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Parasitic helminths are unique pathogens, being the largest, most
chronic, and yet often the least pathogenic infectious agents that
we encounter. They travel across and persist in many mucosal sites,
and their impact, experimentally and clinically, has supported many
of our current models of mucosal immunity. Here, we present a
special collection of recent Mucosal Immunology articles high-
lighting key advances made possible through the study of helminth
infections, from the discovery of new immuno-epithelial cells to the
cross-kingdom interactions that govern intestinal immunity and the
therapeutic promise of helminth-mediated immune suppression.
Together these articles are a celebration of the power of the worm
to provide new insight into the mechanisms of mucosal immunity,
and we hope you enjoy reading the collection.

Lessons from helminths began very early in history. Parasitic
helminths are visible to the naked eye and were the first
pathogens to be described, with the earliest known medical text,
the Ebers papyrus (~1500 BC), describing human tapeworm,
roundworm, schistosome, hookworm and guinea worm infec-
tions'. Helminths have long been associated with type 2 immune
responses, many aspects of which were uncovered using
experimental infections (Fig. 1). The first to be identified were
eosinophils and mast cells, discovered in the late 1800s by Paul
Ehrlich? and later shown to be associated with parasitic worm
infections®* (Fig. 1-1). Likewise, early helminth infection studies
led Bridget Ogilvie and her team to describe “Reginin-like
antibodies” (later renamed IgE) in 1964 (Fig. 1-2). When Mosmann
and Coffman originally proposed the Th1/Th2 paradigm, this was
supported by the identification of Th2-phenotype cells in
helminth-infected mice® (Fig. 1-3), while the impact of the
Th2 signature cytokines was demonstrated in helminth infections
of early IL-4 and IL-13 knockout animals®®, Initially, IL-4 and IL-13
were thought to fulfil redundant roles in the immune response,
until helminth infection studies revealed the dominant role of IL-
13 in whipworm expulsion®. IL-13 was later shown to be a critical
cytokine at mucosal surfaces, activating the “epithelial escalator”
(increased epithelial turnover)'® and a key part of the “weep and
sweep” response (coordinated increases in epithelial permeability,
mucus production and intestinal motility) that clears intestinal
parasites'' (Fig. 1-6). The first experimental data supporting the
mucus layer as a key part of mucosal immunity was also provided
by experimental helminth infections in the early 1980s'%. More
recently, the first studies on the alternative activation of
macrophages'® (Fig. 1-5), and the concept of wound healing as
an immune outcome', were also built on helminth infection
experiments. Such infections have also shown that tissue
macrophages proliferate in situ'® (Fig. 1-8) and that T follicular
helper cells are functionally polarised'®'”. Finally, the identifica-
tion and characterisation of 2 of the critical initiators and
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regulators of type 2 immunity—type 2 innate lymphoid cells
(ILC25)"® (Fig. 1-7) and tuft cells'® (Fig. 1-10)—both depended on
the use of helminth infections.

Today, the contribution of helminths to fundamental under-
standing of mucosal immunology continues at pace. Two research
articles in this collection describe the dialogue between tuft cells
and ILC2s: first showing that the cytokine MIF is required for tuft
cell and ILC2 activation, critical for rapid expulsion of intestinal
helminths®°, and second that the SOCS-family member CISH
regulates that tuft cell-ILC2 circuit, controlling the thresholds of
epithelial and immune cell interaction?'. In a review article in this
issue, Inclan-Rico et al. discuss current understanding of cell-cell
interactions in the infected mucosa, highlighting the function of
non-traditional immune cells such as epithelial cells, neurons and
fibroblasts, and arguing that communication between haemato-
poietic, stromal and neural cells is essential not only for the
initiation of mucosal immunity, but also for its amplification,
regulation and repair?2.

