Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alterations in adolescent brain serotonin (5HT)1A, 5HT2A, and dopamine (D)2 receptor systems in a nonhuman primate model of early life adversity

Abstract

Stress affects brain serotonin (5HT) and dopamine (DA) function, and the effectiveness of 5HT and DA to regulate stress and emotional responses. However, our understanding of the long-term impact of early life adversity (ELA) on primate brain monoaminergic systems during adolescence is scarce and inconsistent. Filling this gap in the literature is critical, given that the emergence of psychopathology during adolescence has been related to deficits in these systems. Here, we use a translational nonhuman primate (NHP) model of ELA (infant maltreatment by the mother) to examine the long-term impact of ELA on adolescent 5HT1A, 5HT2A and D2 receptor systems. These receptor systems were chosen based on their involvement in stress/emotional control, as well as reward and reinforcement. Rates of maternal abuse, rejection, and infant’s vocalizations were obtained during the first three postnatal months, and hair cortisol concentrations obtained at 6 months postnatal were examined as early predictors of binding potential (BP) values obtained during adolescence using positron emission tomography (PET) imaging. Maltreated animals demonstrated significantly lower 5HT1A receptor BP in prefrontal cortical areas as well as the amygdala and hippocampus, and lower 5HT2A receptor BP in striatal and prefrontal cortical areas. Maltreated animals also demonstrated significantly lower D2 BP in the amygdala. None of the behavioral and neuroendocrine measurements obtained early in life predicted any changes in BP data. Our findings suggest that early caregiving experiences regulate the development of brain 5HT and DA systems in primates, resulting in long-term effects evident during adolescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 5HT1A Receptor BPND.
Fig. 2: 5HT2A Receptor BPND.
Fig. 3: 5HT2A Receptor BPND in OFC and Putamen.
Fig. 4: D2 Receptor BPND.

Similar content being viewed by others

References

  1. Chapman DP, Whitfield CL, Felitti VJ, Dube SR, Edwards VJ, Anda RF. Adverse childhood experiences and the risk of depressive disorders in adulthood. J Affect Disord. 2004;82:217–25.

    Article  PubMed  Google Scholar 

  2. Carr CP, Martins CMS, Stingel AM, Lemgruber VB, Juruena MF. The role of early life stress in adult psychiatric disorders: a systematic review according to childhood trauma subtypes. J Nerv Ment Dis. 2013;201:1007–20.

    Article  PubMed  Google Scholar 

  3. Cicchetti D, Toth SL. Child maltreatment. Annu Rev Clin Psychol. 2005;1:409–38.

    Article  PubMed  Google Scholar 

  4. Danese A, Tan M. Childhood maltreatment and obesity: systematic review and meta-analysis. Mol Psychiatry. 2014;19:544–54.

    Article  CAS  PubMed  Google Scholar 

  5. Drury SS, Sanchez MM, Gonzalez A. When mothering goes awry: challenges and opportunities for utilizing evidence across rodent, nonhuman primate and human studies to better define the biological consequences of negative early caregiving. Horm Behav. 2016;77:182–92.

    Article  PubMed  Google Scholar 

  6. Finkelhor D, Turner HA, Shattuck A, Hamby SL. Violence, crime, and abuse exposure in a national sample of children and youth: an update. JAMA Pediatr. 2013;167:614–21.

    Article  PubMed  Google Scholar 

  7. Heim C, Binder EB. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Exp Neurol. 2012;233:102–11.

    Article  PubMed  Google Scholar 

  8. Kaplow JB, Widom CS. Age of onset of child maltreatment predicts long-term mental health outcomes. J Abnorm Psychol. 2007;116:176–87.

    Article  PubMed  Google Scholar 

  9. Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM. The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev. 2003;27:33–44.

    Article  PubMed  Google Scholar 

  10. Nolen-Hoeksema S, Girgus JS. The emergence of gender differences in depression during adolescence. Psychol Bull. 1994;115:424–43.

    Article  CAS  PubMed  Google Scholar 

  11. Forbes EE, Williamson DE, Ryan ND, Dahl RE. Positive and negative affect in depression: influence of sex and puberty. Ann NY Acad Sci. 2004;1021:341–47.

    Article  PubMed  Google Scholar 

  12. Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci. 2008;9:947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Akimova E, Lanzenberger R, Kasper S. The serotonin-1A receptor in anxiety disorders. Biol Psychiatry. 2009;66:627–35.

