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Acidovorax temperans skews neutrophil maturation and
polarizes Th17 cells to promote lung adenocarcinoma
development
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Change within the intratumoral microbiome is a common feature in lung and other cancers and may influence inflammation and
immunity in the tumor microenvironment, affecting growth and metastases. We previously characterized the lung cancer
microbiome in patients and identified Acidovorax temperans as enriched in tumors. Here, we instilled A. temperans in an animal
model driven by mutant K-ras and Tp53. This revealed A. temperans accelerates tumor development and burden through infiltration
of proinflammatory cells. Neutrophils exposed to A. temperans displayed a mature, pro-tumorigenic phenotype with increased
cytokine signaling, with a global shift away from IL-1β signaling. Neutrophil to monocyte and macrophage signaling upregulated
MHC II to activate CD4+ T cells, polarizing them to an IL-17A+ phenotype detectable in CD4+ and γδ populations (T17). These T17
cells shared a common gene expression program predictive of poor survival in human LUAD. These data indicate bacterial exposure
promotes tumor growth by modulating inflammation.
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INTRODUCTION
Lung cancer is the leading cause of cancer-specific death in the
USA and worldwide [1]. Poor patient outcome is partially due to an
inability to predict those patients who are likely to recur [1, 2], thus
the identification and development of novel biomarkers is critical.
Tobacco smoking is the predominant risk factor for lung cancer,
and directly induces tumorigenesis through multiple paths,
including carcinogenic metabolites, oxidative stress, and inflam-
mation [3, 4].
Initial immune response to tobacco smoke is driven by IKKβ/NF-

κB signaling in macrophages and an increase in proinflammatory
cytokines such as IL-1β and IL-6 [5]. Later stage responses see an
influx of dendritic cells, neutrophils, and CD4+ T-cells [6]. In
addition to tobacco smoking, exposure to pathogens is also
believed to play a proinflammatory role by creating a local
environment primed for oncogenesis. Infection with Mycobacter-
ium tuberculosis has been linked to an increased risk for lung
cancer development [7–9], possibly through increased infiltration
of proinflammatory cells such as neutrophils [10].
Recently, the native microbiota was identified as a key regulator

of immune function in an autochthonous mouse model of lung
adenocarcinoma (LUAD). Mice kept in specific pathogen-free (SPF)
conditions developed more and larger tumors compared to those
kept in germ-free (GF) conditions. The presence of bacteria
resulted in a proinflammatory microenvironment, characterized by

recruitment of IL-1β-secreting alveolar macrophages, which in
turn activated IL-17-secreting γδ T cells, finally recruiting large
numbers of neutrophils to the tumor, indicating a role for bacteria
in tumor growth [11]. In lung cancer patients, lower airway
microbes were associated with infiltration of TH17 cells and
neutrophils [12]. These results suggest an important proinflam-
matory role for the microbiome in the development of lung
cancer.
Our group recently showed that the lung microbiome under-

goes dysbiosis in cancer patients [13]. We identified the Gram-
negative Acidovorax genus as differentially abundant between
normal and tumor tissue as well as between lung adenocarcinoma
and squamous cell carcinoma. Furthermore, Acidovorax abun-
dance was linked to smoking status and TP53 mutations [13],
supported by the detection of Acidovorax in tobacco cigarettes
[14]. Full-length 16S rRNA gene sequencing as well as fluorescence
in situ hybridization identified Acidovorax temperans in patient
tumors. Our findings were later confirmed by multiple studies,
which detected Acidovorax 16S signal in both tumor tissue and
patient sputum [15–18].
A central question that has emerged from these sequencing-

based studies of the microbiome is whether dysbiosis plays a
causative or correlative role in tumorigenesis, i.e., is the micro-
biome a driver or passenger microenvironmental factor? The Jacks
lab [11] began to address this question by linking commensal
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bacteria, inflammation, and LUAD growth. However, the role
dysbiosis may play in promoting tumorigenesis is largely
unknown. To answer this question, we repeatedly instilled A.
temperans as a model for dysbiosis into an autochthonous mouse
model of LUAD driven by K-ras and Tp53 mutations to mimic the
effects of chronic smoking. We found a driver role for A. temperans
in tumor growth whereby bacterial instillation increased tumor
growth through inflammation, primarily driven by neutrophils,
macrophages, and CD4+ T cells. This proinflammatory response
suggests bacterial exposure in the presence of driver mutations in
epithelial cells is sufficient to promote a tumorigenic
microenvironment.

RESULTS
Acidovorax temperans exposure accelerates tumor
development in an autochthonous LUAD mouse model
Previous research developed a mutant K-ras and Tp53-driven
LUAD mouse model (KP) under the Cre-lox system, resulting in
endogenous tumor development reflective of human LUAD
[19, 20]. Our group identified Acidovorax temperans as enriched
in lung cancer which led us to hypothesize that A. temperans may
play a functional role in lung cancer development [13]. To
determine if repeated bacterial exposure, as experienced in
chronic tobacco smoking, would result in increased tumor growth,
we administrated six biweekly intranasal instillations of PBS (sham)
or A. temperans in KP mice following Ad-cre instillation (Fig. 1A).
Using non-invasive magnetic resonance imaging (MRI), we

