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A priori power and sample size calculations are crucial to appropriately test null hypotheses and obtain valid conclusions from all
clinical studies. Statistical tests to evaluate hypotheses in microbiome studies need to consider intrinsic features of microbiome
datasets that do not apply to classic sample size calculation. In this review, we summarize statistical approaches to calculate sample
sizes for typical microbiome study scenarios, including those that hypothesize microbiome features to be the outcome, the
exposure or the mediator, and provide relevant R scripts to conduct some of these calculations. This review is intended to be a
resource to facilitate the conduct of sample size calculations that are based on testable hypotheses across several dimensions of the
microbiome. Implementation of these methods will improve the quality of human or animal microbiome studies, enabling reliable
conclusions that will generalize beyond the study sample.
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INTRODUCTION
The human gut is host to a community of microbes (bacteria,
archaea, fungi, viruses and phages) referred to as the gut
microbiota, with their combined functions known as the gut
microbiome1. Since the start of the Human Microbiome Project
(HMP), wide-ranging, genome-scale community research in 2008,
large microbiome studies have aimed to characterize the genetic
diversity of microbial populations living in and on humans. This is
being achieved by applying next generation sequencing technol-
ogy and exploring the diversity and composition of these
microbial communities in the context of human body functions
and mechanisms that lead to diseases2. This promising field of
research may contribute to the prognosis of clinical outcomes
through microbial biomarkers—any measurement allowing an
intercommunication between a biological system and a potential
risk, which may be chemical, physical, or biological3. There is also a
growing interest in the influence of the microbiome on human
health.
As with any research, clear and testable research hypotheses are

required to conduct high quality studies of the microbiome. To
improve the quality and consistency of microbiomics research
reporting, guidelines have recently been published to critically
appraise microbiome studies, which include sample size or power
calculation as a criterion for a well-conducted study4. Most human
microbiome studies aim to identify the relationship between
microbiome features and a biological or clinical condition, an
environmental exposure or medical intervention. Since much is
unknown about the microbiome, and the datasets are vast and

often not normally distributed, a variety of data driven techniques
have been developed5. However, with the accumulation of
microbiome evidence, hypothesis-based comparisons are increas-
ingly possible.
Microbiome data arise from sequencing a marker gene such as

the 16S ribosomal RNA gene for bacteria, and the ITS marker for
fungi, or from metagenomic sequencing of the entire DNA within
a community. The sequencing data are then summarized into a
series of counts. These counts may represent Amplicon Sequence
Variants (ASVs) capturing single nucleotide differences between
sequences, or they may be clustered results such as the counts of
unique Operational Taxonomic Units (OTUs), or taxa abundances6.
Therefore, sample size calculations may focus on the count of one
single cluster, taxon, ASV, or they may be based on the full
spectrum of counts. For research questions based on single counts
or abundances, sample size calculations can use standard
formulae applicable in many domains. However, when aiming to
determine if a difference exists in the whole spectrum of counts or
the whole microbial community, microbiome-specific methods are
required. For example, it is non-trivial to implement sample size
calculations for beta-diversity measures7, since realistic distance
matrices are needed between pairs of samples and between
groups of samples. Either appropriate pilot data must be found, or
a complex simulation study must be undertaken.
On behalf of IMPACTT (Integrated Microbiome Platforms for

Advancing Causation Testing and Translation), we have compiled
a comprehensive guide for sample size calculation for microbiome
studies. After a brief introduction to the general concepts behind
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sample size calculation, we first set the stage for microbiome
sample size calculations through our decision tree lens. Then, we
provide examples of sample size calculations for each node in the
decision tree.

SAMPLE SIZE AND STATISTICAL POWER CALCULATIONS:
GENERAL CONSIDERATIONS
Sample size and statistical power calculations should be performed
at the design stage of a microbiome study. Ensuring good power
means that the study conclusions, relating to an association or an
effect of interest, are likely to be valid, and that the conclusions will
generalize beyond the study sample to future similar studies. Such
calculations depend on three concepts, the required sample size
(N), the researcher’s tolerance for making errors in conclusions
(values of Type I or II error)8,9, and the magnitude of the effect or
association that one is trying to detect10,11.

Type I and Type II errors
Researchers must decide in advance what levels of error they will
tolerate. Two types of errors can be anticipated: type I error and
type II error, defined in Table 1. Sample size calculations depend on
a statistic or a measure of association, and on the behavior of this
statistic when there is no association, i.e., under the null
hypothesis. Following the notation in the previous table, suppose
one performed a t-test to compare means in two groups. One
would reject the null hypothesis of no difference between two-
group means if p < α�, with α* being the significance for rejecting a
null hypothesis determined before starting the experiment. When
one performs a single test of hypothesis, then α* is the same as the
probability of making a type I error, that is α� ¼ α. In most studies,
a type I error of 1 or 5% is a common choice9. The main aim of this
parameter is to control the probability of making false positive
conclusions. When many tests of hypothesis are performed, the
threshold for rejection of the null will need to be smaller than the
desired overall type I error for the entire study, so α� < α12.
A power calculation assists in choosing the number of subjects

needed to prevent a type II error, denoted β; power is defined as
one minus the type II error or 1− β. The choice of an appropriate
value for the type II error, β, can be quite context dependent. For
example, in clinical studies a commonly used threshold is 20%,
which indicates an 80% chance of finding a true association. This
may be appropriate to avoid misuse of resources, since it is usually
necessary to increase sample size to increase power9. However,
there are situations where making a type II error would be an
unfortunate study outcome, and where smaller values of type II
errors may be desired8. For example, when there are no effective
approved treatments for a clinical condition, it would be
important not to miss the potential benefit of a new treatment.