    Article  CAS  PubMed  Google Scholar 

  14. Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007;64:327–37.

    Article  CAS  PubMed  Google Scholar 

  15. Stockmeier CA. Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J Psychiatr Res. 2003;37:357–73.

    Article  PubMed  Google Scholar 

  16. Perani D, Garibotto V, Gorini A, Moresco RM, Henin M, Panzacchi A, et al. In vivo PET study of 5HT2A serotonin and D2 dopamine dysfunction in drug-naive obsessive-compulsive disorder. Neuroimage. 2008;42:306–14.

    Article  PubMed  Google Scholar 

  17. Denys D, Van Der Wee N, Janssen J, De Geus F, Westenberg HG. Low level of dopaminergic D2 receptor binding in obsessive-compulsive disorder. Biol Psychiatry. 2004;55:1041–5.

    Article  CAS  PubMed  Google Scholar 

  18. Schneier FR, Abi‐Dargham A, Martinez D, Slifstein M, Hwang DR, Liebowitz MR, et al. Dopamine transporters, D2 receptors, and dopamine release in generalized social anxiety disorder. Depress Anxiety. 2009;26:411–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moses-Kolko EL, Price JC, Wisner KL, Hanusa BH, Meltzer CC, Berga SL, et al. Postpartum and depression status are associated with lower [(11)C]raclopride BP(ND) in reproductive-age women. Neuropsychopharmacology. 2012;37:1422–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Drury SS, Howell BR, Jones C, Esteves K, Morin E, Schlesinger R, et al. Shaping long-term primate development: telomere length trajectory as an indicator of early maternal maltreatment and predictor of future physiologic regulation. Dev Psychopathol. 2017;29:1539–51.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Howell BR, McCormack KM, Grand AP, Sawyer NT, Zhang X, Maestripieri D, et al. Brain white matter microstructure alterations in adolescent rhesus monkeys exposed to early life stress: associations with high cortisol during infancy. Biol Mood Anxiety Disord. 2013;3:21.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Howell BR, Grand AP, McCormack KM, Shi Y, La Prairie J, Maestripieri D, et al. Early adverse experience increases emotional reactivity in juvenile rhesus macaques: relation to Amygdala volume. Dev Psychobiol. 2014;56:1735–46.

    Article  PubMed  PubMed Central  Google Scholar 

  23. McCormack K, Sanchez MM, Bardi M, Maestripieri D. Maternal care patterns and behavioral development of rhesus macaque abused infants in the first 6 months of life. Dev Psychobiol. 2006;48:537–50.

    Article  CAS  PubMed  Google Scholar 

  24. Morin EL, Howell BR, Meyer JS, Sanchez MM. Effects of early maternal care on adolescent attention bias to threat in nonhuman primates. Dev Cogn Neurosci. 2019;38:100643.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maestripieri D, Higley JD, Lindell SG, Newman TK, McCormack KM, Sanchez MM. Early maternal rejection affects the development of monoaminergic systems and adult abusive parenting in rhesus macaques (Macaca mulatta). Behav Neurosci 2006a;120:1017.

    Article  PubMed  Google Scholar 

  26. Maestripieri D, McCormack K, Lindell SG, Higley JD, Sanchez MM. Influence of parenting style on the offspring’s behaviour and CSF monoamine metabolite levels in crossfostered and noncrossfostered female rhesus macaques. Behav Brain Res. 2006b;175:90–5.

    Article  CAS  PubMed  Google Scholar 

  27. Sanchez MM, Alagbe O, Felger JC, Zhang J, Graff AE, Grand AP, et al. Activated p38 MAPK is associated with decreased CSF 5-HIAA and increased maternal rejection during infancy in rhesus monkeys. Mol Psychiatry. 2007;12:895–7.

    Article  CAS  PubMed  Google Scholar 

  28. Huggins KN, Mathews TA, Locke JL, Szeliga KT, Friedman DP, Bennett AJ, et al. Effects of early life stress on drinking and serotonin system activity in rhesus macaques: 5-Hydroxyindoleacetic acid in cerebrospinal fluid predicts brain tissue levels. Alcohol. 2012;46:371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O, et al. Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci. 2002;5:169–74.

    Article  CAS  PubMed  Google Scholar 

  30. Nader MA, Czoty PW. PET imaging of dopamine D2 receptors in monkey models of cocaine abuse: genetic predisposition versus environmental modulation. Am J Psychiatry. 2005;162:1473–82.