measured tumor development at 9- and 13-weeks post instillation
(p.i.) of Ad-cre and then sacrificed mice at 14 weeks. We found
that at 9 weeks p.i., tumor nodules were only present in A.
temperans mice (Supplementary Fig. S1A), therefore we focused
on the tumor state at 13 weeks p.i. when tumors were visible in
both groups. A. temperans instilled mice had visibly larger nodules
compared to those instilled with sham by MRI and quantification
demonstrated an increase in tumor volume (Fig. 1B, C). Consistent
with these results, total lung weight was also increased in A.
temperans mice (Fig. 1D). Tumor area as determined by H&E
histology was significantly increased and more high-grade lesions
were found in the A. temperans mice (Fig. 1E, F, Supplementary
Fig. S1B). Taken together, these results revealed that repeated
exposure to A. temperans could accelerate lung tumor develop-
ment in the presence of oncogenic K-ras and Tp53 mutations.
We next asked if the accelerated tumor growth we observed

could result from A. temperans persistence in lungs. We instilled
sham or A. temperans into mice and homogenized lung tissue at
Days 1, 5, and 9 post bacterial instillation for colony plating and
enumeration, which revealed a large number of colonies in A.
temperans mice on Day 1 only (Supplementary Fig. S1C). In contrast,
bacterial colony number was comparable between sham mice at
each time point and between A. temperans mice on Days 5 and 9.
We identified a total of seven genera, dominated by Lactobacillus
and Streptococcus spp., while Acidovorax colonies were only found in
the A. temperans mice, and only on Day 1 post instillation
(Supplementary Fig. S1D, E). These results indicate A. temperans is
short-lived in the lungs and is unlikely to colonize this tissue.

Immune cell infiltration within the tumor microenvironment is
altered by A. temperans
To identify possible mechanisms of accelerated tumor develop-
ment in A. temperans instilled mice, we collected lung tissues from
mice at 10 and 14 weeks p.i. and performed bulk RNA-sequencing
(Fig. 1A). Pathway enrichment using both GSEA and IPA platforms
indicated most pathways upregulated in A. temperans mice,
regardless of timepoint, were related to immune function (Fig. 2A).
We then used xCell to deconvolute the RNA-sequencing data and
predict immune cell infiltration in these mice [21]. These results
showed that sham and A. temperans instilled mice clustered

separately, regardless of timepoint (Fig. 2B). Overall, we found
proinflammatory cells such as macrophages, dendritic cells,
neutrophils, and plasma cells highly enriched in A. temperans
mice, with effector CD4+ T cells and myeloid cells higher at
10 weeks compared to 14 weeks (Fig. 2C). These results suggest
that repeated A. temperans instillation alters the immune
compartment of the tumor microenvironment, dramatically
increasing the number of proinflammatory cells.
Previous studies have demonstrated an important role for a

proinflammatory tumor microenvironment in KP LUAD develop-
ment, with dendritic cells [22], macrophages [23], neutrophils
[24–27], and T cells [11, 28] all implicated in the etiology of this
animal model. Considering the overlap of these cell types with
those involved in bacterial response, supported by their enrich-
ment in A. temperans mice in our RNA-seq results, we
hypothesized that bacterial exposure may accelerate tumor
growth by altering the immune microenvironment.
To test this hypothesis, we dissociated lung tissue from four

sham and four A. temperans instilled KP mice and isolated the
CD45+ fraction by FACS (Fig. 1A). We then performed droplet-
capture single cell RNA-sequencing (scRNA-seq), which returned
25,477 total CD45+ cells after filtering. These cells divided into 11
major cell types: monocytes, macrophages, monocyte-derived
dendritic cells (MoDC), alveolar macrophages (AMs), conventional
dendritic cells (cDC), plasmacytoid dendritic cells (pDC), neutro-
phils, B cells, plasma cells, NK cells, and T cells (Fig. 3A). Cell types
largely overlapped between sham and A. temperans mice,
although cell proportions showed largest relative shifts from
monocyte-high in sham to increased macrophages, AMs, neu-
trophils, and T cells in A. temperans mice (Fig. 3A, B). We identified
these clusters through three methods, by comparison to the
ImmGen database (Fig. 3C) [29], canonical gene markers (Fig. 3D),
and top differentially expressed genes (Fig. 3E, Supplementary
Table S1). Collectively, these results demonstrate A. temperans
alters the immune compartment of the tumor microenvironment
in KP mice.

Lung macrophages upregulate MHC class II in response to A.
temperans
Myeloid cells are the first cells to respond to bacterial lung
infections and often secrete proinflammatory cytokines linked to
tumor development, leading us to first characterize this compart-
ment. We identified 13 subclusters within the scRNA-seq dataset
corresponding to monocyte, macrophages, and dendritic cells
(MoMaDCs) (Fig. 4A, B). Overall, we identified two clusters of naïve
monocytes (Cd14+, Fcgr3-), three activated monocyte clusters (Act
Mono; Cd14+, Fcgr3+), one cycling monocyte cluster (Mki67+,
Stmn1+, Top2a+), three macrophage clusters (Cd68+), and four
DC clusters (Syngr2+) (Fig. 4C, Supplemental Table S3). Within the
macrophages, we identified two clusters of tumor-associated
macrophages (TAMs; Fcgr2b+, Ccl4+, Trem2+) [30] and one
enriched in complement genes (C4b+, Cfp+, C1qb+). Within the
DCs, we identified MoDCs (Ccl5+, Ccr7+, Fscn1+), conventional
DCs clusters cDC1 (Clec9a+, Itgae+, Xcr1+) [31] and cDC2 (Mgl2+,
Irf4+), and plasmacytoid DCs (Bst2+, Pacsin1+, Siglech+) (Fig. 3C,
Supplementary Table S2) [32]. Cell type identification was
confirmed by comparison to the ImmGen database (Fig. 4D). We
then asked if developmental trajectory followed the conventional
route from circulating monocytes to macrophages and DCs. First
removing the cDC and pDC clusters as these cell types are not
monocyte derived, this analysis revealed that the TAMs and
MoDCs were the latest in pseudotime (Fig. 4E, F).
Macrophages have traditionally been classified as M1 or M2,