Effect size
The effect size describes the magnitude of the difference of
interest. For instance, if the species richness has a median of 32 for
the control group and 15 for a treatment group exposed to

antibiotics, one might define an effect size as the differences
between the medians, i.e., 17.
The strength of the association between two variables depends

not only on the size of the difference—17 in the previous example
—but also on the variability of this quantity. In the example above,
one would need the variance of species richness’ measures across
samples from the same treatment group. Such variance estimates
can often be obtained from previous studies applying similar
methodology and using similar measures, or from a pilot study.
The definition of effect size depends on the study design13 (i) to

compare a continuous measure, such as species richness between
two groups, the effect size will normally be a standardized mean
difference, as described above; (ii) to compare the presence or
absence of one particular species between two groups, the effect
size may be an odds ratio or difference in proportions; (iii) to
determine whether microbial community composition or alpha-
diversity is associated with a continuous measure, the effect size
might be based on a Pearson correlation (r). Long-established
standards define r � 0:1 as a small effect size, r � 0:3 as
medium, and r � 0:5 as large13.
In microbiome studies, the number of communities present and

the community structures greatly vary across different study designs
and platforms, even within a single site of sampling such as the
human gut. Therefore, obtaining accurate estimates of variability can
be challenging. When possible, examining effect sizes in a study of
similar design is the best option for obtaining realistic estimates.
However, when such studies are not available, it may be necessary
to look for previous studies that are as close as possible in design
and goals to find appropriate variance estimates. In general, larger
sample sizes are needed when one desires smaller type I error,
smaller type II error, and/or smaller effect sizes14.

BASIC FORMULAE FOR SAMPLE SIZE CALCULATION
We have provided the most commonly used formulae for sample
size calculations in Table 2.

WORKFLOW FOR SAMPLE SIZE CALCULATIONS IN
MICROBIOME STUDIES
Figure 1 lays out a decision tree classification system for
commonly used microbiome study designs. To help with choosing
an appropriate sample size or power calculation method, each
node number in Fig. 1 refers to a subsection of “Sample size
calculations associated with each node of the decision tree”, that
provides suggestions for sample size calculation approaches with
several worked examples.

SAMPLE SIZE CALCULATIONS ASSOCIATED WITH EACH NODE
OF THE WORKFLOW CHART
In this section, following the workflow chart in Fig. 1 from top to
bottom, we provide specific references and worked examples of
sample size calculations. Each subsection corresponds to one
node in Fig. 1; and one row in Table 3 shows key formulae or

Table 1. Definition of selected statistical concepts.

Concept Definition

Type I error
(false positive rate)

The incorrect rejection of a true null hypothesis.
If there is one true null hypothesis (H0), the probability of rejecting it is usually denoted α.

Type II error
(false negative rate)

The failure to reject a false null hypothesis.
If the null hypothesis is false (HA), the probability of not rejecting the null hypothesis is usually denoted β.

Power of the test The probability of rejecting the null hypothesis when, in fact, it is false. Using the notation above, this is 1 � β.

Effect size A quantitative measure of association related to the proposed statistical test to be used. When there are two groups, such
as a control group and an experimental group, the desired measure of association is often the difference between-group
means or medians. It usually refers to a standardized difference, where the expected difference between the measure of
interest is divided by an estimate of the standard deviation of this measure.
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references for sample size and power calculations for the specific
hypothesis being tested.

Comparing microbial community structure between groups
versus within groups using beta-diversity or distance metrics
(Fig. 1, node 2)
The most commonly used analytic approach when working
with the full spectrum of microbiome counts is to use beta-

diversity, or measures of distance or dissimilarity between
samples. To estimate sample size or power, one must choose
first a distance metric, then find or generate plausible distances
that are relevant for the proposed study, that is, obtain likely
distances between pairs of samples. Sample size calculations are
then based on the distributions of these distances, by comparing
distances for pairs from the same group to pairs from different
groups. The first row of Table 3 (Comparing microbial community

Table 2. Standard formulae for simple sample size calculations.

Type of sample size calculations Standard formulae

Comparison of two means in normally
distributed continuous data

If the two groups contain the same number of samples, the required sample size per group can be
calculated as14:

n ¼ 2ðZ1� α
2
þ Z1� βÞ2
Δ2 ; Equation A

where:

• n= the required sample size in each group

• Δ= μ1 � μ2
σ ; is the effect size, where μ1 and μ2 are two populations means and σ is the common

variance, σ1= σ2= σ

• Z1� α; Z1� β are the upper tail normal quantiles associated with the desired type I and type II errors, α
and β, respectively.

If the two groups are not equally sized, then let parameter r denote the ratio of the number of
individuals in the larger group divided by the number of individuals in the smaller group. The sample
size of the smaller group for a two-sided Z test is given as follows:

n2 ¼ rþ 1
r

ðZ1� α
2
þ Z1� βÞ2
Δ2 ;

and the sample size for the larger group,

n1 ¼ r n2; Equation B

Comparison of the difference in
proportions between two groups

The following formula is used to estimate per group sample size for a difference in proportions, assuming
equal sample sizes in both groups44

n ¼ ðZ1� α
2
þ Z1�βÞ2 ðP1ð1� P1Þþ P2ð1� P2ÞÞ

ðP1 � P2Þ2 ;Equation C

where:

• P1 = the proportion in the first group

• P2 = the proportion in the second group.

• Z1� α
2
¼ 1:96 (α ¼ 0:05), Z1�β ¼ 0:84 (β ¼ 0:20)

• P1 −P2 = Effect Size (difference in proportions).

If n1 ≠ n2; the ratio between the sample sizes of the two groups is r ¼ n1
n2
. Then the formulas that are

used to compute sample size and power43 are given below, respectively:

n1 = r n2 , and

n2 ¼ ðp1ð1� p1Þ
r þ p2ð1 � p2ÞÞð

z1� α
2
þ z1� β

p1 � p2
Þ2;Equation D

For a test statistic t, and for the normal density function ϕ :ð Þ, power can be estimated by:

1 � β ¼ ϕðt � Z1� α
2
Þ þ ϕð�t � Z1� α

2
Þ, Equation E

Comparison of the odds between
two groups

The following formula is used to estimate per group sample size for an odds ratio, assuming equal
sample sizes in both groups45:

• Define κ ¼ n1
n2

as the ratio of the numbers of individuals in the groups, 1 and 2, where 1 and 2 are
defined based on the exposure variable X.

