Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GSK3β and UCHL3 govern RIPK4 homeostasis via deubiquitination to enhance tumor metastasis in ovarian cancer

Abstract

Receptor-interacting protein kinase 4 (RIPK4) is increasingly recognized as a pivotal player in ovarian cancer, promoting tumorigenesis and disease progression. Despite its significance, the posttranslational modifications dictating RIPK4 stability in ovarian cancer remain largely uncharted. In this study, we first established that RIPK4 levels are markedly higher in metastatic than in primary ovarian cancer tissues through single-cell sequencing. Subsequently, we identified UCHL3 as a key deubiquitinase that regulates RIPK4. We elucidate the mechanism that UCHL3 interacts with and deubiquitinates RIPK4 at the K469 site, removing the K48-linked ubiquitin chain and thus enhancing RIPK4 stabilization. Intriguingly, inhibition of UCHL3 activity using TCID leads to increased RIPK4 ubiquitination and degradation. Furthermore, we discovered that GSK3β-mediated phosphorylation of RIPK4 at Ser420 enhances its interaction with UCHL3, facilitating further deubiquitination and stabilization. Functionally, RIPK4 was found to drive the proliferation and metastasis of ovarian cancer in a UCHL3-dependent manner both in vitro and in vivo. Importantly, positive correlations between RIPK4 and UCHL3 protein expression levels were observed, with both serving as indicators of poor prognosis in ovarian cancer patients. Overall, this study uncovers a novel pathway wherein GSK3β-induced phosphorylation of RIPK4 strengthens its interaction with UCHL3, leading to increased deubiquitination and stabilization of RIPK4, thereby promoting ovarian cancer metastasis. These findings offer new insights into the molecular underpinnings of ovarian cancer and highlight potential therapeutic targets for enhancing antitumor efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RIPK4 interacts with UCHL3 in ovarian cancer.
Fig. 2: UCHL3 promotes RIPK4 stability in ovarian cancer.
Fig. 3: UCHL3 deubiquitinates RIPK4 in ovarian cancer.
Fig. 4: The enzymatic activity suppression of UCHL3 decreases the stability and deubiquitination of RIPK4 in ovarian cancer.
Fig. 5: UCHL3 participates in the development of ovarian cancer in a RIPK4-dependent manner.
Fig. 6: GSK3β-mediated phosphorylation of RIPK4 at Ser420 promotes RIPK4 interaction with UCHL3.
Fig. 7: RIPK4 protein expression positively correlates with UCHL3 and predicts a poor prognosis in ovarian cancer patients.

Similar content being viewed by others

Data availability

Some data analyzed in this study were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). The human sequence data generated in this study are not publicly available because of patient privacy requirements but are available from the corresponding author upon reasonable request.

References

  1. El-Arabey AA, Alkhalil SS, Al-Shouli ST, Awadalla ME, Alhamdi HW, Almanaa TN, et al. Revisiting macrophages in ovarian cancer microenvironment: development, function, and interaction. Med Oncol. 2023;40:142.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mei S, Chen X, Wang K, Chen Y. Tumor microenvironment in ovarian cancer peritoneal metastasis. Cancer Cell Int. 2023;23:11.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tossetta G, Inversetti A. Ovarian cancer: advances in pathophysiology and therapies. Int J Mol Sci. 2023;24:8930.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, et al. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal Transduct Target Ther. 2023;8:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther. 2023;30:529–47.

    Article  CAS  PubMed  Google Scholar 

  6. Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, et al. Protein posttranslational modifications in health and diseases: functions, regulatory mechanisms, and therapeutic implications. MedComm. 2023;4:e261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao Z, Xu H, Wei Y, Sun L, Song Y. Deubiquitylase PSMD14 inhibits autophagy to promote ovarian cancer progression via stabilization of LRPPRC. Biochim Biophys Acta Mol Basis Dis. 2023;1869:166594.

    Article  CAS  PubMed  Google Scholar 

  8. Pan S, Chen R. Pathological implication of protein post-translational modifications in cancer. Mol Aspects Med. 2022;86:101097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ren C, Han X, Lu C, Yang T, Qiao P, Sun Y, et al. Ubiquitination of NF-κB p65 by FBXW2 suppresses breast cancer stemness, tumorigenesis, and paclitaxel resistance. Cell Death Differ. 2022;29:381–92.

    Article  CAS  PubMed  Google Scholar 

  10. Xiao X, Shi J, He C, Bu X, Sun Y, Gao M, et al. ERK and USP5 govern PD-1 homeostasis via deubiquitination to modulate tumor immunotherapy. Nat Commun. 2023;14:2859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peng Y, Liu J, Inuzuka H, Wei W. Targeted protein posttranslational modifications by chemically induced proximity for cancer therapy. J Biol Chem. 2023;299:104572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li G, Xu Z, Peng J, Yan Y, Liu Y, Zhang X, et al. The RIPK family: expression profile and prognostic value in lung adenocarcinoma. Aging. 2022;14:5946–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang FY, Dai SZ, Xu WT, Xiong W, Sun Y, Huang YH, et al. 3’-epi-12β-hydroxyfroside-mediated autophagy degradation of RIPK1/RIPK3 necrosomes leads to anergy of immunogenic cell death in triple-negative breast cancer cells. Pharmacol Res. 2023;187:106613.