with classically activated M1 macrophages inducing inflammation
against pathogens and tumor cells while M2 macrophages are
immunosuppressive. Neither TAM cluster showed expression of
M1 or M2 macrophage markers (Supplementary Fig. S2A). To
better understand differences in their function, we examined
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changes in TAM gene expression with single-sample gene set
enrichment analysis (ssGSEA) [33]. These clusters were differen-
tiated by cholesterol esterification upregulation in TAM-1 in both
treatment groups while TNF signaling was specifically upregulated
in TAM-1 in response to A. temperans (Fig. 4G). Both TAM-1 and
TAM-2 clusters were highly enriched for both MHC class I and II
antigen presentation in response to A. temperans instillation. To
determine if MHC upregulation was consistent among monocytes
and DCs, we calculated signature scores for all MHC class I and II
genes. This revealed A. temperans caused upregulation of MHC I in

macrophages and DCs, but only macrophages displayed consis-
tent upregulation of MHC II, with TAM-2 cells having the greatest
relative increase (Fig. 4H, Supplementary Fig. S2B, C). Similarly,
analysis of the alveolar macrophage (AM) compartment revealed
low expression of M1/M2 genes while MHC I and II were both
broadly upregulated across AMs in response to A. temperans
(Supplementary Fig. S3, Supplementary Table S3). Together, these
results indicate that bacterial exposure induces a broad MHC II
response across lung macrophages, potentially contributing to
increased tumor growth through CD4+ T cell activation.
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Fig. 1 Acidovorax temperans accelerates tumor growth in a mouse model of lung adenocarcinoma. A Experimental timeline including
bacterial dosage schedule. B MRI images of sham (1X PBS) (top) and A. temperans (bottom) instilled mice at 13 weeks post Adcre. C MRI
quantification of tumor volume in sham (n= 14) and A. temperans (n= 13) instilled mice. D Quantification of lung weight in sham (n= 8) and
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****p < 0.0001.
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A. temperans increases tumor-associated neutrophils which
express antimicrobial gene programs
Neutrophils are the most abundant immune cell type in human
NSCLC and KP mice [26, 34] and have dual function in cancer
development and infection response, particularly secretion of

proinflammatory cytokines, ROS production, and immunosuppres-
sion [35]. These factors implicate neutrophils as essential
mediators of early tumor development; therefore, we asked how
A. temperans altered expression and function of neutrophils in
KP mice.
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We identified four clusters of neutrophils from the scRNA-seq
data, with sham mice having greater proportions of clusters C1
and C2 while A. temperans instilled mice greatly increased the cell
numbers in clusters C0 and C3 (Fig. 5A, B). We then confirmed an
increase in total neutrophils in A. temperans instilled mice by
immunohistochemistry staining of Ly-6G (Fig. 5C). Markers
associated with circulating neutrophils (Sellhi, CD62L; Cxcr4lo) were
higher in clusters C1 and C2 while markers linked to increased
effector function (Icam1), immunosuppression (Cd274+, PD-L1),
and tumor-promotion (Siglecf) were higher in clusters C0 and C3;
these expression patterns generally corresponded with treatment
group (Fig. 5D, Supplementary Table S4) [36, 37]. To verify this
change in marker gene expression from control to bacterial
exposure, we performed trajectory analysis on the scRNA-seq
clusters. This revealed C1 was earliest and C3 latest in pseudotime
(Fig. 5E), consistent with expression of these marker genes.
To further understand transcriptional differences between sham

and A. temperans-associated neutrophils, we performed ssGSEA,
which suggested C2 represented the most immature cell state,
with high enrichment scores for cell proliferation in bone marrow,
immature neutrophils, and cholesterol catabolism, important for
neutrophil development and release from the bone marrow (Fig.
5F) [38]. C1 pathways were enriched for neutrophil extravasation
while activated, effector functions such migration, chemotaxis,
and bacterial response and killing, were primarily associated with
C0 and C3, underlined by an LPS response which activated
cytokine production.
We then asked if these changes reflected gene expression

profiles of immunosuppressive neutrophils in cancer. Tumor-
associated neutrophils (TANs) are required for tumor progression
and metastasis [39], and comparison of a TAN gene signature
revealed C3 had the highest expression of this signature (Fig. 5G)
[40]. Collectively, these results demonstrate that dysbiosis
response is a key programming event for tumor-associated
neutrophils, suggesting that these neutrophils, while being
responsible for clearing bacteria from the lungs, alter the tumor
microenvironment.

A. temperans robustly induces TH17 polarization
Having demonstrated large proinflammatory changes in the
myeloid compartment driven by MHC upregulation in MoMaDCs,
we then examined if these changes were reflected in T cells, as
well. We identified a total of 12T cell types and sham mice had
higher proportions of naïve T cells while A. temperans mice
showed greater CD4+ effector populations (Fig. 6A, B, Supple-
mentary Table S5), which we confirmed by immunofluorescence
(Fig. 6C). These effector populations included follicular helper
T cells (Tfh; Cd200+, Izumo1r+, Slamf6+) [41], Tregs (Foxp3+,
Ikzf2+, Ctla4+), Th17 (Il17a+, Tmem176a+, Tmem176b+) [42], and
Th1 (Ccr2+, Ifng+). We found three clusters of cells which did not
express either Cd4 or Cd8a (Fig. 6D), which corresponded to γδ
T cells (Tcrg-C1+, Trdc+), double negative (DN) naïve (Ccr7+,
Lef1+, Sell+, Tcf7+), and a DN Treg-like population (Areg+,
Gata3+, Il1rl1+) [43].
T cells from A. temperans mice also showed greater expression