• Define the odds ratio (OR) as:

OR ¼ p1ð1� p2Þ
p2ð1� p1Þ ;

where p1 and p2 are proportions of the samples where the taxon abundance is above the chosen
threshold (e.g., median) in the two exposure groups.

Then:

n1 ¼ κn2 , and

n2 ¼ ð 1
κp1ð1� p1Þ þ 1

p2ð1� p2ÞÞð
zðα=2Þ þ z1� β

lnðORÞ Þ2; Equation F

Sample size based on correlations The sample size required to test the hypothesis that the population correlation (ρyx ) is equal to a
specified value (h; usually we set h ¼ 0 and test ρyx ¼ 0) for a given confidence level (1− α) and
power (1− β) is approximately:

n ¼ 3 þ ððzð1� α
2Þ þ z1� βÞ2=ð eρ�yx � h�Þ2Þ; Equation G

where eρ�yx ¼ lnð1þ ~ρyx
1� ~ρyx

Þ=2 is called the Fisher transformation of ~ρyx , the planning value forρyx . The
desired null hypothesis value h must also be transformed with the Fisher transformation to h* in
Equation G, and the numerator captures the adjustment necessary to obtain the desired type I and
type II errors46.
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structure between groups versus within groups using betadiversity or
distance metrics (Fig. 1, node 2)) describes how to setup sample
size calculations for this situation, with links to recommended
methods and formulae.
Simple calculations that assume well-behaved distances (e.g.,

normally distributed distances for pairs in the same group) can be
performed using information that may be easy to extract from
published papers. If the means and standard deviations of beta-
diversity distances are reported, then sample size calculations
based on Equation A (Table 2) can be used.
An analysis of variance (ANOVA) compares variability within

a group to variability between groups, which is exactly the
concept desired for beta-diversity analyses. Furthermore, when
comparing only two groups, there is an algebraic equivalence
between sample size calculations using the t-test (Equation A,
Table 2), derived from an ANOVA F-test, or based on correlation
(Equation G, Table 2), i.e., the square root of the model-
captured R2 17; F-statistics or R2 values are often reported in
publications, for example see Table 5 in Sugino et al.18. Box 1
describes how the squared correlation, R2, is related to the
effect size Δ from Equation A. It is worth noting that one should
only use the R2 reported in a regression model for a microbiota
beta-diversity sample size calculation when the publication has
used the same distance measure as planned for one’s
own study.
Madan et al. compared beta diversity between infants who

were born by vaginal delivery versus cesarean section19, and we
use these data to illustrate calculations with Equation A. Means
and standard deviations can be extracted by eye from Fig. 1b in
their paper, and are shown in Table 4. Madan et al. did not provide
estimates of R2 19.
Using these values, we can estimate the sample size required

to compare vaginal birth and cesarean section with 80%
power. To perform conservative calculations, we assume a

common standard deviation equal to the larger within-group
value: 0.0046. Then, we can calculate the effect size from this
study as Δ ¼ 0:5613� 0:5587

0:0046 ¼ 0:0026=0:0046 ¼ 0:565. Thus,
according to Equation A (Table 2) for a desired 5% type I error
for two-sided testing, and 20% type II error, the required
sample size, per group, to detect differences between vaginal
birth and C-section is:

n1 ¼ 2
1:96 þ 0:84ð Þ2

0:5652
¼ 49:11 � 50;

so, the total sample size needed for the two groups would be
estimated as about 100.
We can also estimate f ¼ Δ=2 ¼ 0:2825, and hence R2 ¼
0:28252

ð1þ 0:28252Þ ¼ 0:0739. Therefore, the correlation can be estimated as
~ρyx ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0739
p ¼ 0:272. Then according to Equation G (Table 2),

Fig. 1 Workflow for hypothesis-specific samples size equations. An overview of the workflow to determine sample size equation for specific
hypothesis. Each node is numbered and described further in section. Sample size calculations associated with each node of the workflow
chart. Node 1, at the top of the workflow, describes a conceptual exploration of microbiome patterns, where a non-specific characterization of
the full microbiome diversity, between and within samples, is of interest. This might imply looking at distributions and network patterns
without any expectation or structure. In fact, this node implies a level of generality that is not amenable to sample size calculations. Nodes 2
and 3, in the middle of the workflow, rely on a choice of metrics for describing the microbiome distribution. In Node 2, the choice is made to
describe the microbiome by betadiversity15, a measure of dissimilarity between samples. Sample size calculations are based on comparisons
of dissimilarity within a group (i.e., within patients, within controls, or within samples following the same treatment) to distances between
these groups16. In Node 3, the choice is made to represent the microbiome profile by the set of taxa abundances, which can then be
compared between and within groups of samples. Nodes 4 to 7, at the bottom row of Fig. 1, refer to hypotheses that reduce microbiome data
to a single number per sample. For example, within-sample richness can be characterized by alpha-diversity (Node 4). In Node 5, counts for
one taxon of interest are considered; Node 6 focuses on whether a specific sample belongs to a particular cluster, such as a species subtype. In
node 7, one might ask whether a sample contains species belonging to a specific taxon. Finally, after choosing the question of interest, sample
size calculations would compare the effect size of the chosen measure between groups, see following sections for examples.

