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Monitoring cerebral oxygenation of the immature brain: a
neuroprotective strategy?
Frank van Bel1 and Jonathan P. Mintzer2

Monitoring of cerebral oxygenation (rScO2) with near-infrared spectroscopy (NIRS) is a feasible noninvasive bedside technique in
the NICU. This review discusses the possible neuroprotective role of “pattern recognition” of NIRS-derived rScO2 in preterm
neonates with regard to the prevention of severe intraventricular hemorrhage and hypoxia/hyperoxia-related white matter injury.
This neuroprotective role of rScO2 monitoring is discussed as a modality to aid in the early detection of cerebral oxygenation
conditions predisposing to these complications. Practical guidelines are provided concerning management of abnormal rScO2

patterns as well as a brief discussion concerning the need for international consensus and the legal aspects associated with the
introduction of a new NICU bedside monitoring strategy.
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INTRODUCTION
Near-infrared spectroscopy (NIRS) offers the ability to noninva-
sively monitor alterations in oxygenation, oxygen extraction, and
perfusion of the immature brain.1–3 A recent study showed that
NIRS-derived regional cerebral saturation (rScO2; %), which is a
mixture of venous (∼75%), capillary (∼5%), and arterial saturation
(∼20%), correlates well with magnetic resonance imaging (MRI)-
determined cerebral oxygenation.4 Further, combining NIRS-
monitored rScO2 with simultaneous mean arterial pressure can
be used as a clinical tool to assess and trend cerebral
autoregulation in both premature and term neonates.5,6 A recent
multicenter interventional study, the SafeboosC Study, demon-
strated that cerebral oxygenation was quite stable and mostly
within the expected reference ranges (55–85%) in 166 extremely
preterm neonates during the first 72 h of postnatal life when rScO2

was monitored.7,8 Moreover, decreased hypoxia burden was
associated with a lower incidence of severe intraventricular
hemorrhage in the rScO2-monitored cohort.9 This result was
consistent with previous data demonstrating an association
between both cerebral hyperoxia and hypoxia with adverse
long-term neurodevelopmental outcome.10

Nonetheless, though commonly encountered in the research
setting, the clinical application of cerebral oxygenation monitoring
in the neonatal intensive care unit (NICU) remains highly limited.
Indeed, NIRS-based cerebral oxygenation monitoring remains at
best a “trend monitoring” technique, based on variable precision
and data averaging techniques across a range of studies.11–14

Moreover, other studies have shown differences in rScO2 based on
utilizing different NIRS devices and sensors, most likely due to
variable algorithms being employed.12,15 Finally, uncertainty
beneath which thresholds tissue oxygen utilization becomes
delivery-dependent has limited its widespread adoption.12 How-
ever, from a “trend monitoring” perspective, NIRS-derived cerebral
oxygenation may provide valuable bedside information with

implications for clinical management. If merely used for “pattern
recognition”, such monitoring may be considered a potential early
warning sign prompting further evaluation, especially if the values
of rScO2 remain outside the published reference ranges.8,15

In this review, we will focus on the potential utility of
continuous NIRS-based cerebral tissue oxygenation monitoring
as a component of a neuroprotective strategy in premature
neonates (Fig. 1). A more detailed explanation of the NIRS
monitoring technique, including its validation and general
reference ranges, is beyond the focus of this review, though it is
discussed in numerous other articles.1,2,8,11,12

CEREBRAL OXYGENATION MONITORING AND THE PRETERM
NEONATE
Periventricular–intraventricular hemorrhage (PIVH) and diffuse
white matter injury (WMI) are important contributors to adverse
neurodevelopmental outcomes among preterm neonates.16–18

The neuroprotective role of NIRS-based cerebral oxygenation
monitoring via general “pattern recognition” techniques are
detailed below. In the present review, we discuss strategies to
aid in the prevention of severe PIVH, followed by an overview of
techniques to potentially reduce the burden of cerebral hypoxia/
hyperoxia with the goal of reducing WMI in the preterm
population.

