Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dopamine D1 receptor in medial prefrontal cortex mediates the effects of TAAR1 activation on chronic stress-induced cognitive and social deficits

Abstract

Trace amine-associated receptor 1 (TAAR1) is an intracellular expressed G-protein-coupled receptor that is widely expressed in major dopaminergic areas and plays a crucial role in modulation of central dopaminergic neurotransmission and function. Pharmacological studies have clarified the roles of dopamine D1 receptor (D1R) in the medial prefrontal cortex (mPFC) in cognitive function and social behaviors, and chronic stress can inhibit D1R expression due to its susceptibility. Recently, we identified TAAR1 in the mPFC as a potential target for treating chronic stress-induced cognitive and social dysfunction, but whether D1R is involved in mediating the effects of TAAR1 agonist remains unclear. Combined genomics and transcriptomic studies revealed downregulation of D1R in the mPFC of TAAR1/ mice. Molecular dynamics simulation showed that hydrogen bond, salt bridge, and Pi–Pi stacking interactions were formed between TAAR1 and D1R indicating a stable TAAR1–D1R complex structure. Using pharmacological interventions, we found that D1R antagonist disrupted therapeutic effect of TAAR1 partial agonist RO5263397 on stress-related cognitive and social dysfunction. Knockout TAAR1 in D1-type dopamine receptor-expressing neurons reproduced adverse effects of chronic stress, and TAAR1 conditional knockout in the mPFC led to similar deficits, along with downregulation of D1R expression, all of these effects were ameliorated by viral overexpression of D1R in the mPFC, suggesting the functional interaction between TAAR1 and D1R. Collectively, our data elucidate the possible molecular mechanism that D1R in the mPFC mediates the effects of TAAR1 activation on chronic stress-induced cognitive and social deficits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of TAAR1 on the expression of monoamine neurotransmitter receptors in the mPFC.
Fig. 2: A structural model of the trace amine-associated receptor 1 and dopamine D1 receptor complex.
Fig. 3: Inhibition of D1R affected the therapeutic effect of TAAR1 partial agonist on chronic stress-related cognitive and social impairment.
Fig. 4: Overexpression of D1R in the mPFC reversed cognitive deficits related to knocking out TAAR1 on D1 receptor-expressing neurons.
Fig. 5: Overexpression of D1R recovered cognitive and social deficits caused by TAAR1 specific knockout in the mPFC.

Similar content being viewed by others

References

  1. Miller GM, Verrico CD, Jassen A, Konar M, Yang H, Panas H, et al. Primate trace amine receptor 1 modulation by the dopamine transporter. J Pharmacol Exp Ther. 2005;313:983–94.

    Article  CAS  PubMed  Google Scholar 

  2. Revel FG, Meyer CA, Bradaia A, Jeanneau K, Calcagno E, Andre CB, et al. Brain-specific overexpression of trace amine-associated receptor 1 alters monoaminergic neurotransmission and decreases sensitivity to amphetamine. Neuropsychopharmacology. 2012;37:2580–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dorotenko A, Tur M, Dolgorukova A, Bortnikov N, Belozertseva IV, Zvartau EE, et al. The action of TAAR1 agonist RO5263397 on executive functions in rats. Cell Mol Neurobiol. 2020;40:215–28.

    Article  CAS  PubMed  Google Scholar 

  4. Wu R, Liu J, Seaman R Jr, Johnson B, Zhang Y, Li JX. The selective TAAR1 partial agonist RO5263397 promoted novelty recognition memory in mice. Psychopharmacology. 2021;238:3221–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tanaka K, Furuyashiki T, Kitaoka S, Senzai Y, Imoto Y, Segi-Nishida E, et al. Prostaglandin E2-mediated attenuation of mesocortical dopaminergic pathway is critical for susceptibility to repeated social defeat stress in mice. J Neurosci. 2012;32:4319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10:434–45.

    Article  CAS  PubMed  Google Scholar 

  7. Tzschentke TM. The medial prefrontal cortex as a part of the brain reward system. Amino Acids. 2000;19:211–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology. 2022;47:309–28.