Box 1. Relationship between effect size, Δ, sums of squares from
ANOVA, and correlation for studies comparing two groups

Within-group and between-group sums of squares (SSW; SSB; respectively) are
basic elements of ANOVA; the ANOVA F-statistic is calculated as SSB=ðG� 1Þ

SSW=ðn�GÞ where G
is the number of groups and n is the sample size. Cohen17 defined a statistic,
f 2 ¼ SSB

SSW, where this formula can also be seen as the ratio of the variance
between-group means to the variance of the data within the groups. If there are
only two groups, then the effect size for a two-group t-test, Δ, can be written
Δ ¼ 2f where Δ is the effect size from Equation A (Table 2). Furthermore, the R2

measure from a regression model or an ANOVA, can be written as:

R2 ¼ f 2

1 þ f 2ð Þ
when there are two groups. The square root of R2, for the two-group comparison, is
the ρyx of Equation G. For groups of unequal size, for more than two groups, or
unequal standard deviations, adjustments to the simple formulas have been
developed17.
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the required sample size for testing ρyx ¼ 0 (assuming h= 0) is:

n ¼ 3 þ 1:96 þ 0:84ð Þ2
loge 1 þ 0:272ð Þ= 1 � 0:272ð Þð Þ=2ð Þ2 ¼ 103:71 � 104

This is slightly larger than the results based on Equation A
provided above. These two estimates agree very well for larger
sample sizes, but Equation G tends to be more conservative for
small sample sizes20.
We could also estimate sample size using estimates of SSB and

SSW calculated from the same information in Table 4. Following the

Table 3. Key formulae or references for sample size and power calculations for the specific hypothesis being tested.

Section for examples and position in
decision tree

Hypotheses for X− Y relationship Equations, assumptions and/or references for
equations

Measures of whole community composition

Comparing microbial community
structure between groups versus within
groups using betadiversity or distance
metrics, Fig. 1, node 2

▪ Outcome or Y variable is the beta-diversity
between pairs of samples.

▪ Explanatory or X variable is group
membership or a binary exposure
measure.

▪ Option 1. Normal distribution—Equation A
(Table 2), comparing average distances or
diversity measures between pairs from different
groups versus pairs from the same group. This
simple solution does not consider dependence
between the pairs.

▪ Option 2. Distributions of Beta-diversity
measurements are compared between pairs
from the same group and pairs from different
groups. These more complex methods explicitly
use all the distances between and within
groups. Example: Bray-Curtis distances16;
summarized by47.

Using an entire vector of abundances to
describe the microbiome of a sample,
Fig. 1, node 3

▪ Outcome or Y variable is a set of taxon
abundances.

▪ Explanatory or X variable is group
membership or a binary exposure measure

▪ Dirichlet-Multinomial method by Holmes et al.48

Single-measure summary of community composition, or a measure of one particular taxon

Testing association between total
microbial alpha-diversity, or taxon-specific
alpha-diversity and an exposure or
grouping variables, Fig. 1, node 4

▪ Outcome or Y variable is microbiome
alpha-diversity.

▪ Explanatory or X variable is group
membership or a binary exposure
measure.

▪ Normal distribution—Equation A (Table 2).
▪ Non-normal distribution—Equation A (Table 2)
after estimating the mean and standard
deviation from medians and quantiles49 as
described in Footnote 1.

▪ Outcome or Y variable is microbiome
alpha-diversity

▪ Explanatory or X variable is a continuous
exposure or vice versa.

▪ Equation G (Table 2) for correlations.

Testing association between taxon
abundances and an exposure or grouping
variable, Fig. 1, node 5

▪ Outcome or Y variable is the abundance of
a particular microbial taxon or taxa (actual
or transformed from median values—see
Footnote 1), i.e., continuous
measurements.

▪ Explanatory or X variable is group
membership or a binary exposure
measure.

▪ Equation A (Table 2) for mean abundances.

▪ Outcome or Y variable is taxon abundance,
represented by a binary variable where the
abundances are categorized as high or low
using a threshold such as the median.

▪ Explanatory or X variable is group
membership or a binary exposure
measure.

▪ Equation C, or D (Table 2) for proportions, or
Equation F (Table 2) for odds ratios.

▪ The calculations for odds ratios will be
equivalent if Y and X are reversed.

▪ Outcome or Y variable is taxon abundance
(a continuous quantity).

▪ Explanatory or X variable is a continuous
exposure or vice versa.

▪ Equation G (Table 2) for correlations.

Testing higher or lower rates of cluster
membership between groups, Fig. 1, node 6

▪ Outcome or Y variable is microbiota cluster
membership, yes or no.

▪ Equation C or D (Table 2) for proportions, or
Equation F (Table 2) for odd ratios.

▪ Explanatory or X variable is group
membership or a binary exposure measure
or vice versa.

▪ The calculations for odds ratios will be
equivalent if Y and X are reversed.

Testing higher or lower rates of taxon
membership between groups (i.e.,
colonization with a microbe), Fig. 1, node 7

▪ Outcome or Y variable is taxon
membership (colonization with a microbe),
yes/no.

▪ Explanatory or X variable is group
membership or a binary exposure
measure.

▪ Equation C or D (Table 2) for proportions, or
Equation F (Table 2) for odd ratios.

▪ The calculations for odds ratios will be
equivalent if Y and X are reversed.
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principles in Box 1, the sum of squares for the vaginal birth group
can be calculated as 70 × 0.00262= 4.732 × 10−4, and the sum of
squares for the cesarean group is 32 × 0.00462= 6.771 × 10−4.
Therefore, SSW is their sum, i.e., 0.001150. To calculate SSB, the
overall mean is first obtained by a weighted average, as

0:5613 � 70 þ 0:5587 � 32ð Þ= 70 þ 32ð Þ ¼ 0:56048:

Therefore, SSB is 70 � 0:5613 � 0:56048ð Þ2 þ 32 � 0:5587�ð
0:56048Þ2 ¼ 0:000148.
With SSW and SSB in hand, then:

f 2 ¼ SSB
SSW

¼ 0:000148=0:001150 ¼ 0:1287; f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1287

p
¼ 0:3587:

Hence R2 ¼ 0:35852
1þ 0:35852ð Þ ¼ 0:1140.