    Article  CAS  PubMed  Google Scholar 

  14. Liao C, Zhao YX, Han WD, Lai NY. RIPK4 is an immune regulating-associated biomarker for ovarian cancer and possesses generalization value in pan-cancer. J Immunol Res. 2022;2022:7599098.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhong GY, Tan JN, Huang J, Zhou SN, Yu JH, Zhong L, et al. LncRNA LINC01537 promotes gastric cancer metastasis and tumorigenesis by stabilizing RIPK4 to activate NF-κB signaling. Cancers. 2022;14:5237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jin A, Zhang L, Fang G, Chen Y. Receptor interacting protein kinase 4 promotes cell proliferation, migration, and invasion in ovarian cancer via targeting protein kinase C delta. Drug Dev Res. 2022;83:407–15.

    Article  CAS  PubMed  Google Scholar 

  17. Yan Y, Gauthier MA, Malik A, Fotiadou I, Ostrovski M, Dervovic D, et al. The NOTCH-RIPK4-IRF6-ELOVL4 axis suppresses squamous cell carcinoma. Cancers. 2023;15:737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pan WY, Zeng JH, Wen DY, Wang JY, Wang PP, Chen G, et al. Oncogenic value of microRNA-15b-5p in hepatocellular carcinoma and a bioinformatics investigation. Oncol Lett. 2019;17:1695–713.

    CAS  PubMed  Google Scholar 

  19. Cai L, Ye L, Hu X, He W, Zhuang D, Guo Q, et al. MicroRNA miR-330-3p suppresses the progression of ovarian cancer by targeting RIPK4. Bioengineered. 2021;12:440–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou QQ, Xiao HT, Yang F, Wang YD, Li P, Zheng ZG. Advancing targeted protein degradation for metabolic diseases therapy. Pharmacol Res. 2023;188:106627.

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura N. Ubiquitin system. Int J Mol Sci. 2018;19:1080.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ren Y, Feng M, Hao X, Liu X, Li J, Li P, et al. USP48 stabilizes gasdermin e to promote pyroptosis in cancer. Cancer Res. 2023;83:1074–93.

    Article  CAS  PubMed  Google Scholar 

  23. Tang J, Yang Q, Mao C, Xiao D, Liu S, Xiao L, et al. The deubiquitinating enzyme UCHL3 promotes anaplastic thyroid cancer progression and metastasis through Hippo signaling pathway. Cell Death Differ. 2023;30:1247–59.

    Article  CAS  PubMed  Google Scholar 

  24. Ouyang L, Yan B, Liu Y, Mao C, Wang M, Liu N, et al. The deubiquitylase UCHL3 maintains cancer stem-like properties by stabilizing the aryl hydrocarbon receptor. Signal Transduct Target Ther. 2020;5:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barbour H, Nkwe NS, Estavoyer B, Messmer C, Gushul-Leclaire M, Villot R, et al. An inventory of crosstalk between ubiquitination and other post-translational modifications in orchestrating cellular processes. iScience. 2023;26:106276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu L, Liu M, Tang B, Li Q, Pan BS, Xu C, et al. Posttranslational regulation of liver kinase B1 in human cancer. J Biol Chem. 2023;299:104570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khilar P, Sruthi KK, Parveen SMA, Natani S, Jadav SS, Ummanni R. AMPK targets a proto-oncogene TPD52 (isoform 3) expression and its interaction with LKB1 suppress AMPK-GSK3β signaling axis in prostate cancer. J Cell Commun Signal. 2023;17:957–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yi Z, Pu Y, Gou R, Chen Y, Ren X, Liu W, et al. Silencing of RIPK4 inhibits epithelial‑mesenchymal transition by inactivating the Wnt/β‑catenin signaling pathway in osteosarcoma. Mol Med Rep. 2020;21:1154–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu S, He L, Sheng C, Su R, Wu X, Sun Y, et al. Overexpression of RIPK4 predicts poor prognosis and promotes metastasis in ovarian cancer. BioMed Res Int. 2021;2021:6622439.

    PubMed  PubMed Central  Google Scholar 

  30. Ren Y, Yu B, Zhou L, Wang F, Wang Y. Structural Insights into the phosphorylation-enhanced deubiquitinating activity of UCHL3 and ubiquitin chain cleavage preference analysis. Int J Mol Sci. 2022;23:10789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Y, Liu JB, Liu J, Liu M, Liu HL, Zhang J. UCHL3 promotes cervical cancer development and metastasis by stabilizing NRF2 via deubiquitination. Biochem Biophys Res Commun. 2023;641:132–8.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang MH, Zhang HH, Du XH, Gao J, Li C, Shi HR, et al. UCHL3 promotes ovarian cancer progression by stabilizing TRAF2 to activate the NF-κB pathway. Oncogene. 2020;39:322–33.