    Article  PubMed  Google Scholar 

  9. Xu P, Yue YL, Su JT, Sun XQ, Du HF, Liu ZC, et al. Pattern decorrelation in the mouse medial prefrontal cortex enables social preference and requires MeCP2. Nat Commun. 2022;13:3899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17:2921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tzschentke TM. Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol. 2001;63:241–320.

    Article  CAS  PubMed  Google Scholar 

  12. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217.

    Article  CAS  PubMed  Google Scholar 

  13. Goldman-Rakic PS, Castner SA, Svensson TH, Siever LJ, Williams GV. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology. 2004;174:3–16.

    Article  CAS  PubMed  Google Scholar 

  14. Arnsten AF, Wang MJ, Paspalas CD. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron. 2012;76:223–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xing B, Mack NR, Guo KM, Zhang YX, Ramirez B, Yang SS, et al. A subpopulation of prefrontal cortical neurons is required for social memory. Biol Psychiatry. 2021;89:521–31.

    Article  CAS  PubMed  Google Scholar 

  16. Cai XW, Wu M, Zhang ZA, Liu HC, Huang ST, Song J, et al. Electroacupuncture alleviated depression-like behaviors in ventromedial prefrontal cortex of chronic unpredictable mild stress-induced rats: increasing synaptic transmission and phosphorylating dopamine transporter. CNS Neurosci Ther. 2023;29:2608–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shinohara R, Taniguchi M, Ehrlich AT, Yokogawa K, Deguchi Y, Cherasse Y, et al. Dopamine D1 receptor subtype mediates acute stress-induced dendritic growth in excitatory neurons of the medial prefrontal cortex and contributes to suppression of stress susceptibility in mice. Mol Psychiatry. 2018;23:1717–30.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Li JT, Wang H, Niu WP, Zhang CC, Zhang Y, et al. Role of trace amine‑associated receptor 1 in the medial prefrontal cortex in chronic social stress-induced cognitive deficits in mice. Pharmacol Res. 2021;167:105571.

    Article  CAS  PubMed  Google Scholar 

  19. Pei Y, Asif-Malik A, Canales JJ. Trace amines and the trace amine-associated receptor 1: pharmacology, neurochemistry, and clinical implications. Front Neurosci. 2016;10:148.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xie ZH, Miller GM. Trace amine-associated receptor 1 as a monoaminergic modulator in brain. Biochem Pharmacol. 2009;78:1095–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie Z, Westmoreland SV, Miller GM. Modulation of monoamine transporters by common biogenic amines via trace amine-associated receptor 1 and monoamine autoreceptors in human embryonic kidney 293 cells and brain synaptosomes. J Pharmacol Exp Ther. 2008;325:629–40.

    Article  CAS  PubMed  Google Scholar 

  22. Harmeier A, Obermueller S, Meyer CA, Revel FG, Buchy D, Chaboz S, et al. Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. Eur Neuropsychopharm. 2015;25:2049–61.

    Article  CAS  Google Scholar 

  23. Espinoza S, Salahpour A, Masri B, Sotnikova TD, Messa M, Barak LS, et al. Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor. Mol Pharmacol. 2011;80:416–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leo D, Mus L, Espinoza S, Hoener MC, Sotnikova TD, Gainetdinov RR. TAAR1-mediated modulation of presynaptic dopaminergic neurotransmission: role of D2 dopamine autoreceptors. Neuropharmacology. 2014;81:283–91.

    Article  CAS  PubMed  Google Scholar 

  25. De Gregorio D, Posa L, Ochoa-Sanchez R, McLaughlin R, Maione S, Comai S, et al. The hallucinogen D-lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT1A, D2 and TAAR1 receptors. Int J Neuropsychoph. 2016;19:181.