Therefore, the correlation can be estimated as eρ�yx ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1140

p ¼ 0:3376, and according to Equation G (Table 2), the
required sample size for testing ρyx ¼ 0 is:

n ¼ 3 þ 1:96 þ 0:84ð Þ2
ðlogeðð1 þ 0:3374691Þ=ð1 � 0:3374691ÞÞ=2Þ2

¼ 66:55 � 67

This sample size estimate of 67 is based on the two standard
deviations shown in Table 4, whereas the earlier calculation based
on Equation A used the larger of the two, which explains the
discrepancy between the two sample size estimates.
These simple beta-diversity sample size calculation are based

on normality of the within-group pair distances. A richer
approach that relaxes this assumption can be built on the full
distribution of pairwise distances, then analyzing the data
using concepts from multivariate statistics. Since distance
distributions tend to be strongly skewed, such alternative
methods are commonly used for analysis after collecting study
data. However, performing sample size calculations for these
nonparametric analyses is challenging, since information about
the distribution of the distances is needed. In a previous paper
by the IMPACTT consortium we described approaches for
estimating sample size and power when distances are

available21. Furthermore, since these distances are often
difficult to obtain, we also demonstrated how to generate
distances by simulation21.

Using an entire vector of abundances to describe the
microbiome of a sample (Fig. 1, node 3)
Multivariate methods can be used to compare microbial
community structures through examination of distributions of
the counts of taxa abundances. These distributions tend to have a
large and heavily skewed dynamic range, with some very large
counts and many near zero. No simple distributions match the
shape and variability well, and hence specific methods for sample
size calculation are needed. Row Using an entire vector of
abundances to describe the microbiome of a sample (Fig. 1, node
3) in Table 3 shows the usual setup and method. Although
resampling-based comparisons could be considered (e.g., permu-
tation tests), they rest on assumptions which may not hold, such
as that the within-group variability is consistent across groups.
Therefore, La Rosa et al.22 proposed tests for comparing
community structures based on the Dirichlet-Multinomial dis-
tribution. Since their approach is based on parametric distribu-
tions, it contains parameters that can be interpreted as measures
of how different the community structures are. Thus, their
method can be expected to be more powerful than any
nonparametric procedure. The combination of the Dirichlet
distribution with the multinomial allows capture of the inter-
sample variability needed for microbiome data; in statistics this
feature is referred to as ‘over-dispersion’. There are two key
parameters: π ¼ π1; ¼ πkð Þ represents the expected taxa fre-
quencies averaged across the groups being compared, and θ
represents the over-dispersion.
In La Rosa et al.22 three tests are introduced and demon-

strated: (a) comparing one community structure to an
expectation, i.e., H0 : π ¼ π0;where π0 is known, (b) comparing
two groups, H0 : π1 ¼ π2; and (c) comparing multiple groups,
H0 : π1 ¼ π2 ¼ π3 ¼ ¼ . All these tests, and corresponding
power calculations are built into their software package:
HMP23.
To give an example, here we describe their calculations

comparing community structures between two groups. Their

Table 3. continued

Section for examples and position in
decision tree

Hypotheses for X− Y relationship Equations, assumptions and/or references for
equations

Microbiome, exposure, and phenotype

Microbiome as the mediator (exposure-
microbiome-outcome)

▪ Microbiome is the mediator M (exposure
X→microbiome M→outcome Y).

▪ To calculate the required sample sizes to detect
mediation in a study, one must

obtain estimates of α (alpha, correlation
between X &M, i.e., between an exposure and
microbiome) and β (beta, correlation between X
and Y, i.e., between microbiome and outcome)
from preliminary work or the literature. The
required sample size will depend on the
mediation test chosen. Supporting information
for samples sizes can be found in Table 3 of Fritz
and MacKinnon35.

For total sample size ≥25, the median itself is the best estimator of the mean. For total sample size <25, then the following formula can be used to estimate
the mean: mean � aþ 2mþ b

4 ; where m= the median, a is the minimum value, and b is the maximum value26. For total small sample size <15, the standard

deviation (square root of the variance) can be estimated using the following formula: SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
12 ðða� 2mþ bÞ2

4 þ ðb � aÞ2Þ
q

: For moderately sized samples, the

range/4 is the best estimator for the standard deviation. For large samples (size more than 70), Range/6 provides a better estimate for the standard
deviation49. If only an interquartile range is provided, the standard deviation can be estimated by the range divided by 1.3550, an expectation built on the
expected quantiles of the normal distribution.
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data were taken from three oral sites (subgingival, supragingival,
and saliva) in 24 subjects of both genders from the USA. Power
calculations are based on a modified version of Cramer’s φ⬚

criterion, φm, which is based on a contingency table chi-squared
test statistic (χ2):

φm ¼
ffiffiffiffiffiffiffiffiffi
χ2

χ2max

2

s

The value of this normalized chi-squared statistic is determined
by the two key parameters, π and θ. When the authors compared
the distributions for subgingival plaque and supragingival plaque
in their subjects, their value of the modified Cramer’s φm was 0.16.
They then calculated power for different numbers of subjects per
group, and for different numbers of reads, at significance
thresholds of 1 and 5%. For 1000 reads per group, power
increased from 29.46% with 10 subjects per group to 89.76% with
25 subjects per group, using a significance threshold of 1%. It is
worth noting that the authors recommend aggregating very rare
taxa with abundance <1% into a single category.

Testing association between total microbial alpha-diversity, or
taxon-specific alpha-diversity and an exposure or grouping
variables (Fig. 1, node 4)
In community ecology, alpha-diversity refers to the number of
species present in an ecosystem (richness)15 as well as the
frequency of occurrence of each type of organism (evenness). This
ecological metric is found to be reduced in several disease
states24, making it a relevant factor to consider when proposing
microbiome research hypotheses. The most commonly used
metrics/indices are Shannon, Inverse Simpson, Simpson and Chao
indices25. These indices do not consider the phylogeny of the taxa
identified in sequencing. One measure of phylogenetic diversity
(Faith’s PD) is based on phylogeny and can be calculated when a
microbial phylogenetic tree is available24.
When alpha-diversity is normally distributed or can be log-

transformed, basic equations can be used for sample size
calculations—see row Testing association between total microbial
alpha-diversity, or taxon-specific alphadiversity and an exposure or
grouping variables (Fig. 1, node 4), node 4 in Table 3.
For an example of how to calculate sample size with an alpha-