of tissue residency markers Cxcr6 and Itgae (CD103) in CD4+ and
CD8+ T cells (Fig. 6E, F). As tissue residency is associated with

effector function, we then asked if these effector CD4+ cells
represented a terminal cell state. Trajectory analysis which
revealed naïve CD8 and DN cells were earliest in pseudotime,
while Th1 and Th17 cells were latest (Fig. 6G – I). The similarity of
marker genes between the Th1 and Th17 cells, combined with
high expression of Cxcr6 in Th1 and Th17 cells, suggested that
effector CD4+ T cells acquire a tissue residency phenotype prior to
polarization. In support of this hypothesis, A. temperans T cells
were consistently later in pseudotime than sham (Fig. 6H),
suggesting that bacterial exposure is a key factor for establishing
CD4+ T cell lung residency and subsequent TH1/TH17 polarization.

A. temperans induces specific IL-17 and broad IFN-γ response
in T cells
Previous data examining murine colonic effector T cells suggested
that T cell phenotype was shaped by response to specific
pathogens [44]. We asked if the T cell polarization induced by A.
temperans was specific to this species or was consistent with more
general microbial dysbiosis. We first performed bulk TCR-seq from
lung tissues, which showed a sharp decrease in TCR diversity in A.
temperans mice (Supplementary Fig. S4A, B), due to bacterial-
driven hyperextension of specific clonotypes (Supplementary Fig.
S4C–E). We then compared bacterially induced T cell gene
signatures from mice infected with either Citrobacter rodentium
(TH17 response) or Salmonella enterica serovar Typhimurium (IFN-γ
response), both Gram-negative species [44]. Expression of the C.
rodentium signature was predominantly found in our Th1, Th17,
and γδ T clusters (Supplementary Fig. S5A, B). Although the
Salmonella Typhimurium signature was also highest in Th1 and
Th17 clusters, we observed consistently high expression through-
out our dataset, but upregulated in A. temperans mice compared
to sham overall (Supplementary Fig. S5C, D). These data suggest
that the Th17 cell cluster we observe is not specific to A.
temperans; however, the combination of general IFN-γ and specific
TH17 polarization may represent a specific inflammatory response
to this species.
Based on the widespread expression of the Salmonella

Typhimurium gene signature, we asked if both Il17a and Ifng
were upregulated in response to A. temperans. Our results showed
Il17a and its transcription factor Rorc were largely restricted to
Th17 and γδ T cells while Ifng and its transcription factor Stat4
were highly expressed in non-naïve T cells (Supplementary Fig.
S6A, B). Overall, most T cell subtypes expressed Ifng, with nearly
half of Th1 and a third of Th17 cells positive for this transcript and
expression was elevated in response to A. temperans (Supple-
mentary Fig. S6C–E). Within Th17 cells, a subpopulation was
double positive for Il17a and Ifng (Supplementary Fig. S6F, G), a
highly inflammatory cell state increased in smokers [45]. These
data suggest that A. temperans alters the immune microenviron-
ment through multiple signaling pathways which culminate in
Il17a+ /Ifng+ T cells to greatly increase inflammation.

A conserved gene signature in T17 cells is predictive of poor
survival in LUAD
In addition to Th17 cells, approximately 40% of γδ T cells also
expressed Il17a (Fig. 6D). Examining every T cell cluster revealed
that most Il17a+ cells, regardless of cell type, were from A.

Fig. 4 TAMs are expanded and upregulate MHC II in response to A. temperans. A UMAP plots of monocytes, macrophages, and dendritic
cells (MoMaDCs) cell types (left) and treatment groups (right). B Barplot of the relative abundance for each cell subtype by individual mouse
with sham (S, n= 4) or A. temperans (At, n= 4) instillation. C Dotplot of marker genes for each cell type. D Heatmap of ImmGen-based cell type
identification. Color scale indicates positive Spearman’s correlation coefficient. E, F UMAP plots of (E) trajectory analysis and (F) pseudotime
projection of monocyte-derived cells. G Single-sample GSEA (ssGSEA) heatmap of average normalized enrichment scores for both TAM
clusters divided by treatment group. H Comparison of average expression of each MHC II component gene (H2-Aa, -Ab1, -DMa, -DMb1, -DMb2,
-Eb1, -Eb2, -Oa, -Ob) by treatment for each cell type. Data presented as median value plus quartiles for boxplots, n.s. not significant, *p < 0.05,
****p < 0.0001.
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Fig. 5 Tumor-associated neutrophils are associated with increased anti-bacterial function. A UMAP plots of neutrophil clusters (left) and
treatment groups (right). B Barplot of the relative abundance for each cluster by individual mouse with sham (S, n= 4) or A. temperans (At,
n= 4) instillation. C Representative immunohistochemistry images of neutrophil populations (Ly-6G) in sham (left) and A. temperans (right)
instilled mice. Scale bar 100 µm. D Density plots of marker gene expression. E UMAP plots of trajectory analysis (top) and pseudotime (bottom)
of neutrophil clusters. F ssGSEA heatmap of average normalized enrichment scores for each neutrophil cluster. G Gene signature scores for
tumor associated neutrophils (TANs). TAN signature from accession number GSE118245 [40]. Boxplots indicate median and quartile scores.
****p < 0.0001.
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Fig. 6 T cells are terminally polarized to a Th17 phenotype. A UMAP plots of T cell subtypes (left) and treatment groups (right). B Barplot of
the relative abundance for each cell subtype by individual mouse with sham (S, n= 4) or A. temperans (At, n= 4) instillation. C Representative
immunofluorescence images of T cell populations in sham (top) and A. temperans (bottom) instilled mice. Blue DAPI, green CD3, red CD4, scale
bar 50 µm. D Dotplot of marker genes for each cell type. E Expression level of tissue residency marker genes by cell type. F Expression level of
tissue residency markers by cell type and treatment group. UMAP plots of trajectory analysis by (G) cell type and (H) treatment group. I UMAP
plots of pseudotime projection of T cells. n.s. not significant, * p < 0.05, *** p < 0.001, **** p < 0.0001.
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temperans mice (Fig. 7A). However, given the high percentage of
Il17a+ cells in Th17 and γδ T clusters, we hypothesized that gene
expression may be similar in both clusters which could then
identify a gene set important for IL-17 polarization in pan T cell
subtypes (T17). To test this, we combined these two clusters and
calculated differentially expressed genes against all other T cells.
We then calculated a T17 gene signature score from the
expression of each of the genes upregulated in both clusters.
The resulting T17 signature was highest in Th17 and γδ T cells, and
specifically upregulated in Il17a+ cells compared to Il17a- cells in
both Th17 and γδ T clusters (Fig. 7B, C, Supplementary Table S6).
Interestingly, this signature score was higher in A. temperans mice
in Th17 but not γδ T cells (Fig. 7D). We also observed upregulation
in effector CD8+ T cells from A. temperans mice, which suggests
repeated exposure to A. temperans induces a T17 polarization in
multiple T cell subtypes.