    Article  PubMed  Google Scholar 

  31. Embree M, Michopoulos V, Votaw JR, Voll RJ, Mun J, Stehouwer JS, et al. The relation of developmental changes in brain serotonin transporter (5HTT) and 5HT1A receptor binding to emotional behavior in female rhesus monkeys: effects of social status and 5HTT genotype. Neuroscience. 2013;228:83–100.

    Article  CAS  PubMed  Google Scholar 

  32. Spinelli S, Chefer S, Carson RE, Jagoda E, Lang L, Heilig M, et al. Effects of early-life stress on serotonin1A receptors in juvenile rhesus monkeys measured by positron emission tomography. Biol Psychiatry. 2010;67:1146–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Howell BR, McMurray MS, Guzman DB, Nair G, Shi Y, McCormack KM, et al. Maternal buffering beyond glucocorticoids: impact of early life stress on corticolimbic structures that control infant responses to novelty. Soc Neurosci. 2017;12:50–64.

    Article  PubMed  Google Scholar 

  34. Howell BR, Ahn M, Shi Y, Godfrey JR, Hu X, Zhu H, et al. Disentangling the effects of early caregiving experience and heritable factors on brain white matter development in rhesus monkeys. NeuroImage. 2019;197:625–42.

    Article  PubMed  Google Scholar 

  35. Morin EL, Howell BR, Feczko E, Earl E, Pincus M, Reding K, et al. Developmental outcomes of early adverse care on amygdala functional connectivity in nonhuman primates. Dev Psychopathol. 2020;32:1579–96.

    Article  PubMed  Google Scholar 

  36. Wakeford AGP, Morin EL, Bramlett SN, Howell BR, McCormack KM, Meyer JS, et al. Effects of early life stress on cocaine self-administration in post-pubertal male and female rhesus macaques. Psychopharmacology. 2019;236:2785–96.

    Article  CAS  PubMed  Google Scholar 

  37. Müller CP, Carey RJ, Huston JP, Silva MADS. Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol. 2007;81:133–78.

    Article  PubMed  Google Scholar 

  38. Howell LL, Cunningham KA. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol Rev. 2015;67:176–97.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Maestripieri D, Megna NL, Jovanovic T. Adoption and maltreatment of foster infants by rhesus macaque abusive mothers. Dev Sci. 2000;3:287–93.

    Article  Google Scholar 

  40. Maestripieri D. Parenting styles of abusive mothers in group-living rhesus macaques. Anim Behav. 1998;55:1–11.

    Article  CAS  PubMed  Google Scholar 

  41. McCormack K, Newman TK, Higley JD, Maestripieri D, Sanchez MM. Serotonin transporter gene variation, infant abuse, and responsiveness to stress in rhesus macaque mothers and infants. Horm Behav. 2009;55:538–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McCormack KM, Howell BR, Higgins M, Bramlett S, Guzman D, Morin EL, et al. The developmental consequences of early adverse care on infant macaques: a cross-fostering study. Psychoneuroendocrinology. 2022;146:105947 https://doi.org/10.1016/j.psyneuen.2022.105947.

    Article  CAS  PubMed  Google Scholar 

  43. McCormack K, Howell BR, Guzman D, Villongco C, Pears K, Kim H, et al. The development of an instrument to measure global dimensions of maternal care in rhesus macaques (Macaca mulatta). Am J Primatol. 2015;77:20–33.

    Article  CAS  PubMed  Google Scholar 

  44. Sanchez MM. The impact of early adverse care on HPA axis development: nonhuman primate models. Horm Behav. 2006;50:623–31.

    Article  PubMed  Google Scholar 

  45. Maestripieri D. The biology of human parenting: insights from nonhuman primates. Neurosci Biobehav Rev. 1999;23:411–22.

    Article  CAS  PubMed  Google Scholar 

  46. Scheinin M. Monoamine metabolites in human cerebrospinal fluid: indicators of neuronal activity? Med Biol. 1985;63:1–17.

    CAS  PubMed  Google Scholar 

  47. Sodhi MSK, Sanders-Bush E. Serotonin and brain development. Int Rev Neurobiol. 2004;59:111–74.

    Article  CAS  PubMed  Google Scholar 

  48. Mugler JP 3rd. Overview of MR imaging pulse sequences. Magn Reson Imaging Clin N. Am. 1999;7:661.

    Article  PubMed  Google Scholar 

  49. Lüsebrink F, Wollrab A, Speck O. Cortical thickness determination of the human brain using high resolution 3T and 7T MRI data. Neuroimage. 2013;70:122–31.