PREVENTION OF SEVERE INTRAVENTRICULAR HEMORRHAGE
The pathogenesis of PIVH, although multifactorial,18,19 is firmly
linked to immaturity of the preterm infant and more specifically to
vascular immaturity within the germinal matrix, the usual origin of
PIVH.20 Immaturity of several organ systems, in particular the
lungs, with or without inflammation, results in neonatal respiratory
distress syndrome (RDS), which facilitates important clinical
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conditions predisposing for extension of PIVH. The most important
etiologic factors for PIVH in this respect are hypercapnia, lack of
cerebral autoregulation, and apparent hypotension often resulting
in anti-hypotensive treatment. Hypercapnia-induced cerebral
hyperperfusion,18,21 a pressure-passive perfusion of the brain,22

and hypotension-induced use of inotropic agents21 are all related
to the occurrence and extension of PIVH. Monitoring rScO2

patterns can aid clinicians in identifying and potentially correcting
these conditions during earlier stages.

Hypercapnia-induced cerebral hyperperfusion
Ongoing assessment of rScO2 patterns has been shown to provide
information on hypercapnia-induced cerebral hyperperfusion.
Awareness of abnormal rScO2 trending during hypercapnia,
demonstrated in Fig. 2a, may result in earlier detection and
correction of severe hypercapnia in mechanically ventilated
infants with consequent normalization of brain perfusion and
oxygenation. Since acute increases in PaCO2, even within normal
limits, can result in increased cerebral blood flow,23 employing
tight PaCO2 limits during the first 72 postnatal hours could
conceivably improve the stability of cerebral perfusion as
indicated by a stable rScO2 within normal limits.

Pressure-passive brain perfusion
Impaired cerebral autoregulation can be recognized in rScO2

patterns which passively follow the mean arterial blood pres-
sure,5,6 as depicted in Fig. 2b. Consequently, this monitoring
technique may aid in identifying neonates particularly sensitive to
handling who may benefit from sedation to minimize swings in
cerebral perfusion in the context of impaired cerebral autoregula-
tion. In addition, among hypotensive premature neonates,
examining the relationship between blood pressure and rScO2

may allow clinicians to better select those patients who would
most benefit from inotropic support rather than relying on mean
arterial blood pressure alone (see also below).

Hypotension-induced use of inotropic agents
With regard to blood pressure management, a prior study by the
Utrecht group suggested that neonatal hypotension, defined as a
mean arterial blood pressure lower than the gestational age at
birth, is unreliable and possibly associated with overtreatment.24

Moreover, Alderliesten et al.21 reported that inotropes, such as
dopamine, can induce cerebral hyperperfusion and loss of
cerebral autoregulation among premature neonates. Figure 2c
represents a typical example. They further reported that elevated
rScO2 values, with resultant cerebral hyperperfusion and loss of
cerebral autoregulation, preceded the occurrence and in particular

the extension of already-existing PIVHs.21 The same group
reported that hypotension alone, as defined using the above
gestational age criteria, was neither related to low rScO2 values
nor to impaired neurodevelopmental outcome at 2 years of age.25

Currently, the TOHOP study, a single-center, randomized study in
the Utrecht NICU is assessing “permissive” hypotension in the
study group based on rScO2 values remaining within the normal
limits (55–85% as investigated in a prior prospective study8 in
addition to normal blood gases, urine output, and capillary refill).
Taken together, these observations may result in improved

personalization of critical care such that more appropriate, and
potentially neuroprotective, strategies may be employed where
needed. Cerebral oxygenation monitoring may set the stage for
more timely and patient-specific management, with potential
reduction in PIVH and ultimately improved neurodevelopmental
outcomes.
Table 1 summarizes the most important conditions related to

elevated rScO2 values.

PREVENTION OF WMI
WMI occurs in up to 50% of extremely and very preterm neonates
according to several recent MRI studies,26–28 with substantial
implications for neurodevelopmental outcome (25–50%) and
cerebral paresis (5–10%).29 Although antenatal WMI has been
well described due to maternal/fetal infection or fetal hypoxia18,30

and is beyond the focus of this review, postnatal cerebral
hypoxia–ischemia (HI) is also a potentially important etiologic
factor for WMI. The conditions associated with cerebral hypoper-
fusion and subsequent HI include hypocapnia;31,32 hemodynami-
cally significant patent ductus arteriosus (hsPDA);33,34 severe
anemia and/or blood loss;35–37 hypoglycemia;38 and progressive
posthemorrhagic ventricular dilatation (PHVD).35,39 Monitoring the
rScO2 patterns can potentially aid clinicians in identifying
and correcting these conditions at an early stage, with the goal
of preventing or attenuating HI and ultimately improving
outcomes.