We then asked if this T17 gene signature was important in
human lung cancer. Leveraging the metatranscriptomics data
that we had previously generated using TCGA LUAD [13], we
examined the association of the T17 signature with Acidovorax
exposure in these patients. The T17 signature score was weakly,
but positively, correlated with Acidovorax abundance (Fig. 7F),
suggesting microbial dysbiosis may also influence T17 polariza-
tion in human LUAD. Next, we asked if high expression of the
T17 signature was predictive of patient survival. We stratified
patients by low or high expression of the T17 signature score in
four cohorts of LUAD patients, including TCGA. This stratification
revealed high expression of the T17 gene signature was a poor
prognostic in LUAD for overall survival (Fig. 7G). These results
suggest T17 polarization, regardless of T cell receptor subtype,
accelerates tumor development and results in worse survival in
patients.
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Cell-cell signaling switches from IL-1β driven to broad
proinflammatory activation in response to A. temperans
We then investigated cell-cell communication to determine the
potential mechanism of A. temperans-mediated LUAD progres-
sion. Examination of cytokines within all cell types revealed

immune cell-of-origin for multiple cytokines previously impli-
cated in KP mouse etiology: IL-1β (neutrophils), IL-23 (neutro-
phils), and IL-17 (T cells) (Fig. 8A). In contrast to previous results,
IL-22 was not detected, and AMs were not a major source of IL-
1β or IL-23 [11], suggesting that introduction of an external
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bacterial species dramatically alters immune cell signaling in KP
mice.
We then compared cell-cell communication by examining

combined changes in expression of ligand-receptor pairs in sham
and A. temperans mice. Examination of the total signaling strength
(combined incoming and outgoing signal) revealed a specific
increase in number of interactions among neutrophils, AMs,
macrophages, and T cells in response to A. temperans (Fig. 8B, C,
Supplementary Tables S7, S8). Sham mice were enriched for BST2,
LAIR1, FASLG, IL1B, and VEGF ligand-receptor signaling while A.
temperans mice were enriched for a MHC class I to class II switch,
CXCL, IFN type II, and CSF signaling (Supplementary Fig. S7). In-
depth analysis of key ligand-receptor pathways indicated an
increase in Csf1-Csf1r signaling between neutrophils and mono-
cytes/macrophages; Ifng/Ifngr1/2 between T cells and monocytes,
macrophages, and AMs; Cxcl2-Cxcr1/2 between neutrophils and
AMs; and a strong increase in MHC II-CD4 between macrophages,
cDC, and T cells (Fig. 8D, E). High expression of these cytokines in
A. temperans instilled mice was validated using our bulk RNA-seq
data (Supplementary Fig. S8). Il17a-Il17ra interactions were not
predicted due to their scRNA-seq expression levels below thresh-
old in sham mice which prevented fold differences from being
calculated, demonstrating specific expression in non-γδ T cells in
A. temperans mice.
Overall, these results indicate that bacterial exposure causes

massive inflammation in the KP mouse model of lung cancer, with
mature, tumor-associated neutrophils secreting Csf1 to promote
differentiation of monocytes to macrophages, which then strongly
upregulate MHC class II to stimulate T cells into T17 polarization.
This proinflammatory cell infiltration provides mechanistic insights
into how dysbiosis alters and promotes lung cancer development,
which may have implications for smoking-related tumorigenesis.

DISCUSSION
Previous studies have demonstrated lung and other cancers
feature dysbiotic microbiomes, but a central question is if this
dysbiosis contributes to tumor growth [46, 47]. We hypothesized
that changes to the microbiome in lung cancer patients likely
resulted from repeated exposures through smoking and/or oral
microaspirations [48]. To mimic these multiple exposures, we
repeatedly instilled A. temperans, which we previously identified as
associated with smoking and TP53 mutations in human lung
cancer [13], in the KP mouse model of LUAD. This revealed that A.
temperans increased tumor burden and development, partially
through large proinflammatory changes to the tumor microenvir-
onment, driven by tumor-associated neutrophils, MHC class II
expressing macrophages, and T17 cells.
Neutrophils and AMs likely form the first-line response to A.