diversity metric, we will consider a study presented by Casals-
Pascual et al.7 which used Faith’s phylogenetic diversity (Faith’s
PD). This study aimed to compare the diversity of gut microbial
communities in two phenotypically distinct groups of patients
with Crohn’s disease (CD). The null hypothesis was that gut
microbiota phylogenetic diversity did not differ by CD phenotype.
To test this hypothesis, CD patients with the B1 phenotype would
be compared with those with either a B2 or B3 phenotype. In this
case, the CD phenotype was the independent variable and gut
microbial diversity (Faith’s PD), the dependent variable.
To determine the number of patients required to find a

statistically significant difference in Faith’s PD between CD
phenotypes, researchers searched for summary statistics on Faith’s
PD. They found a gut microbiota study of 100 patients with the B1
CD phenotype that reported a standard deviation of 3.45 for
Faith’s PD, a mean of 13.5, and the distribution seemed to be

approximately normal. To determine a clinically meaningful effect
size, and because a similar previous study did not exist,
researchers considered an analogous study where patients treated
with antibiotics were compared to healthy controls. In the
analogy, an effect size of 1.5 units was observed with Faith’s PD
metric with a significance level of 0.0001. Using Equation A in
Table 2 and a standard deviation of 3.45, selecting a conventional
level of statistical significance of 5% and a statistical power of 80%,
a total sample size of 110 patients (55 per group) was
recommended to detect differences in Faith’s PD of ≥2 units7.
The median value can also be used to calculate sample size and

is particularly appropriate for skewed richness and diversity values;
the formulae needed for converting medians and interquartile
ranges to means and standard deviations are shown and
referenced in Footnote 1 Table 3.
When the exposure variable is continuous, methods based on

correlations can be used. For example, soil bacteria metagenome
alpha-diversity has been associated with mean annual precipita-
tion gradients26. Suppose a researcher wants to test the null
hypothesis that alpha-diversity is unrelated (r ¼ 0) to mean
annual precipitation with α ¼ 0:05 and power of 0:95. The
researcher assumes that the alternative correlation coefficient (h)
is approximately �0:5. Therefore, following Equation G in Table 2:

~ρ�yx ¼ 1
2
ln

1 þ ~ρyx
1 � ~ρyx

 !
¼ 1

2
ln

1 þ �0:5ð Þ
1 � �0:5ð Þ
� �

¼ �0:549

z1� α
2
¼ 1:96 α ¼ 0:05ð Þ; z1� β ¼ 1:64 β ¼ 0:05ð Þ

For a null hypothesis (H0) of no correlation, the required sample
size is approximately:

n ¼ 3 þ z 1� α
2ð Þ þ z1� β

� �2
= ~ρ�yx � h�
� �2� �

¼ 3 þ 1:96 þ 1:64ð Þ2= �0:549 � 0ð Þ2
� �

¼ 45:9 � 46

Testing association between taxon abundances and an
exposure or grouping variable (Fig. 1, node 5)
Researchers may also hypothesize about abundances of a specific
microbial taxon of interest. These hypotheses can be expressed
either using mean abundances, or by examining the proportion of
samples with abundances over a chosen threshold. Sample size
calculations can be based on either choice of metric, see row Testing
association between taxon abundances and an exposure or grouping
variable (Fig. 1, node 5) corresponding to node 5 in Table 3.
An important consideration here, as well as for nodes 6 and 7 in

Fig. 1, is the choice of type 1 error. If only one taxon is of interest,
then the type 1 error threshold, α, should not need adjustments
for multiple testing. However, if the study plans to test association
at all available taxons, then power calculations should be
performed using a value α* which controls family-wise error rate.
For example, use of the Bonferroni correction would suggest α� ¼
α=M where M is the planned number of tests.
For example, in the observational study of Koleva et al.27

looking at the gut microbiome of mother-infant pairs (total
population size of 1,021) from the Canadian Healthy Infant
Longitudinal Development (CHILD) Study, the authors hypothe-
sized the genus Lactobacillus was reduced in gut microbiota of
male infants born to an asthmatic mother27. The abundance of
16S data from fecal samples collected at 3–4 months after birth
was compared between infants born to mothers who received
asthma treatment during pregnancy (i.e., infants high risk for

Table 4. Means and standard deviations of Unifrac beta diversity
among 6-week-old infants by mode of delivery, extracted from Fig. 1b
of Madan et al.19.

Vaginal Cesarean section

n per group 70 32

Mean 0.5613 0.5587

Standard deviation 0.0026 0.0046
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allergic diseases) and those who were not. Results supported the
Lactobacillus hypothesis in a sex-dependent and ethnicity-
dependent manner27. In male Caucasian infants, the reduction
of Lactobacillus was independent of other study covariates
known to also influence the infant gut microbiome, such as pre-
pregnancy overweight, atopy status, breastfeeding and intra-
partum antibiotic treatment, strengthening these conclusions.
Infant fecal Lactobacillus abundance was transformed into a
binary variable using the cut-off value for the highest tertile
(Table 5).
The R script in Box 1 of the Supplement can be used to

implement the sample size and power calculations using
equations D and E of Table 2. However, we illustrate calculations
assuming the sample sizes are equal in each group (r ¼ 1,
Equation C of Table 2). Assuming a 2-sided test with an α of 0.05,
87 samples in each group can provide 80% power to detect a
difference of this size in the proportion of infants with Lactobacilli
above the highest tertile.
In the same study, abundances of bacterial taxa other than

Lactobacillus were made using the Benjamini–Hochberg method28 to
adjust for multiple testing (which is built into the multi-test procedure
in SAS). Tests for interactions between infant sex and maternal
prenatal asthma on Lactobacillus abundance were performed using
an adjusted rank transform (ART) nonparametric test.
The taxon abundance comparisons presented in this paper are also

useful to calculate sample size for other research questions. Due to
the non-normal distribution of taxon abundance data, we provide an
example that first requires converting median abundance into mean
abundance for use in the sample size equation (Table 6). This
conversion may be more appropriate at the phylum or other higher
classification level, even family level, in which abundance data may
be least skewed. Nevertheless, for illustration we used the median
abundance of fecal Bacteroidetes in female infants of mothers with
and without asthma to calculate sample size (Table 6). Medians and
IQR (Q1 and Q3) were provided in the paper, and we transform these
to estimate the mean and standard deviation. In this case, we use
mean=median and SD= IQR/1.35:

Mean ¼ Median SD ¼ IQR
1:35

¼ Q3 � Q1

1:35

Therefore, in female infants of mothers with asthma, the mean
and SD are estimated to be:

Mean ¼ median ¼ 72:8; n1 ¼ 17; SD1 ¼ Q3 � Q1

1:35
¼ 80:2 � 21:8

1:35
¼ 43:26

In female infants of mothers without asthma, the mean and SD
will be:

Mean ¼ median ¼ 31; n1 ¼ 145; SD1 ¼ Q3 � Q1

1:35
¼ 62:3 � 0:5

1:35
¼ 45:78

SDpooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð ÞSD2

1 þ n2 � 1ð ÞSD2
2

n1 þ n2 � 2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17� 1ð Þ�43:262 þ 145� 1ð Þ�45:782

17þ 145� 2 ¼ 45:53
q

The effect size, Δ, is therefore:

Δ ¼ M1 � M2

SDpooled
¼ 72:8 � 31

45:53
¼ 0:918:

Based on this effect size, we calculate sample size using
Equation A in Table 2 for testing differences in means:

n ¼
2 z1� α

2
þ z1� β

� �2
Δ2 ;

where, n is the sample size in each group (assuming sizes of the
two groups are equal), z1� α

2
¼ 1.96 (α ¼ 0:05), and z1� β = 0.84 (

β ¼ 0:20). Therefore:

n ¼
2 z1� α

2
þ z1� β

� �2
Δ2 ¼ 2 � ð1:96 þ 0:84Þ2

0:9182
¼ 18:60 � 19

Assuming a 2-sided α of 0.05, 19 samples in each group can
achieve 80% power to compare Bacteroidetes abundance
between asthmatic and non-asthmatic mothers of female infants.

Testing higher or lower rates of cluster membership between
groups (Fig. 1, node 6)
Microbiota community types or clusters are increasingly being
used to characterize whole microbial community composition. The
format of these variables is categorical, and therefore sample size
calculations are straightforward, see row Testing higher or lower
rates of cluster membership between groups (Fig. 1, node 6) for node
6 in Table 3.
We provide an example here based on a study by Tun

et al. (2021)29 that identified 4 longitudinal gut microbiota clusters
during infancy (Table 7). A sample size calculation is performed to
determine the association between Asian ethnicity vs. any other,
and the presence or absence of the C1–C1 cluster in the infant. A
binary variable was created for the presence of the C1–C1 cluster
vs. three other clusters.
R code and results for estimating sample size and power from

these data, following Equations C, E in Table 2, are shown in the
Supplementary Material, Box 2. There, we consider the sample
sizes are equal in each group ðr ¼ 1Þ. Assuming a 2-sided test
with an α of 0.05, 138 samples in each group can achieve 80%
power to find an association between Asian ethnicity (vs. other)
and the C1–C1 gut microbiota cluster (vs. others).

Testing higher or lower rates of taxon membership between
groups (i.e., colonization with a microbe) (Fig. 1, node 7)
To determine sample sizes for colonization with specific micro-
biota (presence/absence or yes/no), one can use the equations for
proportions or odds ratios (Table 3, row Testing higher or lower
rates of taxon membership between groups (i.e., colonization with a
microbe) (Fig. 1, node 7) for node 7).
To illustrate sample sizes for colonization with specific

microbiota (presence/absence or yes/no), we draw information
from Drall et al.30 to test the question whether infant C. difficile
colonization differs by exclusivity of breastfeeding (Table 8). In 853
exclusively breastfed infants (EBF), the C. difficile colonization rate

Table 5. Percent distribution of highest Lactobacillus abundance
(highest tertile cut-off ) between asthmatic mothers and control group
(adapted from Table 1 of Koleva et al.27.

Group Highest Lactobacillus
abundance

Total

Yes No

Asthma 9 (10%) 78 (90%) 87

No asthma 246 (26%) 688 (74%) 934

Table 6. Median relative abundance (interquartile range) of
Bacteroidetes in female infants of mothers with and without asthma
(Adapted from Table 3 of Koleva et al.27.

Group Bacteroidetes

Asthma (n1= 17) 72.8 [21.8–80.2]

No asthma (n2= 145) 31 [0.5–62.3]
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was 22.63%, i.e., 193 exclusively breastfed infants were colonized
with C. difficile. In 431 partially breastfed infants (PBF), the C.
difficile colonization rate was 35.96%; hence 155 partially breastfed
infants were colonized, and in 270 exclusively formula-fed infants
(EFF), the C. difficile colonization rate was 49.63% implying 134
colonized infants (Table 8).
The pooled proportion of C. difficile colonization from the PBF

and EFF groups is obtained as:

P ¼ No: colonized cases in PBF þ EFF
Number of infants in PBF þ EFF

¼ 155 þ 134
431 þ 270

¼ 0:4123

R code and results for estimating sample size and power from
these data, assuming an equal sample size in each of the two
groups (r ¼ 1), can be found in Supplementary Material, Box 3.
Calculations follow Equation C in Table 2. Assuming a 2-sided test
with an α of 0.05, 95 samples in each group are needed to achieve
80% power to find differences in C. difficile colonization rates
between exclusively breastfed infants and other infants.
This sample size calculation example will apply to any

comparison of populations with respect to presence or absence
of a microbe of interest. For example, this approach would be
appropriate for a study comparing the presence of shared
microbial species between animals and humans. The sample size
calculation might also be used to compare samples where the
entry or exit of microbial species into/from an ecosystem is
expected. For instance, a study where a single species (probiotic)
or an entire community is introduced, such as fecal microbiota
transplantation.

