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Enhanced early prediction of clinically relevant neonatal
hyperbilirubinemia with machine learning
Imant Daunhawer1, Severin Kasser2, Gilbert Koch3, Lea Sieber2, Hatice Cakal2, Janina Tütsch2, Marc Pfister3, Sven Wellmann2,4 and
Julia E. Vogt1,5

BACKGROUND: Machine learning models may enhance the early detection of clinically relevant hyperbilirubinemia based on
patient information available in every hospital.
METHODS: We conducted a longitudinal study on preterm and term born neonates with serial measurements of total serum
bilirubin in the first two weeks of life. An ensemble, that combines a logistic regression with a random forest classifier, was trained
to discriminate between the two classes phototherapy treatment vs. no treatment.
RESULTS: Of 362 neonates included in this study, 98 had a phototherapy treatment, which our model was able to predict up to 48
h in advance with an area under the ROC-curve of 95.20%. From a set of 44 variables, including potential laboratory and clinical
confounders, a subset of just four (bilirubin, weight, gestational age, hours since birth) suffices for a strong predictive performance.
The resulting early phototherapy prediction tool (EPPT) is provided as an open web application.
CONCLUSION: Early detection of clinically relevant hyperbilirubinemia can be enhanced by the application of machine learning.
Existing guidelines can be further improved to optimize timing of bilirubin measurements to avoid toxic hyperbilirubinemia in high-
risk patients while minimizing unneeded measurements in neonates who are at low risk.
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INTRODUCTION
Neonatal jaundice due to hyperbilirubinemia is the most common
pathology in neonates and one of the major reasons for a
hospitalization in the first year of life. Almost 10% of newborn
infants develop significant hyperbilirubinemia, defined as
a bilirubin level above the 95th percentile at a given age in
hours1,2 and a substantial amount require phototherapy treat-
ment.3 Costs for national health care systems are accordingly
high,4 particularly in countries with high rates of Glucose-6-
phosphate dehydrogenase (G6PD) deficiency, an established risk
factor for neonatal jaundice.5 Not treated properly, neonatal
jaundice can cause major disability with life-long sequelae.6,7 On
the other hand, phototherapy treatments increase the likelihood
for allergic diseases in childhood as population-based studies
have shown.8–12 Thus, in the context of neonatal jaundice, both
precise patient monitoring, as well as deliberate treatment
assignment are required for neonates who are at high risk of
developing significant hyperbilirubinemia.
In 1999, Bhutani et al.1 introduced nomograms for the

assessment of neonatal hyperbilirubinemia; nomograms are
based on percentiles of bilirubin values at a given age in hours
and they are still widely used to classify neonates into risk groups.
More recent risk stratification approaches include additional
clinical factors for the prediction of neonatal hyperbilirubinemia
shortly after birth,13 before discharge,14 or following inpatient

phototherapy.15 Even though approaches for risk stratification
provide clinicians with a guideline for their assessment, these
methods are overly general, as they do not consider whether or
not an individual actually received a phototherapy treatment—a
decision that often depends on further practical considerations.
For instance, a clinician’s assessment of visible jaundice or of
the medical history of a neonate are important factors that flow
into the treatment decision; therefore, we define a case of
clinically relevant hyperbilirubinemia if a phototherapy treatment
was delivered. We aim for a more personalized prediction by
identifying neonates at risk for clinically relevant hyperbilirubine-
mia more accurately, thus preventing the development of severe
neonatal jaundice as well as overtreatment and unnecessary
hospital stays.
Several studies have addressed the early detection of hyperbi-

lirubinemia. Huang et al.16 applied a logistic regression analysis
for neonates with at least 35 weeks of gestational age (GA) and
exclusive breast-feeding to predict subsequent hyperbilirubinemia
using GA, maximal body weight loss percentage, and peak
bilirubin level during the first 72 h of life; their model achieved an
AUC of 78.8%, setting a baseline for further studies. Ferreira et al.17

demonstrated that state-of-the-art methods can be used to
improve the early detection of neonatal hyperbilirubinemia: they
compared different classification algorithms based on a dataset
of healthy term and near-term neonates of which 15.4% received
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a phototherapy; their best model, a logistic regression that was
based on 60 variables, achieved an AUC of 89%. The limitations of
their model are the impractical requirement of 60 variables and
the restriction that a phototherapy prediction is made at 24 h after
birth for all neonates. More recently, Castillo el al.13 developed a
model for the early detection of hyperbilirubinemia in healthy
term and near-term neonates younger than 24 h. Using umbilical
cord bilirubin, GA, and maternal race as predictors, their model, a
regularized logistic regression (LASSO), achieves a performance
of 89% (±3%) AUC. The limitation of their model is that it provides
only a single prediction within the first 24 h after birth, but in
clinical practice one requires a prediction with every subsequent
bilirubin measurement, most importantly before discharge. Thus,
even though the early detection of hyperbilirubinemia has been
studied, existing models are not applicable in most practical
contexts, because the models can either not be applied after every
new bilirubin measurement, or because they come with too much
overhead (e.g., requiring too many variables).
In this study, machine learning (ML) is applied to enhance the

early detection of clinically relevant hyperbilirubinemia in advance
of the first phototherapy treatment. ML shows great potential in
clinical applications18,19 and in pediatrics it has been successfully
applied for an improved early detection of late-onset neonatal
sepsis based on medical records,20 and of neonatal seizures based
on EEG data.21 Hence, the goal is to draw on the predictive power
of state-of-the-art ML methods to provide an early identification of
neonates at risk of developing clinically relevant hyperbilirubine-
mia, and thereby enhance the timing of bilirubin measurements
and of phototherapy treatment initiation in practice.