temperans instillation and secretion of IL-1β and IL-23 from these
cells was previously found to be critical for activation of γδ T17
cells in KP mice, which then recruited additional neutrophils to the
tumor site [11]. We also found Il1b was expressed by monocytes
and macrophages but observed that the primary source of Il1b
was neutrophils themselves, which was secreted in an autocrine
loop or to cDCs in sham mice. These differences are likely directly

attributable to the instillation of A. temperans to the lung, as Jin
et al. [11] compared KP mice kept in SPF and GF conditions,
identifying γδ T17 cells as the key subpopulation driving
inflammation. In keeping both sham and A. temperans instilled
mice in SPF conditions, our data suggests that rather it is
neutrophils that are the primary drivers of inflammation following
bacterial exposure. Using an orthotopic mouse model with cancer
cells derived from KP mice, Tsay et al. [49] also found a similar
pathway in response to the oral commensal Veillonella parvula.
Following V. parvula instillation in the lungs, they reported an
increase in TH17 and γδ T17 cells which attracted large infiltration
of neutrophils. Collectively, these results indicate a key role for
bacterially induced T17 cells and neutrophils in the development
of murine LUAD.
Mature, SiglecFhigh neutrophils are characterized by a long

intratumoral half-life (3–5 days), lack of proliferation, increased
ROS production, and promotion of tumor cell proliferation [25, 36].
The source of these cells is unknown and SiglecFhigh neutrophils
are not found in the bone marrow, circulation, or spleen [36].
Instead, it is thought that these cells complete maturation in the
lungs after infiltrating the tumor site. Similarly, immature
neutrophils are found in the circulation of inflammation patients
and undergo maturation at the site of Staphylococcus aureus
infections [50, 51]. Siglecf expression was increased in response to
A. temperans instillation and associated with strong immune
response gene expression, including LPS response and IL-17
signaling. Our data suggest repeated exposure to even transient
bacterial exposure recruits immature neutrophils to the lung
where they undergo localized maturation and persistence for
tumor promotion, although further studies are needed to test this
hypothesis.
Our data have several aspects that are directly relatable to

human lung cancer. First, we previously identified Acidovorax spp.
enriched in smokers and hypothesized that tobacco smoke was a
possible means for introducing Acidovorax into the lungs [13].
Smoking gradually reduces epithelial barrier function, potentially
allowing bacteria such as Acidovorax direct access to tumors [52].
Acidovorax spp. have been detected in cigarettes and possess
genes for catabolism of smoking-associated hydrocarbons [14, 53].
Smoking also results in a similar inflammatory pathway to what
we identified in A. temperans mice, potentially a response to the
large amounts of LPS contained in cigarettes [5, 6, 54, 55]. LPS by
itself is capable of accelerating lung cancer growth in vivo,
partially through macrophage infiltration and activation of NF-κB
and STAT3 signaling [56], providing an additional route for
smoking-induced oncogenesis. Second, neutrophils are the most
abundant immune cell found in human lung cancer and high
infiltration is generally associated with both poor prognosis and
resistance to various therapies [34, 50, 57]. Tumor-associated
neutrophils, characterized by an activated phenotype of CD62Llow

(SELL)/CD54high (ICAM1) (comparable to our scRNA-seq clusters C0
and C3), have high rates of phagocytosis and ROS production, and
can directly induce cytokine production in activated T cells [58],
which our data suggests could occur through either CD80 or IL-23
expressed by the neutrophils. Third, we identified a gene
signature suggestive of pan T17 polarization in response to

Fig. 8 Cell-cell communication demonstrates A. temperans induces robust signaling between neutrophils, macrophages, and T cells.
A Dotplot of cytokine expression by cell type. B Heatmap depicting differential interactions as calculated by expression of ligand in outgoing
cell type and its cognate receptor in the incoming cell type, with total number (left) and interaction strength (right). Cell-cell interactions
enriched in sham mice are indicated by blue and those enriched in A. temperans mice indicated by pink. C Cross-referenced incoming and
outgoing interaction strength for each cell type in sham (left) and A. temperans (right) mice. D Heatmap of overall signaling patterns by cell
signaling pathway for each cell type in sham (left) and A. temperans (right) mice. E Chord diagrams showing pathways significantly enriched in
Sham (top) and A. temperans mice (bottom). Chord width indicates aggregate expression of the ligand and receptor, arrow indicates direction
from sender to receiver population, outer rings indicate sender cell type, inner rings indicate receiver cell type, and links are colored by
interaction pairing. Individual chords are colored by secreting cell type and arrows indicate receptor cell type.
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bacterial exposure in mice that was predictive of poor prognosis in
human LUAD. T17 cells contribute to inflammation in NSCLC
patients and are a poor prognostic factor [11, 59]. TH17 and γδ T17
cells can be isolated from the blood of patients and interestingly
tumor resection reduced the number of circulating cells [60],
suggesting that an intratumoral source is responsible for inducing
polarization. Together, these factors demonstrate that a proin-
flammatory tumor microenvironment in patients is reflective of
the bacterial-associated changes we observe in KP mice.
It is important to note that our data were generated from

introduction of a single bacterial species, namely A. temperans, to
KP mice, which is unlikely to recapitulate the changes observed in
human patients and raises questions regarding optimal micro-
biome study design. Ecological overlap in the context of metabolic
operons has been suggested as a hidden driver within the gut
microbiome, where individual taxa are dispensable due to
functional redundancy, such as short-chain fatty acid production
[61, 62]. Dysbiosis in cancer focuses on wholesale changes
between non-tumor and tumor tissue and studies rarely, if ever,
describe only a handful of changes. However, functional studies of
the microbiome typically utilize one of two strategies – addition of
a single species (as in this study) or the removal of the microbiome
by antibiotics or keeping the animals in GF conditions. A hybrid
strategy, as recently described through the creation of an artificial
microbiome delivered to GF mice [63], may be the ideal
experimental design to study the role(s) of specific taxa in tumor
development in a controlled setting.
Our results demonstrate that dysbiosis of the lung microbiome

is a contributing factor in tumor development and progression, by
promoting large inflammation of the microenvironment, with
many known proinflammatory cytokines sharply upregulated in
response to A. temperans. Further studies are needed with in-
depth phenotypic profiling of neutrophil and T17 function in both
human and mouse to precisely determine their roles in develop-
ment of LUAD. Mechanistic understanding of these pathways
suggests that anti-neutrophil and IL-17A therapies represent
intriguing and promising targets for intervention and develop-
ment of targeted therapies in LUAD.