    Google Scholar 

  26. Grinchii D, Hoener MC, Khoury T, Dekhtiarenko R, Bervanlou RN, Jezova D, et al. Effects of acute and chronic administration of trace amine-associated receptor 1 (TAAR1) ligands on in vivo excitability of central monoamine-secreting neurons in rats. Mol Psychiatry. 2022;27:4861–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Espinoza S, Leou D, Sotnikova TD, Shahid M, Kääriäinen TM, Gainetdinov RR. Biochemical and functional characterization of the trace amine-associated receptor 1 (TAAR1) agonist RO5263397. Front Pharmacol. 2018;9:645.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18:e3000410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wagner KV, Wang XD, Liebl C, Scharf SH, Müller MB, Schmidt MV. Pituitary glucocorticoid receptor deletion reduces vulnerability to chronic stress. Psychoneuroendocrinology. 2011;36:579–87.

    Article  CAS  PubMed  Google Scholar 

  30. Haenisch B, Bilkei-Gorzo A, Caron MG, Bönisch H. Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression. J Neurochem. 2009;111:403–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li JT, Xie XM, Yu JY, Sun YX, Liao XM, Wang XX, et al. Suppressed calbindin levels in hippocampal excitatory neurons mediate stress-induced memory loss. Cell Rep. 2017;21:891–900.

    Article  CAS  PubMed  Google Scholar 

  32. Yang XD, Liao XM, Uribe-Marino A, Liu R, Xie XM, Jia J, et al. Stress during a critical postnatal period induces region-specific structural abnormalities and dysfunction of the prefrontal cortex via CRF1. Neuropsychopharmacology. 2015;40:1203–15.

    Article  CAS  PubMed  Google Scholar 

  33. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  34. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Biasini M, Schmidt T, Bienert S, Mariani V, Studer G, Haas J, et al. OpenStructure: an integrated software framework for computational structural biology. Acta Crystallogr D Biol Crystallogr. 2013;69:701–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yan Y, Tao H, He J, Huang SY. The HDOCK server for integrated protein-protein docking. Nat Protoc. 2020;15:1829–52.

    Article  CAS  PubMed  Google Scholar 

  37. Lundborg M, Lindahl E. Automatic GROMACS topology generation and comparisons of force fields for solvation free energy calculations. J Phys Chem B. 2015;119:810–23.

    Article  CAS  PubMed  Google Scholar 

  38. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11:3696–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35.

    Article  CAS  Google Scholar 

  40. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR. Molecular-dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–90.

    Article  CAS  Google Scholar 

  41. Parrinello M, Rahman A. Polymorphic transitions in single-crystals – a new molecular-dynamics method. J Appl Phys. 1981;52:7182–90.

    Article  CAS  Google Scholar 

  42. Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput. 2021;17:6281–91.

    Article  PubMed  Google Scholar 

  43. Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput. 2012;8:3314–21.

    Article  CAS  PubMed  Google Scholar 

  44. Rutigliano G, Accorroni A, Zucchi R. The case for TAAR1 as a modulator of central nervous system function. Front Pharmacol. 2018;8:987.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bradaia A, Trube G, Stalder H, Norcross RD, Ozmen L, Wettstein JG, et al. The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc Natl Acad Sci USA 2009;106:20081–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lupien SJ, Maheu F, Tu M, Fiocco A, Schramek TE. The effects of stress and stress hormones on human cognition: implications for the field of brain and cognition. Brain Cogn. 2007;65:209–37.

    Article  CAS  PubMed  Google Scholar 

  47. Marin MF, Lord C, Andrews J, Juster RP, Sindi S, Arsenault-Lapierre G, et al. Chronic stress, cognitive functioning and mental health. Neurobiol Learn Mem. 2011;96:583–95.

    Article  PubMed  Google Scholar 

  48. Belleau EL, Treadway MT, Pizzagalli DA. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiatry. 2019;85:443–53.

    Article  PubMed  Google Scholar 

  49. Sun MK, Alkon DL. Stress: perspectives on its impact on cognition and pharmacological treatment. Behav Pharmacol. 2014;25:410–24.