The theme of resolution and repair is continued in a study
showing that the phosphatase PTPN2 is a critical signalling step in
the alternative activation of macrophages, and its absence correlates
with excessive lung damage in a model of pulmonary helminth
infection®®. Type 2 immunity (including macrophage alternative
activation) is associated with distinct metabolic requirements,
favouring oxidative phosphorylation over aerobic glycolysis and
these metabolic changes can have both dietary and immunological
determinants (Fig. 1-9). Our collection includes an intriguing new
study of ILC activation in the intestine that demonstrates that a
neuropeptide elicited by food consumption, VIP, synergises with
cytokine alarmins to potently activate ILC2s and ILC3s in the
intestinal tissue®*. In a new review in this issue, Michla et al. focuses
on cutting-edge ILC2 biology and particularly the metabolic
pressures that govern ILC activity and consequent immune
decisions®.

One of the features of mucosal sites is constant interaction with
external stimuli, such as food, dust, and commensal microorgan-
isms. Mucosal infections take place in the context of this
background stimulation, and helminth infections have provided
fascinating new insight into the interactions that take place. A
recent paper in our collection shows that the bacterial microbiota
also influences helminth expulsion by regulating intestinal
contractility?®. Cross-regulation also occurs via the immune
system, and two new papers highlight the impact of interaction
between opposing cytokine responses. Both describe an under-
lying IFNy response present during helminth infection that limits
the Th2 response critical for parasite expulsion®”?%, and IL-10 is
shown to be critical for keeping that IFNy in check®.

The immune regulation revealed by helminth infection is
concentrated at the site of infection, but these infections have
also revealed long-range immune modulation, driving our under-
standing of communication between distant immune locations.
Helminths played a key role in describing the gut-lung axis,
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Fig. 1

Landmark discoveries from helminth immunology. 1. Mast cell and eosinophil identification (late 1800s). 2. IgE (“Reaginin-like

antibodies”) induced in parasite infection (1964). 3. Th1/Th2 paradigm: Th1 in bacterial and Th2 in parasitic infections (1989). 4. Discovery of
regulatory T cells (1995). 5. M1/M2 paradigm, M2 (“alternatively-activated”) macrophages in parasite infections (2000). 6. “Epithelial escalator”
as part of the response to intestinal helminths (2005). 7. Characterisation of the anti-parasite role of type 2 innate lymphoid cells (ILC2) (2010).
8. In situ proliferation of M2 macrophages (2011). 9. Metabolic shift during type 2 immunity from glycolysis to lipid metabolism (2016). 10.
Identification of tuft cells as a critical epithelial cell type in initiation of anti-parasite immunity (2016). Created with BioRender.com.

including the early demonstration that intestinal infection can
alter pulmonary disease. Connections between other distal sites
are now being established and an exciting new paper in our
collection reveals profound changes in immune populations in the
skin during strictly enteric helminth infection®. Both the tissue
specificity of immune responses and the connections between
distant locations are explored in a new review by Vacca et al. in
this issue®’, highlighting the long reach of helminth infections.

The mechanisms of immune regulation revealed by helminth
infections have also been powerful drivers of therapeutic
strategies, aiming to suppress and moderate pathological immune
responses in a variety of tissue sites. Soon after the discovery of
regulatory T cells®’, parasites were found to induce regulatory
responses and suppress type 2 immunity, through the release of
immunomodulatory products®® (Fig. 1-4). Loke et al. review the
latest information on the human immune response to parasitic
helminths, how recent technological developments such as
human challenge studies, single cell sequencing and organoid
culture systems have aided these investigations. Recent insight is
enabling new approaches to vaccine design and harnessing of
parasite-mediated immune suppression to treat inflammatory
disease™s.

Parasitic helminths will continue to be a unique and physiolo-
gically relevant testbed for new concepts in mucosal immunology.
Better understanding of immunity to helminths is urgently
needed. Almost one quarter of the world’s population is at risk
of infection with parasitic helminths, causing significant morbidity
and mortality, and yet we currently do not have any effective
vaccines. But as this collection of reviews and current research
papers illustrates, understanding the biology of helminth infec-
tions, their regulation and their tissue context is also answering
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key questions in immunobiology, mucosal immunity, and
immunotherapy. Only by using human and animal model
helminth infection experiments, can these fundamental questions
be answered.
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