    Article  PubMed  Google Scholar 

  50. Mukherjee J, Yang ZY, Brown T, Lew R, Wernick M, Ouyang X, et al. Preliminary assessment of extrastriatal dopamine D-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, 18F-fallypride. Nucl Med Biol. 1999;26:519–27.

    Article  CAS  PubMed  Google Scholar 

  51. Le Bars D, Lemaire C, Ginovart N, Plenevaux A, Aerts J, Brihaye C, et al. High-yield radiosynthesis and preliminary in vivo evaluation of p-[18F]MPPF, a fluoro analog of WAY-100635. Nucl Med Biol. 1998;25:343–50.

    Article  PubMed  Google Scholar 

  52. Ito H, Nyberg S, Halldin C, Lundkvist C, Farde L. PET imaging of central 5-HT2A receptors with carbon-11-MDL 100,907. J Nucl Med. 1998;39:208–14.

    CAS  PubMed  Google Scholar 

  53. Yang Y, Tai YC, Siegel S, Newport DF, Bai B, Li Q, et al. Optimization and performance evaluation of the microPET II scanner for in vivo small-animal imaging. Phys Med Biol. 2004;49:2527–45.

    Article  PubMed  Google Scholar 

  54. Woods RP, Cherry SR, Mazziotta JC. Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr. 1992;16:620–33.

    Article  CAS  PubMed  Google Scholar 

  55. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging. 1997;16:187–98.

    Article  CAS  PubMed  Google Scholar 

  56. Shi Y, Budin F, Yapuncich E, Rumple A, Young JT, Payne C, et al. UNC-Emory infant atlases for macaque brain image analysis: postnatal brain development through 12 months. Front Neurosci. 2017;10:617.

    Article  PubMed  PubMed Central  Google Scholar 

  57. McLaren DG, Kosmatka KJ, Kastman EK, Bendlin BB, Johnson SC. Rhesus macaque brain morphometry: a methodological comparison of voxel-wise approaches. Methods. 2010;50:157–65.

    Article  CAS  PubMed  Google Scholar 

  58. Michopoulos V, Embree M, Reding K, Sanchez MM, Toufexis D, Votaw JR, et al. CRH receptor antagonism reverses the effect of social subordination upon central GABAA receptor binding in estradiol-treated ovariectomized female rhesus monkeys. Neuroscience. 2013;250:300–8.

    Article  CAS  PubMed  Google Scholar 

  59. Michopoulos V, Perez Diaz M, Embree M, Reding K, Votaw JR, Mun J, et al. Oestradiol alters central 5‐HT 1A receptor binding potential differences related to psychosocial stress but not differences related to 5‐HTTLPR genotype in female rhesus monkeys. J Neuroendocrinol. 2014;26:80–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Christian BT, Vandehey NT, Fox AS, Murali D, Oakes TR, Converse AK, et al. The distribution of D2/D3 receptor binding in the adolescent rhesus monkey using small animal PET imaging. Neuroimage. 2009;44:1334–44.

    Article  PubMed  Google Scholar 

  61. Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab. 1996;16:42–52.

    Article  CAS  PubMed  Google Scholar 

  62. Smith CT, Crawford JL, Dang LC, Seaman KL, San Juan MD, Vijay A, et al. Partial-volume correction increases estimated dopamine D2-like receptor binding potential and reduces adult age differences. J Cereb Blood Flow Metab. 2019;39:822–33.

    Article  CAS  PubMed  Google Scholar 

  63. Drevets WC, Thase ME, Moses-Kolko EL, Price J, Frank E, Kupfer DJ, et al. Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl Med Biol. 2007;34:865–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Neumeister A, Bain E, Nugent AC, Carson RE, Bonne O, Luckenbaugh DA, et al. Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci. 2004;24:589–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nash JR, Sargent PA, Rabiner EA, Hood SD, Argyropoulos SV, Potokar JP, et al. Serotonin 5-HT 1A receptor binding in people with panic disorder: positron emission tomography study. Br J Psychiatry. 2008;193:229–34.

    Article  PubMed  Google Scholar 

  66. Lanzenberger RR, Mitterhauser M, Spindelegger C, Wadsak W, Klein N, Mien LK, et al. Reduced serotonin-1A receptor binding in social anxiety disorder. Biol Psych. 2007;61:1081–9.