    Article  CAS  PubMed  Google Scholar 

  50. Arnsten AFT, Wang M, Paspalas CD. Dopamine’s actions in primate prefrontal cortex: challenges for treating cognitive disorders. Pharmacol Rev. 2015;67:681–96.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Arnsten AFT. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat Neurosci. 2015;18:1376–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li Q, Zhang B, Cao H, Liu W, Guo F, Shen F, et al. Oxytocin exerts antidepressant-like effect by potentiating dopaminergic synaptic transmission in the mPFC. Neuropharmacology. 2020;162:107836.

    Article  CAS  PubMed  Google Scholar 

  53. Ostroumov A, Dani JA. Inhibitory plasticity of mesocorticolimbic circuits in addiction and mental illness. Trends Neurosci. 2018;41:898–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fortier AV, Meisner OC, Nair AR, Chang SWC. Prefrontal circuits guiding social preference: implications in autism spectrum disorder. Neurosci Biobehav Rev. 2022;141:104803.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Revel FG, Moreau JL, Pouzet B, Mory R, Bradaia A, Buchy D, et al. A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol Psychiatry. 2013;18:543–56.

    Article  CAS  PubMed  Google Scholar 

  56. Rutigliano G, Zucchi R. Molecular variants in human trace amine-associated receptors and their implications in mental and metabolic disorders. Cell Mol Neurobiol. 2020;40:239–55.

    Article  PubMed  Google Scholar 

  57. Arnsten AF, Girgis RR, Gray DL, Mailman RB. Novel dopamine therapeutics for cognitive deficits in schizophrenia. Biol Psychiatry. 2017;81:67–77.

    Article  CAS  PubMed  Google Scholar 

  58. Puig MV, Miller EK. The role of prefrontal dopamine D1 receptors in the neural mechanisms of associative learning. Neuron. 2012;74:874–86.

    Article  CAS  PubMed  Google Scholar 

  59. Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature. 1997;385:634–6.

    Article  CAS  PubMed  Google Scholar 

  60. Pignatelli M, Tejeda HA, Barker DJ, Bontempi L, Wu JC, Lopez A, et al. Cooperative synaptic and intrinsic plasticity in a disynaptic limbic circuit drive stress-induced anhedonia and passive coping in mice. Mol Psychiatry. 2021;26:1860–79.

    Article  PubMed  Google Scholar 

  61. Gainetdinov RR, Hoener MC, Berry MD. Trace amines and their receptors. Pharmacol Rev. 2018;70:549–620.

    Article  CAS  PubMed  Google Scholar 

  62. Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: therapeutic opportunities and challenges. Pharmacol Ther. 2017;180:161–80.

    Article  CAS  PubMed  Google Scholar 

  63. Raab S, Wang H, Uhles S, Cole N, Alvarez-Sanchez R, Kunnecke B, et al. Incretin-like effects of small molecule trace amine-associated receptor 1 agonists. Mol Metab. 2016;5:47–56.

    Article  CAS  PubMed  Google Scholar 

  64. Xu Z, Guo L, Yu J, Shen S, Wu C, Zhang W, et al. Ligand recognition and G-protein coupling of trace amine receptor TAAR1. Nature. 2023;624:672–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82071528, 81771468, 82171529, 82271569).

Author information

Authors and Affiliations

Authors

Contributions

Meng Sun: investigation, formal analysis, methodology, writing – original draft. Yue Zhang: investigation, formal analysis, methodology, writing – original draft. Xian-Qiang Zhang: investigation, formal analysis, methodology. Yanan Zhang: resources, investigation. Xiao-Dong Wang: conceptualization, investigation. Ji-Tao Li: conceptualization, investigation, supervision, writing – review & editing. Tian-Mei Si: conceptualization, funding acquisition, supervision, writing – review & editing. Yun-Ai Su: conceptualization, funding acquisition, investigation, supervision, writing – review & editing.

Corresponding authors

Correspondence to Tian-Mei Si or Yun-Ai Su.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Zhang, Y., Zhang, XQ. et al. Dopamine D1 receptor in medial prefrontal cortex mediates the effects of TAAR1 activation on chronic stress-induced cognitive and social deficits. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01866-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01866-7

Search

Quick links