MATERIALS AND METHODS
Animal model, bacterial culture, and instillation
KrasLSL-G12D/+; Trp53LSL-R172H/+ (KP) mice were purchased from Jackson
Laboratory (Bar Harbor, ME) and housed under SPF conditions in
accordance with the approved NIH-NCI/CCR animal use protocol (# ASP-
19-334) and biosafety protocol (#19-51). For all experiments, male and
female KP mice aged 5–9 weeks old were administrated with 5×106 PFU of
Adeno-Cre-CMV virus (Viral Vector Core, University of Iowa) by intranasal
instillation. Acidovorax temperans ATCC 49666 was obtained from the ATCC
(Manassas, VA) and cultured in Nutrient Broth (BD Biosciences) at 30 °C
with 200 rpm shaking. Two weeks post Ad-cre instillation, mice then were
randomly divided to receive six biweekly intranasal instillations of either
Sham (1X PBS) or A. temperans (1 ×109 CFU) without blinding. Culture
inoculum was verified by serial dilution and plating on Nutrient Agar for
48 hours.

Magnetic resonance imaging
Tumor development was determined 9- and 13-weeks post Ad-cre
instillation by magnetic resonance imaging (MRI) with a 3.0 T clinical scanner
(Philips Intera Achieva, Best, The Netherlands). Mice were anesthetized then
individually imaged using a 40-mm diameter solenoid volume receiver coil
(Philips Research, Hamburg, Germany), with anesthesia and air temperature
maintained at 1.5–2.0% isoflurane and 34–37 °C, respectively. Multislice T2
weighted turbo spin echo sequence was applied in coronal view with
respiratory triggering to minimize motion artifacts. The whole mouse lung
was covered by an imaging slab with dimensions 38 × 28 × 16mm. The
images were acquired with a repetition time of 5333ms, echo time of 45ms,
in plane resolution of 0.188 × 0.188mm2, and a slice thickness 0.5mm. Lung
tumor burden was analyzed by manually segmentation and volume
calculation of MRI results using ITK-SNAP 3.8.0 [64, 65].

Tissue histology
Mice were sacrificed and lungs were harvested at Week 14 post Ad-cre
instillation. Lung tissues were bisected longitudinally and fixed in 10% NBF
and then embedded in parafilm. Fixed tissue was sectioned at 5 µm
thickness for hematoxylin and eosin (H&E) staining. Following staining,
whole lung tissues were scanned with Leica AT2 and all proliferative
lesions were annotated in a blinded fashion using HALO software v3.4.
Tumor area was quantified by calculating total proliferative lesion area by
total lung area. Tumor grades were modified from those used by DuPage
et al., 2009, with the following criteria. Grade 1 (hyperplasia/small
adenoma): proliferation of atypical epithelial cells along with alveoli
(adenoma) or projections of epithelial cells along bronchioles (hyperplasia).
Grade 2 (large adenoma): enlarged nuclei, prominent nucleoli, distortion of
septa, and papillary/solid/mixed pattern. Grade 3 (adenocarcinoma): grade
2 characteristics plus nuclear atypia, cellular polymorphism, and nuclear
molding. Grade 4 (invasive adenocarcinoma): grade 3 characteristics plus
desmoplasia/invasion and invasive edges bordering blood vessels/pleura.

Bacterial colony recovery
Bacteria or sham were instilled in WT C57BL/6 mice and harvested at Days 1,
5, or 9 post instillation. Lung tissues were harvested and stored immediately
after necropsy in Amies media (ThermoFisher) for bacterial preservation.
Lungs were then digested at 37 °C for 40min using the Mouse Tumor
Dissociation kit (Miltenyi Biotec), according to the manufacturer’s instructions.
Digested lung tissues were filtered with 40 µM cell strainer to obtain a single-
cell suspension. Red blood cells were lysed using RBC lysis buffer
(BioLegend), according to the manufacturer’s instruction. The remaining
cells were then lysed in 0.05% Triton X-100 for bacterial recovery. Lysate was
incubated on ice for 10min, then serially diluted, and plated in triplicates
onto TSB agar containing 5% sheep’s blood. Plates were incubated at 37 °C
for 96 h and then colonies were counted. Colony PCR was used to amplify a
~1.4 kb fragment of the 16S rDNA gene using a standard 2X Phusion PC
Master Mix (ThermoFisher), according to the manufacturer’s instructions,
using the primer pair 16S_27F: 5’-CCTACGGGNGGCWGCAG-3’ and
16S_1491R: 5’-TACGGYTACCTTGTTAYGACTT-3’. Amplicons were Sanger
sequenced using the primer 16S_EUB_R2: 5’-CTGCTGCCTCCCGTAGGAGT-3’.
Sequencing results were identified using NCBI blastn search.