    Article  CAS  Google Scholar 

  67. Adams KH, Hansen ES, Pinborg LH, Hasselbalch SG, Svarer C, Holm S, et al. Patients with obsessive–compulsive disorder have increased 5-HT2A receptor binding in the caudate nuclei. Int J Neuropsychopharmacol. 2005;8:391–401.

    Article  CAS  PubMed  Google Scholar 

  68. Soloff PH, Price JC, Meltzer CC, Fabio A, Frank GK, Kaye WH. 5HT2A receptor binding is increased in borderline personality disorder. Biol Psych. 2007;62:580–7.

    Article  CAS  Google Scholar 

  69. Mintun MA, Sheline YI, Moerlein SM, Vlassenko AG, Huang Y, Snyder AZ. Decreased hippocampal 5-HT2A receptor binding in major depressive disorder: in vivo measurement with [18F] altanserin positron emission tomography. Biol Psych. 2004;55:217–24.

    Article  CAS  Google Scholar 

  70. Godfrey JR, Diaz MP, Pincus M, Kovacs-Balint Z, Feczko E, Earl E, et al. Diet matters: glucocorticoid-related neuroadaptations associated with calorie intake in female rhesus monkeys. Psychoneuroendocrinology. 2018;91:169–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Michopoulos V, Perez Diaz M, Wilson ME. Social change and access to a palatable diet produces differences in reward neurochemistry and appetite in female monkeys. Physiol Biol. 2016;162:102–11.

    CAS  Google Scholar 

  72. Leventopoulos M, Russig H, Feldon J, Pryce CR, Opacka-Juffry J. Early deprivation leads to long-term reductions in motivation for reward and 5-HT1A binding and both effects are reversed by fluoxetine. Neuropharmacology 2009;56:692–701.

    Article  CAS  PubMed  Google Scholar 

  73. Rentesi G, Antoniou K, Marselos M, Syrrou M, Papadopoulou-Daifoti Z, Konstandi M. Early maternal deprivation-induced modifications in the neurobiological, neurochemical and behavioral profile of adult rats. Behav Brain Res. 2013;244:29–37.

    Article  CAS  PubMed  Google Scholar 

  74. Lee SH, Jung EM. Adverse effects of early-life stress: focus on the rodent neuroendocrine system. Neural Regen Res. 2024;19:336–41.

    Article  PubMed  Google Scholar 

  75. Bravo JA, Dinan TG, Cryan JF. Early-life stress induces persistent alterations in 5-HT1A receptor and serotonin transporter mRNA expression in the adult rat brain. Front Mol Neurosci. 2014;7:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vazquez DM, Lopez JF, Van Hoers H, Watson SJ, Levine S. Maternal deprivation regulates serotonin 1A and 2A receptors in the infant rat. Brain Res. 2000;855:76–82.

    Article  CAS  PubMed  Google Scholar 

  77. Berton O, Aguerre S, Sarrieau A, Mormede P, Chaouloff F. Differential effects of social stress on central serotonergic activity and emotional reactivity in Lewis and spontaneously hypertensive rats. Neuroscience. 1998;82:147–59.

    Article  CAS  PubMed  Google Scholar 

  78. Dwivedi Y, Mondal AC, Payappagoudar GV, Rizavi HS. Differential regulation of serotonin (5HT)2A receptor mRNA and protein levels after single and repeated stress in rat brain: role in learned helplessness behavior. Neuropharmacology. 2005;48:204–14.

    Article  CAS  PubMed  Google Scholar 

  79. Lopez JF, Chalmers DT, Little KY, Watson SJ. A. E. Bennett Research Award. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: Implications for the neurobiology of depression. Biol Psychiatry 1998;43:547–73.

    Article  CAS  PubMed  Google Scholar 

  80. McKittrick CR, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR. Serotonin receptor binding in a colony model of chronic social stress. Biol Psychiatry. 1995;37:383–93.

    Article  CAS  PubMed  Google Scholar 

  81. Watanabe Y, Sakai RR, McEwen BS, Mendelson S. Stress and antidepressant effects on hippocampal and cortical 5-HT1A and 5-HT2 receptors and transport sites for serotonin. Brain Res. 1993;615:87–94.

    Article  CAS  PubMed  Google Scholar 

  82. Bettinardi V, Castiglioni I, De Bernardi E, Gilardi MC. PET quantification: strategies for partial volume correction. Clin Transl Imaging. 2014;2:199–218.

