter-
personal trauma, pre-treatment FA values of the internal capsule,
cingulate gyrus, superior longitudinal fasciculus, and splenium of
the corpus callosum were positively correlated with changes in
PTSD symptoms after cognitive processing therapy [152]. One
study showed that lesser pre-treatment amygdala activation and
greater MFG to fearful versus happy facial expressions were
associated with a better response to prolonged exposure therapy
(PE) [153]. Furthermore, this study found a greater decrease in the
amygdala activation across blocks of fearful facial expression was
associated with better symptomatic improvement [153]. Lower
pre-treatment vmPFC-amygdala connectivity during an emotional
face-viewing task predicted symptom improvement in individuals
with PTSD, an effect that was strongest in individuals who
received ketamine (versus midazolam) [154]. Additionally, this
study showed symptom improvement following ketamine was
predicted by decreased dACC activity during an emotional conflict
regulation task and an increased resting-state FC between the

vmPFC and anterior insula [154]. On the other hand, ketamine did
not promote a greater increase in amygdala-mPFC resting-state FC
but elicited a stronger transient decrease in vmPFC-amygdala
compared to midazolam [155]. A longitudinal resting-state fMRI
study employing support vector machine learning highlighted the
precuneus, dmPFC, lingual gyrus, supplementary motor area, and
cerebellum showed the highest prognostic remittance value from
paroxetine treatment [156]. Lastly, Korgaonkar and colleagues
(2020) found that lower pre-treatment connectivity in the cingulo-
opercular, salience, and dorsal attention networks was associated
with a better response to trauma-focused cognitive behavioral
therapy (TF-CBT) [157].

Youth. Few studies have explored whether neuroimaging
measures can predict treatment response in youth diagnosed
with PTSD. Decreased pre-treatment activation in the posterior
cingulate, mid-cingulate, and hippocampus predicted greater
symptom improvement [158]. Another study trained a support
vector machine from brain networks created from an ICA, finding
that the bilateral superior temporal gyrus center network
distinguished between non-responders and responders to
trauma-focused therapies [159]. This may indicate that auditory
processing and social cognition may be important for PTSD
remission [160]. Girls who experienced greater reductions in PTSD
symptoms exhibited decreased amygdala-insula connectivity
during reappraisal compared to those experiencing milder
reductions [161].

Neuroimaging correlates of PTSD symptom improvement
Adults. Increased hippocampal volume appeared in PTSD
patients who completed CBT [162], eye-movement desensitization
and realization (EMDR) alone [163] or paired with a Tetris video
game intervention [164], and in those who remitted following
psychotherapy [165]. Over time, lesser dorsal cingulum FA was
found in individuals whose PTSD symptoms decreased after
trauma-focused treatment [166]. Interestingly, recent work
reported the normalization of CEN connectivity following cogni-
tive processing therapy for PTSD [167]. Greater reduction in PTSD
symptoms was associated with larger pre- to post-treatment
increases in the inferior frontal junction inhibition of the amygdala
[168]. PTSD patients who showed clinical improvement exhibited
a reduced relative influence of the anterior insula over motor,
affective, and self-other distinction regions [169]. Upon comple-
tion of PE, PTSD patients showed increased pre-post FC in
basolateral amygdala-OFC, centromedial amygdala-OFC, and
hippocampus-vmPFC. In contrast, TENC saw no significant pre-
post changes in connectivity after PE, suggesting that amygdala
FC normalized similarly to TENC [170]. One study showed that a
reduction in PTSD symptom severity was associated with
decreased connectivity between the visual cortex and temporal
lobe regions and increased connectivity between the superior
frontal gyrus and temporal pole regions after EMDR and TF-CBT,
suggesting minor differences exist in neurophysiological outcome
that is therapy-specific, particularly in those who experienced
natural-disaster [171].