Bulk cell RNA sequencing
Mice were sacrificed at Week 10 or 14 post Ad-cre instillation following MRI
tumor measurement. Lung tissues were homogenized by bead beating
and RNA was extracted using the Quick-DNA/RNA Miniprep kit (Zymo
Research), according to the manufacturer’s instructions. RNA quality was
determined by Agilent TapeStation and 1 µg of RNA from samples with RIN
value ≥ 7.0 were sent for cDNA synthesis and library preparation. Libraries
were sequenced on the DNBSeq platform with paired end reads of
2 ×100 bp. Raw reads were cleaned using the BGI pipeline SOAPnuke with
cleaned reads aligned to the mm10 genome using Bowtie2 [66].
Differential gene expression was calculated with DESeq2 and gene
ontology was conducted using GSEA and IPA [67, 68]. Immune cell
infiltration in each mouse was predicted using xCell [21].

Tissue dissociation and flow cytometry
Four mice per treatment group (sham and A. temperans) with MRI
measurement were randomly selected without sample size estimation and
sacrificed at 14 weeks post Ad-cre instillation and were perfused with
PBS+ 2mM EDTA. Lung tissues were processed as above, with single cell
suspensions were cryopreserved using 10% DMSO in FBS. Single cell
suspensions were later thawed and stained with PE-conjugated anti-CD45
antibody (BD, clone 104, 1:100) and DAPI, then sorted on a BD FACSAria
flow sorter and stored on ice.

Single cell RNA sequencing
Approximately 7000 cells per mouse were targeted for droplet capture by
10X Chromium 3’ Dual Index v3.2 kit. Capture, cDNA synthesis, and library
preparation were performed according to the manufacturer’s instructions.
Sequencing was performed on Illumina NovaSeq S3 with 10 bp indices i5
and i7, 28 bp R1, and 90 bp R2 length reads. Samples were sequenced to a
target depth of 50,000 reads per cell. Basecalling was performed using RTA
v2.4.11, demultiplexing with Bcl2fastq v2.20, and read alignment to mouse
genome version mm10, tagging, gene and transcript counting, and
clustering analysis were performed using CellRanger v6.0.2. The generated
filtered matrices were used for downstream analysis.
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Quality control and single cell data analysis
Cells with less than 100 features, more than 2800 features, or greater than
5% mitochondrial reads were excluded using Seurat v4.1.0 [69], followed
by removal of fibroblasts (n= 590), leaving a total 25,477 cells (14,506 sham
and 10,971A. temperans) with 20,737 genes detected in at least one cell.
Average features per cell was 1397 with an average UMI of 3788 per cell.
Passing cell counts were normalized and scaled, then neighbors were
clustered using the first 50 dimensions with a resolution of 0.8, resulting in
a total of 22 clusters. Cell types were manually assigned using standard
marker genes and the ImmGen database [29]. Both the slingshot (v2.2.1)
and monocle2 (v2.22.0) packages were used for trajectory and pseudotime
analysis [70, 71]. Differentially expressed genes were identified using the
Seurat FindMarkers() function and then ssGSEA was performed using the
escape v1.4.0 [33]. Cell-cell communication was predicted using CellChat
v1.1.2 [72], with the Cell-Cell Interactions and Secreted Signaling datasets
selected.

Immunostaining
For immunohistochemistry, slides were sequentially incubated in fresh
xylene, xylene:ethanol (1:1), ethanol, then transferred to cold distilled
water. Antigen retrieval (200mL 1X sodium citrate buffer pH 6) was
performed for 20min at 110 °C then slides were incubated in 1% Triton
X-100 prior to washing and peroxidase blocking for 10min (Vector
Laboratories, #SP-2001). Slides were rinsed and blocked for 45min at RT.
After washing, primary antibody (BD, #551459) was incubated overnight at
4 °C. Slides were washed and incubated with a biotinylated secondary
antibody for 30min at RT. Signal was amplified using the VECTASTAIN Elite
ABC Kit (Vector Laboratories, #PK-6100) and then developed using
ImmPACT DAB solution (Vector Laboratories, #SK-4105). Development
was stopped by washing then tissues were counter stained with Mayer’s
Hematoxylin, followed by mounting with anti-fade medium.
For immunofluorescence, fresh frozen tissues were sectioned at 5 µm

thickness and fixed with cold acetone/methanol (1:1). Tissues were washed
prior to blocking with normal goat+donkey serum in 1X PBS for 15min.
Tissues were washed and primary antibodies (CD3: BD #550277, CD4:
BioLegend #100402) were incubated overnight at 4 °C. Slides were washed
and incubated with conjugated secondary antibodies for 60min at RT.
Tissues were counterstained with DAPI for 2 min, followed by mounting
with anti-fade medium.

TCR-sequencing
Lungs were harvested at 14 weeks post Ad-cre instillation and dissociated.
DNA was extracted from lung tissue using the Quick-DNA/RNA Microprep
Plus Kit (Zymo Research) and 3 µg was sent for TCRB sequencing using
immunoSEQ (Adaptive Biotechnologies).

Survival analysis
Gene symbols for the murine T17 signature were converted to their human
orthologues using biomaRt v2.50.3 [73]. The resulting gene lists were
subsetted from expression matrices for GSE30210, GSE31210, GSE50081, and
TCGA [74–77]. Human T17 signature scores were tested in a Cox analysis and
then cutoff values for low and high expression in each cohort were separately
determined using maximally selected rank statistics within survminer v0.4.9
(https://cran.r-project.org/web/packages/survminer/index.html).

Statistical analysis
Statistical analyses of lung tumor burden and lung weight were performed
using GraphPad Prism 8. All sequencing analyses were performed in R
v4.1.0 (http://www.r-project.org/). Unless otherwise stated, the t-test was
used for comparison between two groups and the ANOVA test was used
for comparison between three or more groups. P < 0.05 was considered as
significantly different.
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