    Article  Google Scholar 

  83. Rousset O, Rahmim A, Alavi A, Zaidi H. Partial volume correction strategies in PET. PET Clin. 2007;2:235–49.

    Article  PubMed  Google Scholar 

  84. Hoetjes NJ, van Velden FH, Hoekstra OS, Hoekstra CJ, Krak NC, Lammertsma AA, et al. Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging. 2010;37:1679–87.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tohka J, Reilhac A. Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method. NeuroImage. 2008;39:1570–84.

    Article  PubMed  Google Scholar 

  86. Carson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC, et al. Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab. 1993;13:24–42.

    Article  CAS  PubMed  Google Scholar 

  87. Koeppe RA, Frey KA, Mulholland GK, Kilbourn MR, Buck A, Lee KS, et al. [11C]tropanyl benzilate-binding to muscarinic cholinergic receptors: methodology and kinetic modeling alternatives. J Cereb Blood Flow Metab. 1994;14:85–99.

    Article  CAS  PubMed  Google Scholar 

  88. Logan J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol. 2000;27:661–70.

    Article  CAS  PubMed  Google Scholar 

  89. Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H, et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab. 2003;23:1096–112.

    Article  PubMed  Google Scholar 

  90. Ewing Corcoran SB, Howell LL. Impact of early life stress on the reinforcing and behavioral-stimulant effects of psychostimulants in rhesus monkeys. Behav Pharm. 2010;21:69–76.

    Article  CAS  Google Scholar 

  91. Muly EC, Votaw JR, Ritchie J, Howell LL. Relationship between dose, drug levels, and D2 receptor occupancy for the atypical antipsychotics risperidone and paliperidone. J Pharm Exp Ther. 2012;341:81–9.

    Article  CAS  Google Scholar 

  92. Sawyer EK, Mun J, Nye JA, Kimmel HL, Voll RJ, Stehouwer JS, et al. Neurobiological changes mediating the effects of chronic fluoxetine on cocaine use. Neuropsychopharmacology. 2012;37:1816–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Voisin DA, Wakeford A, Nye J, Mun J, Jones SR, Locke J, et al. Sex and social status modify the effects of fluoxetine on socioemotional behaviors in Syrian hamsters and rhesus macaques. Pharm Biochem Behav. 2022;215:173362.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These data were reported in abstract form at the American College for Neuropsychopharmacology in 2018, as well as the College on Problems of Drug Dependence in 2018. The authors want to thank Brittany Howell, Anne Glenn, Christine Marsteller, Dora Guzman, Erin Siebert, and the staff at the Emory National Primate Research Center (ENPRC) for their contributions, excellent technical support and animal care provided during these studies. In addition, we thank Dr. Melinda Higgins for Biostatistical guidance and support.

Funding

This work was supported by funding from NIH/NIDA grant DA038588 and NIH/NIMH grant MH078105, as well as by the Emory National Primate Research Center (ENPRC) grant No. ORIP/OD P51OD011132 (ENPRC Base grant; the ENPRC is supported by the NIH, Office of Research Infrastructure Programs/OD [P51OD011132]) and by the Emory HPLC Bioanalytical Core (EHBC, which is supported by the Department of Pharmacology, Emory University School of Medicine and the Georgia Clinical & Translational Science Alliance of the NIH under Award Number UL1TR002378). The funders had no role in review design, data collection and analysis, decision to publish, or preparation of the manuscript; the content is solely the responsibility of the authors and does not represent the official views of the NIDA, NIMH or the NIH. The ENPRC is fully accredited by the Association for the Assessment and Accreditation of Laboratory Animal Care, AAALAC, International.

Author information

Authors and Affiliations

Authors

Contributions

AGPW collected data, conducted analyses, prepared figures, and wrote the manuscript. ELM, JM, and JSM conducted analyses and helped with manuscript preparation. JAN conducted analyses, designed part of these experiments, and revised this manuscript. MG, LLH, and MMS helped to design the experiment and revised the manuscript.

Corresponding author

Correspondence to Mar M. Sanchez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakeford, A.G.P., Nye, J.A., Morin, E.L. et al. Alterations in adolescent brain serotonin (5HT)1A, 5HT2A, and dopamine (D)2 receptor systems in a nonhuman primate model of early life adversity. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-023-01784-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-023-01784-0

Search

Quick links