Summary
Overall, the studies reviewed here and previously published
reviews [40, 149–151] suggest that treatment non-response in
adults was predicted by greater activation in regions responsible
for threat detection, lesser activation in emotion regulation,
executive function, and contextual processing regions, and altered
crosstalk between regions within the DMN and regions important
in emotion processing, cognitive function, and salience. In youth,
studies are sparse but show a pattern of greater activation in
memory-related regions, while lesser connectivity between fear
learning-related regions predicted symptom reduction. There are
many limitations of the studies reviewed. First, given the stringent
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inclusion/exclusion criteria many of these intervention studies
endorse, their sample sizes are limited. Second, the definition of a
responder versus a non-responder to treatment is not objective,
and studies define this differently. Third, some variables are not
controlled for, making it hard to determine the effect of treatment.
For example, no direct comparison exists between groups
undergoing different treatment options. Fourth, the analyses are
largely ROI-specific. Fifth, no study have examined longitudinal
treatment response outcomes. Lastly, many studies did not
include a wait-list control group; only one study explored neural
differences in treatment response between treatment types. For
a pictorial overview of findings, see Fig. 2.

QUESTION 3: ARE THERE NEUROIMAGING-BASED BIOTYPES
THAT DEFINE PTSD?
Psychiatry is moving towards a more precision-medicine
approach, aiming to improve objective diagnosis, prediction,
and treatment of mental disorders. Currently, to be diagnosed
with PTSD, participants need to meet a certain number of
symptoms that are largely self-reported and subjective, making
the disorder highly heterogeneous [172]. To overcome the weak
link between subjective-based diagnostic methods and objective-
based neuroimaging assessments, recent studies have aimed to
stratify PTSD to identify consistent subgroups based on objective
brain-based markers [173–175]. Accordingly, Stevens and collea-
gues (2021) conducted a pioneering study to identify brain-based
biotypes of psychiatric vulnerability shortly after trauma [176].
Using two cohorts from the AURORA longitudinal study of trauma
survivors (n= 69 discovery cohort; n= 77 internal replication
cohort) [112], the authors found and replicated three clusters
based on early post-trauma brain activity during fMRI tasks
assessing threat and reward reactivity, as well as response
inhibition. These clusters were associated with distinct clinical
trajectories up to 6 months post-trauma, with the group showing
increased reactivity to threat and reward experiencing the most
severe subsequent PTSD and anxiety symptoms [176]. In
collaboration with Stevens and colleagues, Ben-Zion and collea-
gues (2023) conducted a conceptual replication of these brain-
based biotypes [177] using a comparable dataset from the
NMPTDT longitudinal study of trauma survivors [111]. While the
authors found four clusters based on task-based fMRI data, they
were not identical to the previously identified biotypes and were
associated with prospective PTSD or anxiety symptoms. While
there were many differences between the studies (AURORA and
NMPTDT) that could contribute to the non-replication, this study
highlights that additional replication studies are needed to
identify more stable and generalizable neuroimaging-based
biotypes before treatment implications can be fully realized
[177, 178].

OVERALL IMPLICATIONS, FUTURE DIRECTIONS, AND
LIMITATIONS
This narrative review aimed at exploring progress made in the
past decade on three major questions in the field: (1) Which neural
alterations serve as predisposing (pre-exposure) risk factors for
PTSD development, and which are acquired (post-exposure)? (2)
Which neural alterations can predict treatment outcomes and
define clinical improvement? and (3) Can neuroimaging measures
be used to define brain-based biotypes of PTSD? We present a
synthesis of neuroimaging studies from the past decade in adults
and youth with PTSD. Below, we present implications, provide
areas of future research to be explored for each question, and
highlight the limitations of our narrative review.
In the past decade, neuroimaging research on PTSD has

advanced our understanding of the causal pathways of neural
alterations within the disorder. However, we still cannot use the