Hypocapnia
Conversely to hypercapnia-induced cerebral hyperperfusion, acute
hypocapnia can cause sudden decreases in cerebral perfusion.23

Special attention to this phenomenon is particularly important in
mechanically ventilated infants should overventilation occur. Of
note, PaCO2 values below 30mmHg have been associated with
significant effects on cerebral perfusion40 (Fig. 3a). In a cerebral
monitoring paradigm, decreasing rScO2 to abnormally low values
in a ventilated neonate could serve as an early warning sign for
overventilation, prompting assessment of PaCO2 as a potential
etiology.

Hemodynamically significant PDA
Although management of hsPDA remains a controversial
issue,41,42 cerebral oxygenation can be impaired by an hsPDA,
with potentially severe ranging rScO2 values below 40–45%
(Fig. 3b).34 Furthermore, prolonged duration (>30–60min) of
cerebral hypoxia at these low values has been associated with
cerebral injury and/or impaired cerebral metabolism in several
experimental and clinical studies.43–46 Previous studies in extre-
mely preterm neonates have demonstrated a negative impact of
hsPDA on cerebellar growth.47,48 In a large cohort of preterm
infants with hsPDA, we previously reported that a longstanding
open ductus can affect cerebellar growth, using volume-based
measurements. This growth impairment was independently and
directly related to cerebral tissue oxygenation.34 Among pre-
mature neonates with a known hsPDA, it thus follows that rScO2

pattern monitoring, especially when demonstrating severe-range
cerebral hypoxia, may impact treatment decisions regarding the
need for PDA closure.34

Fig. 1 Representative fixation of near Infrared sensor in a preterm
infant at the parieto-frontal position of the skull (courtesy Liesbeth
Thewissen, UZ Leuven)
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Anemia
Numerous reports have demonstrated a negative association
between anemia and cerebral oxygenation,35,36 and especially at
hemoglobin values below 6mmol/L.37 These same studies have
additionally demonstrated improved cerebral and peripheral
tissue oxygenation following packed red blood cell transfusion
(Fig. 3c).49,50 Thus, proactive rScO2 monitoring may aid clinicians in
determining the transfusion needs among premature neonates
with already marginal hematocrits.

Hypoglycemia
During hypoglycemia, cerebral oxygenation increases, an insidious
sign potentially indicative of a shortage in glucose and/or other
substrates for cerebral metabolism and hence a redistribution of
blood flow to the brain to enhance oxygen delivery.38 Whether
rScO2 pattern monitoring can aid in hypoglycemia-related clinical
management is yet to be elucidated, though the noninvasive
nature of cerebral monitoring may provide value-addition at
minimal risk.

PHVD
Finally, when progressive PHVD is diagnosed, increasing pressure
exerted on the cerebral parenchyma by the expanding lateral
ventricles can negatively impact cerebral tissue perfusion.39,51

Although not much is known about the consequences on tissue
oxygenation, a recent study by Kochan et al.39 demonstrated
rScO2 often below 40%, values which have been associated with
cerebral impairment.43–46

APPLYING RSCO2 “PATTERN RECOGNITION” IN CLINICAL
PRACTICE?
As discussed above, observation of cerebral oxygenation patterns
using NIRS-derived rScO2 and timely recognition of suboptimal
patterns can potentially aid clinicians in avoiding various neonatal
conditions associated with untoward cerebral consequences.
Nurses, physician assistants, residents, and medical staff must
be instructed according to practical guidelines concerning
the interpretation of rScO2 patterns. Table 1 lists the most
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Fig. 2 a The patterns of rScO2 (in red box) and end-tidal (et) CO2 (purple: as a surrogate for arterial PaCO2) both decreasing from supranormal
values, indicating hyperoxygenation/overperfusion (rScO2: 91%) and hypercapnia (etCO2: 58mmHg), respectively, to normal values (72% and
41mmHg, respectively; orange arrows) after ventilator adjustment. Note the normal arterial pressure (MABP) and that a normal arterial
oxygen saturation (SaO2) is not indicative of normal cerebral oxygenation. Adapted from Dix et al.2 b The red box includes the pattern of
cerebral oxygenation (blue) as represented by rScO2, which passively follows mean arterial blood pressure (MABP; red) in a girl born at 26 0/
7 weeks on postnatal day 1, strongly suggesting lack of cerebral autoregulation.
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frequently occurring conditions, derived from the SafeboosC
study,52 which may impact cerebral oxygenation and perfusion
patterns. Applying rScO2 monitoring to clinical practice is
predominantly a matter of discerning which condition(s) is/are