MICROBIOME AS THE MEDIATOR (EXPOSURE-MICROBIOME-
OUTCOME)
A mediator variable (M) explains part or all of the relationship
between an independent variable (X) and a dependent variable
(Y), and the question of whether microbiome mediated relation-
ships between exposures and disease is highly topical. One
common focused research question is whether all association
between X and Y passes through M, i.e., complete mediation (see
the row Microbiome as the mediator (exposure-microbiome-
outcome), Table 3).
Approaches to test for mediation vary with the most common

approach being the Baron and Kenny’s Causal-Steps test31. The
four steps of this approach are: (i) the total effect of X on Y must
be present (statistically significant), (ii) there must be an effect
of X on M, (iii) M must have a non-zero effect on Y even after
controlling for X, and (iv) the effect of X on Y controlling for M
must be smaller than the total effect of X on Y. All four criteria
must be satisfied to consider mediation through M to be

present. Other mediation tests include the Joint Significance
Test32, which is a variation of Baron and Kenny’s test, and the
product-of-coefficients tests, Sobel First-Order33 and PROD-
CLIN34 tests. Valuable information on these tests and how they
compare to each other has been summarized by Fritz and
MacKinnon35.
For instance, to determine the sample size to assess whether

infant gut microbiota could be in the biological pathway from
maternal prenatal overweight to offspring overweight, we refer to
the correlation coefficients in Fig. 3b of Tun et al.36 that tested the
mediating effect of the Lachnospiraceae in infant gut microbiota
on the association between maternal pre-pregnancy overweight
and child overweight. The values for the correlations presented in
Tun et al.36 mediation Fig. 3b could be obtained separately from
other studies that did not pursue mediation analyses. Their Fig. 3b
indicates that the correlation between pre-pregnancy overweight
and fecal Lachnospiraceae abundance is small (r ¼ 0:11), and
that the correlation between fecal Lachnospiraceae abundance
and child overweight is of medium size (r ¼ 0:41). Looking up
these values in Table 3 of35, we determined the required total
sample size to be 400–427 depending on the mediation method
chosen.

SPECIAL CONSIDERATIONS FOR LONGITUDINAL STUDIES AND
OTHER STUDY DESIGNS
Due to the dynamic nature of the microbiome, longitudinal
microbiome data are usually more informative about the profile of
microbiome in relation to its host and environmental interac-
tions37. Subjects are measured repeatedly during a study, which
allows for direct evaluation of changes of response variable over
time, as well as more precise estimates of inter-individual
differences. Hence, longitudinal studies allow for both between-
subject differences and within-subject dynamics to be considered,
resulting in more powerful studies38,39.
Current efforts in microbiome research aim to move from

correlation to causality. Longitudinal studies are invaluable
research tools to evaluate a causative impact of the microbiome
on the host physiological disease processes. Throughout the
lifetime, our microbiome changes constantly over body habitats
and time, it can be completely modified, either temporarily or
permanently, by diseases such as infection, or medical interven-
tions such as antibiotic courses40. These temporal patterns can
help reveal if changes in microbiome predict, create or prevent
diseases41. Causal inference analysis methods, such as mediation
analysis, are recommended in longitudinal studies to evaluate
the mutual relationship between the microbiome, the host and
other study variables (environment, intervention, etc.). Various
computational methods such as regression-based time series
models, autoregressive (AR) models, and richer models such as
the microbiome counts trajectories infinite mixture model37 have
been applied to longitudinal microbiome data. However, there
are still methodological limitations to existing approaches when
coping with current methods of dynamic and complex
microbiome data.
While longitudinal studies are more powerful biologically and

statistically, calculating sample size for a longitudinal study with
repeated microbiome measures is complex, and requires simula-
tion methods based on pilot datasets42. Ideally, to run this type of
simulation, the pilot dataset should contain the independent
(microbiome) and dependent (host factor) variables measured at
multiple timepoints, preferably the same timepoints planned for
the upcoming study. It is essential to consider the between-
patient covariance in both the dependent and independent
measures, as well as within-patient covariance between time-
points. It is nearly impossible to accurately guess or simulate these
covariance structures, and to obtain reproducible sample size
calculations without having longitudinal pilot data.

Table 7. Percent distribution of the C1–C1 cluster vs. the other three
clusters between Asian ethnicity and others (Table 1 of Tun
et al. (2021))29.

Group Gut microbiota cluster Total

C1–C1 Others

Asian ethnicity 51 (30%) 120 (70%) 171

Others 23(16%) 123 (84%) 146

Table 8. C. difficile colonization rate between exclusively breastfed
infants vs. partial breastfed or formula-fed infants.

Mode of feeding C. difficile colonization

Exclusively breastfed infants 22.63%

Others 41.23%
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CONCLUDING REMARKS
The goal of this resource is to provide a framework to help plan
sample size calculations in microbiome studies. We have
illustrated several options such as a decision tree in Fig. 1, and
provided various study designs, formulas, as well as worked
examples in Sections “Sample size calculations associated with
each node of the decision tree and Microbiome as the mediator
(exposure-microbiome-outcome)”. We also provided codes to
implement equations in R in Supplementary Material. It is often
not straightforward to test associations between potential
environmental factors or phenotypes and microbiome composi-
tion, whether measured by OTUs, ASVs or taxa abundances.
Microbiome data often display a broad dynamic range, high
dimensionality, substantial variability in counts between samples,
and non-normality of counts. Counts tend to be correlated with
each other, possibly due to phylogenetic structure or similarity of
function43. Furthermore, diversity between samples can be
extreme, such that some species or OTUs are absent from some
samples. Statistically, these characteristics must be considered to
perform valid analysis and sample size calculations. Evaluating the
sample size threshold to design meaningful microbiome studies
remains a critical step. By expanding from previously published
methods, the approaches presented here will help design
interpretable human microbiome studies. We encourage other
scientists to test and optimize the tools presented here, and future
ones, as microbiome datasets increase in public repositories.
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