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W) Check for updates

On assumptions and key issues in electric field modeling

for ECT
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TO THE EDITOR:

Recently, Dr. Sartorius commented on our work [1] on assessing
relationships between electric field (E-field) strength, hippocampal
volume change, and electroconvulsive therapy (ECT) clinical
outcomes [2]. Dr. Sartorius questioned the applicability of E-field
modeling for ECT based on 1) temporal waveform dependence; 2)
tissue impedance dependence; and 3) tissue anisotropy depen-
dence. We appreciate these considerations and agree that E-field
modeling would benefit from further validation and improvement.
However, we must point out misconceptions of E-field modeling
assumptions and provide clarification regarding some key issues.

Dr. Sartorius asserted that E-field modeling was done with the
assumption of a direct current application that deviates from
the alternating current waveform used in ECT, which is affected by
tissue inductance and capacitance. In many models of time-
dependent bioelectromagnetic phenomena, solutions to low-
frequency problems commonly employ the quasi-static approx-
imation [3, 4]. This approximation simplifies Maxwell’s equations
by neglecting the wave propagation, inductive, and capacitive
effects in biological tissue. The conditions for neglecting the wave
propagation and inductive effects are easily satisfied due to the
physical dimensions and non-magnetic nature of the tissue [3].
Tissue inductance is typically not modeled as it is related to the
magnetic response of a material; in models of electrical
stimulation, it is the dielectric property of the tissue that is
relevant, including tissue conductivity, o, and permittivity, €. The
condition for neglecting capacitive effects is that the displacement
current is small compared to the conduction current, i.e.,
jwe/o < 1, where w is the excitation frequency. For very low
frequencies, e.g., 10 Hz, tissue (skin, bone, and brain) permittivity is
substantial, and the capacitive effects cannot be easily ignored [5].
However, the permittivity is approximately a log-linear, decreasing
function with frequency [6, 7]. For certain stimulus waveforms
(e.g., monophasic square pulses with pulse width up 1 ms) used
for deep brain stimulation and ECT, where the error between the
electric potential calculated under the quasi-static approximation
and the exact solution is limited to 5-13% [8], the capacitive
effects could be ignored.

Since we assumed that the head tissues are purely resistive, the
E-field is linearly proportional to the input current amplitude.
Therefore, we first calculated the E-field based on an input current of
1mA and then multiplied it by the individual treatment current
(600-800 mA). Dr. Sartorius pointed out that at low current strengths
such as 1mA, the measured head impedance (so-call “static
impedance”) is much higher than the impedance seen during the
pulse (the “dynamic impedance”). The small-signal impedance is

affected by conditions at the electrode-skin interface. To model
the E-field in both low and high current situations, Unal et al.
devised an impedance model of the scalp, which included a
superficial scalp layer with adaptive conductivity that linearly
increases with E-field up to a limit and a deep scalp layer with a
fixed conductivity [9]. In their high current model, the overall
scalp conductivity ranges from 0.16-0.5 S/m across four subjects.
In our model, we used a scalp conductivity value of 0.465S/m,
which is within the range of appropriate scalp conductivity
values to model high current ECT. Updated computational
modeling pipeline for ECT has recently been proposed that
accounts for dynamic changes in tissue impedance at high-
current stimulation and includes data-driven scalp conductivity
parameters [10].

Finally, Dr. Sartorius pointed out that strong direction-
dependent effects from white matter tracts may affect the
E-field distribution. Indeed, previous ECT E-field modeling
investigations have incorporated white matter anisotropic con-
ductivity [11]. Relevant to an older patient population, white
matter hyperintensities may also impact E-field variability [12].
However, E-field modeling that incorporated white matter
anisotropy did not improve E-field accuracy in a critical validation
study with in vivo intracranial recordings in humans [13]. In
another study that examined the relationship between E-field and
ECT-induced brain volume expansion, we found that the
incorporation of diffusion tensor imaging-derived anisotropy data
to improve the E-field model produced similar regression results
[14]. Nevertheless, the impact of direction-dependent effects on
E-field modeling, or a generally more accurate representation of
the geometry and electrical properties of various brain tissue, is an
area of active and needed research.

The field of E-field modeling is grounded on working
assumptions such as the quasistatic approximation to balance
between complexity and practicality. The present models serve
their intended purpose adequately for clinical and research
applications in ECT, though refinements are possible. The future
of this field will undoubtedly see more sophisticated models that
will be validated against empirical data. Recent validation efforts
include in vivo intracranial recordings [13, 15] and magnetic
resonance current density reconstruction approaches [16].
Furthermore, ECT stimulus modeling of amplitude-determined
seizure titration has been validated with in non-human primate
models [17, 18] and depressed subjects [19]. E-field can be further
improved with better tissue segmentations [20, 21] and con-
ductivity values [9, 10]. Advances in E-field modeling approaches
must be balanced with computational costs and complexity to
achieve translational clinical impact. The context of these
improvements will systematically improve the accuracy of E-field
modeling. These anticipated improvements do not preclude
research focused on elucidating the role of ECT E-field strength
and clinical outcomes.
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