most likely contributing to the changes in cerebral oxygen
patterns for a given neonate.
In the University Medical Center Utrecht NICU, instruction

sessions on physiologic basics and clinical use of cerebral NIRS are
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provided on a regular basis. During these sessions, “pattern
recognition” with regard to cerebral oxygenation and/or extrac-
tion are discussed in interactive sessions. Interpretation of these
patterns and possible interventional actions based on these
interpretations are embedded within practical guidelines (see
summary in Table 1) and reasonably implemented in the daily care
of very and extremely preterm neonates. An e-learning program is
available for the nurses and medical staff. All infants born at less
than 30 weeks’ gestational age undergo rScO2 monitoring from
NICU admission to 72 h of age, assuming this to be the most
vulnerable period. Following 72 postnatal hours, cerebral oxyge-
nation monitoring is continued in unstable infants remaining on
the ventilator and/or those with an hsPDA. In any neonate, rScO2

monitoring may be restarted as needed, such as in the case of
progressive PHVD. In all neonates, rScO2 monitoring is depicted in
real-time at the bedside and is collected in the electronic medical
record. Concomitant conventional monitoring is displayed along-
side rScO2 data (e.g., mean arterial pressure). Additionally, offline
analysis of rScO2 and conventional monitoring is possible using an
in-house developed database (Signalbase®).

ISSUES TO BE SOLVED
Establishing large-scale clinical application of NIRS-based cerebral
oxygenation monitoring in the NICU requires international
consensus among the neonatal community. Normative values
and expected quiescent variability remain elusive data, which are
critical to understanding cerebral oxygen utilization patterns
among preterm neonates. Moreover, how these “normal” patterns
are expected to change in response to single or multiple neonatal
conditions remains an area of significant ongoing inquiry and
controversy. In addition, though this review focuses solely on
pattern recognition with regard to cerebral oxygenation monitor-
ing, a growing body of work incorporates comparisons between
cerebral and peripheral oxygenation measures.53 Ongoing
research is required to determine how simultaneous multiregion
monitoring may further clarify individual patients’ changes in

clinical status. As we have described rScO2 effects related to
individual conditions above, an individual patient’s physiology
requires individual management, and certainly no set of cerebral
oxygenation “rules” may apply to all neonates.

LEGAL IMPLICATIONS
Also important for wide-scale utilization of rScO2 monitoring are
the challenges and legal implications behind introducing new
monitoring techniques. In a recent comprehensive review,
Andersen et al. described the potential use of NIRS-derived
monitoring of oxygenation adequacy as a factor in neonatal
management.54 While this review focuses on cerebral oxygena-
tion, peripheral forms of tissue oxygenation monitoring are also
mentioned as potential contributors to an assessment of a given
neonate’s overall physiologic oxygenation status. In addition, the
introduction of a new monitoring strategy as a standard of care
requires an eventual diminishing of equipoise concerning effects
on outcomes, along with broad acceptance among clinicians
and practitioners. At present, while rScO2 pattern monitoring
shows promise for improved individualization of neonatal
care and potentially earlier recognition of a variety of conditions
associated with cerebral impairment, whether this monitoring
ultimately impacts long-term outcomes is yet to be definitively
proven.

CONCLUSION
Ongoing assessment and “pattern recognition” of NIRS-derived
cerebral oxygen saturation (rScO2) seems a relatively simple
modality for potentially preventing or reducing the incidence of
severe PIVH and/or WMI in very and extremely preterm neonates.
International collaboration and consensus are required to increase
the utilization of this potentially neuroprotective strategy.
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