    Article  CAS  PubMed  Google Scholar 

  33. Luo K, Li L, Li Y, Wu C, Yin Y, Chen Y, et al. A phosphorylation-deubiquitination cascade regulates the BRCA2-RAD51 axis in homologous recombination. Genes Dev. 2016;30:2581–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu L, Cai L, Liu C, Yu S, Li B, Pan L, et al. Construction and validation of a novel glycometabolism-related gene signature predicting survival in patients with ovarian cancer. Front Genetics. 2020;11:585259.

    Article  CAS  Google Scholar 

  35. Guo Y, Zeng H, Chang X, Wang C, Cui H. Additional dexamethasone in chemotherapies with carboplatin and paclitaxel could reduce the impaired glycometabolism in rat models. BMC Cancer. 2018;18:81.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fan Y, Hu D, Li D, Ma C, Tang Y, Tao Q, et al. UCHL3 promotes aerobic glycolysis of pancreatic cancer through upregulating LDHA expression. Clin Transl Oncol. 2021;23:1637–45.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Luo M, Wang F, Tong Y, Li L, Shu Y, et al. AMPK induces degradation of the transcriptional repressor PROX1 impairing branched amino acid metabolism and tumourigenesis. Nat Commun. 2022;13:7215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu H, Shamanna RA, de Freitas JK, Okur M, Khadka P, Kulikowicz T, et al. Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair. Nat Commun. 2017;8:2039.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Khan MA, Tania M. Cordycepin and kinase inhibition in cancer. Drug Discov Today. 2023;28:103481.

    Article  CAS  PubMed  Google Scholar 

  40. Li M, Gao F, Li X, Gan Y, Han S, Yu X, et al. Stabilization of MCL-1 by E3 ligase TRAF4 confers radioresistance. Cell Death Dis. 2022;13:1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Y, Chen S, Peng C. GSK-3β phosphorylation of DHX33 leads to its ubiquitination mediated protein degradation. Cell Signal. 2023;101:110526.

    Article  CAS  PubMed  Google Scholar 

  42. Lee P, Jiang S, Li Y, Yue J, Gou X, Chen SY, et al. Phosphorylation of Pkp1 by RIPK4 regulates epidermal differentiation and skin tumorigenesis. EMBO J. 2017;36:1963–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang X, McGann JC, Liu BY, Hannoush RN, Lill JR, Pham V, et al. Phosphorylation of Dishevelled by protein kinase RIPK4 regulates Wnt signaling. Science. 2013;339:1441–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pu T, Liu Y, Pei Y, Peng J, Wang Z, Du M, et al. NIR-II fluorescence imaging for the detection and resection of cancerous foci and lymph nodes in early-stage orthotopic and advanced-stage metastatic ovarian cancer models. ACS Appl Mater Interfaces. 2023;15:32226–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee JH, Park SA, Park IG, Yoon BK, Lee JS, Lee JM. Stem cell properties of gastric cancer stem-like cells under stress conditions are regulated via the c-Fos/UCH-L3/β-catenin axis. Mol Cells. 2023;46:476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee JE, Lim YH, Kim JH. UCH-L1 and UCH-L3 regulate the cancer stem cell-like properties through PI3K/Akt signaling pathway in prostate cancer cells. Anim Cells Syst. 2021;25:312–22.

    Article  CAS  Google Scholar 

  47. Liu J, Zhang Y, Zeng Q, Zeng H, Liu X, Wu P, et al. Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes. Sci Adv. 2019;5:eaaw6499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number: 81872430), the Fund of the China Postdoctoral Science Foundation (Nos. 2019T120281 and 2019M661304), the Heilongjiang Province Postdoctoral Science Foundation (No. LBH-Z18109), Beijing Kanghua Traditional Chinese Medicine, the Western Medicine Development Foundation (No. KH-2021-LQJJ-008) and the Clinical Key Specialty Fund of Anhui Province (No. 2022sjlczdzk).

Author information

Authors and Affiliations

Authors

Contributions

Bairong Xia and Jiming Chen contributed to the project design. Bairong Xia provided financial support. Wulin Shan and Wenju Peng performed the majority of the experiments. Wulin Shan, Wenju Peng, and Yao Chen analyzed the data. Wulin Shan wrote this manuscript. Yuan Tian, Wei Shen, Xu Huang, Xiaoyu Li, and Yingyu Dou assisted with the collection and analysis of data from clinical samples. All authors have read and edited the paper.

Corresponding authors

Correspondence to Jiming Chen or Bairong Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study involving human participants and animals was reviewed and approved by the Ethics Committee of the First Affiliated Hospital of USTC. Written informed consent was obtained from all patients.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, W., Peng, W., Chen, Y. et al. GSK3β and UCHL3 govern RIPK4 homeostasis via deubiquitination to enhance tumor metastasis in ovarian cancer. Oncogene (2024). https://doi.org/10.1038/s41388-024-03040-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03040-1

Search

Quick links