current neuroimaging knowledge to predict PTSD symptom
trajectories or improve prevention and treatment options. Many
of the above findings require replication in larger and more
diverse samples with different trauma types across different
methodologies. Importantly, future models used to determine the
risk of developing trauma-related psychopathology will likely
include information regarding demographics, socioeconomic
status, and other clinical characteristics; thus, it is important to
consider these factors when designing forthcoming studies. In the
last ten years, we have seen a surge of longitudinal studies that
collect neuroimaging measures early post-trauma and again at
subsequent time points. While such studies are resource-intensive,
scientists can answer questions not asked before, largely because
of the development of large collaborations across multiple sites
such as NMPTDT and AURORA research initiatives. The continua-
tion and creation of more collaborations like these, with a focus on
the collection of neuroimaging data shortly after trauma (and if
possible, even pre-trauma) and at subsequent time points post-
trauma, will be crucial in providing evidence to answer the
vulnerability versus acquired characteristics of PTSD. To capture
the dynamic evolution of the post-traumatic stress response, it is
essential to incorporate multiple time points and ensure an
adequately long follow-up period post-trauma (e.g., more than a
year post-trauma), during which most of the recovery is
anticipated.
Much work has been done to determine neural pre-treatment

predictors of response and whether treatment normalizes
alterations found in the disorder. While we have a relative
understanding of potential predictors and changes associated
with treatment response, much work still needs to be done to use
this information in the clinic. Many of the studies reviewed had
small sample sizes, used different treatment options, and samples
were not diverse regarding sociodemographic factors and trauma
type. Future studies should seek to replicate previous findings
with bigger sample sizes, comparisons should be made between
treatments, and more community-based samples should be
prioritized.
The significant clinical heterogeneity observed in PTSD (and

other post-traumatic psychopathologies), coupled with recent
advancements in statistical and computational techniques, has
spurred the pursuit of identifying homogeneous PTSD subtypes
using data-driven methodologies. However, the assumption of
distinct and homogeneous subgroups may not be clinically useful
or accurately reflect the underlying biology of PTSD. For instance,
most clustering methods will invariably produce clusters, even
without any inherent data structure, highlighting the importance
of differentiating between biologically and clinically relevant
subtypes and random data fluctuations or noise [179, 180]. Future
research aiming to identify brain-based biotypes of PTSD will
benefit from global collaborations between research teams,
combining unique large-scale datasets and sharing of analytic
pipelines (as exemplified recently by Stevens [176] and Ben-Zion
[177]). Furthermore, subsequent studies will benefit from employ-
ing hybrid methodologies that integrate theory- and data-driven
approaches Field [195,196] and implementing open science
protocols (e.g., preregistration, transparent reporting of all results).
Few investigations explored here explicitly examined sex as a

biological variable. As has been recently reviewed [13], the
underlying neurobiological correlates of sex differences in PTSD
are unknown. Most of the studies discussed here did not include a
direct comparison between males and females. However, a
handful of studies did examine female-only or male-only samples,
which do not allow for the generalization of findings to the
opposite sex. Thus, more studies should examine sex differences
in their samples.
We have highlighted findings in youth. Still, much more work is

needed to parse better the brain’s natural development versus the
impact trauma may have on brain regions. Few studies have
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explored the questions posed in youth samples. Though resources
are a limiting factor, future studies should execute longitudinal
study designs that start in youth to determine the role of
childhood trauma, potentially before it happens, in the develop-
ment of trauma-related psychopathology in adulthood. Addition-
ally, genetic and neurobiological studies linking transgenerational
PTSD presentation would be beneficial in parsing preventative
markers for developing PTSD. Thus, focusing on youth populations
would be optimal in answering our first main question.

Limitations
There are notable strengths of this narrative review, including
providing a synthesis of neuroimaging studies in both adult and
youth samples that explore three leading questions in the PTSD
field. Despite these strengths, limitations do exist. First, the
authors have tried to include all the pertinent studies to answer
the three questions, though a systematic protocol was not used
when exploring studies. Second, given the number of studies
available to be reviewed, the conclusions drawn from each
question are limited. Further, as outlined above, methodological
variability exists in the studies reviewed, including differences in
scanning parameters and PTSD samples. This variability limits the
reliability and validity of the conclusions made. Regardless of
these limitations, this review is important as it provides insight
into where the field stands on these three questions, highlighting
that much research still needs to be conducted to make stronger
conclusions.
Despite the limitations of the studies reviewed and of this

narrative review, PTSD neuroimagers have made much progress in
the last decade and have much more to make, especially in
answering questions related to disparities in the development of
the disorder and translating the knowledge collected beyond
academia, to the communities we serve.
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