METHODS
Study patients
We performed a retrospective study of prospectively recorded
neonatal data of all neonates admitted to the University Children’s
Hospital Basel (UKBB) in 2015 and 2016 within the first week of
life and with a gestational age of more than 31 completed weeks
at birth. A second dataset was prepared for external blinded
validation based on neonates admitted to the UKBB in 2017 within
the first week of life, with a gestational age of more than 34
completed weeks at birth and a birthweight of at least 2500 g. The
study was approved by the Institutional Review Board (EKNZ:
BASEC 2018-00053). A priori exclusion criteria were: fewer than
two bilirubin measurements, major malformations requiring
operation within the first month of life, or the presence of any
genetic syndrome
The data contained 44 variables, described in the following.

Birthweight and all subsequent weight values during hospitaliza-
tion; delivery mode; sex; gestational age at birth; Apgar values at 1,
5, and 10min; arterial umbilical cord pH at birth; repeated
measurements of hemoglobin and hematocrit together with total
serum bilirubin, including sodium values; daily weight measure-
ments, enteral and parenteral feeding quantities, and type of
feeding (mother milk, formula milk, or both); maternal and
neonatal Rh and blood group and Coombs test; ethnicity;
maternal age at birth, parity, and maternal comorbidities at birth
including gestational diabetes, chorioamnionitis, and preeclamp-
sia; and presence of neonatal infection and therapy with
antibiotics, respiratory morbidity including data on respiratory
support, intensity and duration, and other comorbidities. From
the 38 variables described above, another 6 variables were
derived: ratio between bilirubin and weight, count of previous
bilirubin measurements, value of and time since the previous
bilirubin measurement (if available), relative weight change, and
an indicator for preterm neonates (i.e., GA < 35). On photothera-
pies, the data contained the onset and duration of each treatment
as well as the phototherapy initiation limit that was used.
All bilirubin measurements were performed as total bilirubin

using an ABL800 FLEX blood gas analyser (Radiometer Medical
ApS, Denmark).

Data preprocessing
Our goal is to make a prediction after each bilirubin measurement,
since, in practice, one would like to assess a neonate’s risk of
developing excessive bilirubin levels right after a new bilirubin
measurement is available. We argue that prior to the first
measurement there is insufficient information available to provide
a reasonable individual prediction. Moreover, a uniform prediction
time (e.g., making a prediction at 24 h after birth for all neonates)
is less practical from a clinical point of view than a prediction that
can be coupled with a bilirubin measurement.

Independent variables
The dataset offers a very rich collection of information about the
early state of neonates. We initially used all 44 variables—
including potential laboratory and clinical confounders—for the
predictive model, but noticed that a small subset was sufficient
for a strong predictive performance. In particular, a backward
variable selection (Figure S1 in the appendix) was employed
where in each iteration the model was re-trained, evaluated, and
the least influential variable was removed. As a result, the set of
independent variables could be reduced to a small set of variables
that should be available in every hospital: gestational age, weight,
bilirubin level, and hours since birth.

Dependent variable
Given a neonate’s gestational age, weight, bilirubin level, and time
since birth, the model predicts the probability of the neonate
receiving a phototherapy treatment within the next 48 h.
The dependent variable (target) of the predictive model is a
binary indicator that takes on a value of one if a neonate received
a phototherapy in the 48 h following a bilirubin measurement
and zero otherwise. In this definition, there are two aspects
that require further explanation: first, the decision process that
determines whether a neonate receives a phototherapy, and
second, why we chose a prediction interval of 48 h.
At the UKBB, a phototherapy treatment is administered if the

bilirubin level (μmol/L) exceeds a threshold that depends on a
neonate’s gestational age, birthweight, time since birth, and
additional neurotoxicity risk factors. This process is based on the
widely adapted AAP guidelines for phototherapy initiation22

(which derive from the Bhutani nomogram1), but is slightly
modified to account for preterm neonates by considering
birthweight in addition to the other listed factors. The complete
UKBB guidelines are summarized in Table S1 in the appendix. For
term neonates Fig. 1 illustrates the similarity between the UKBB
and AAP guidelines. In general, when a neonate receives a
phototherapy in the UKBB, in most cases it would also receive a
phototherapy according to the AAP guidelines. In the discussion
it is explained in further detail how the model can be applied with
other phototherapy initiation guidelines.
With respect to the prediction interval, we chose a window of

48 h, because from a clinical perspective it can be assumed that
a second bilirubin measurement occurs within this timeframe,
as long as the neonate is not released from hospital. In the data,
almost 95% of all consecutive bilirubin measurements are
separated by no more than 48 h (Table 1) for patients who
received a phototherapy.

Machine learning
To improve the early detection of clinically relevant hyperbilir-
ubinemia we applied both conventional as well as state-of-the-
art ML methods—algorithms that can “learn” from data to
improve their performance with respect to a particular task, which
in this case is the prediction for the need of a phototherapy
treatment.
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In particular, we compare a regularized logistic regression—
a conventional tool in the arsenal of ML methods—with a random
forest classifier23—a state-of-the-art method that performs parti-
cularly well on tabular data and does not require huge amounts
of data (compared to, for example, artificial neural networks).
The logistic regression is a gold-standard method for modeling

a binary dependent variable, and an additional L1-regularization
term allows for a convenient way of variable selection by shrinking
regression coefficients towards zero; the resulting model is called
the LASSO.24 A random forest is an ensemble of decision trees,
each of which learns to discriminate between two classes
(phototherapy vs. no phototherapy) based on a different sample
from the data. A tree is iteratively built by branching on
the variable and threshold that separates the classes best. The
separation of classes is measured by Gini impurity. For the task
of prediction, a random forest decides on the class that wins
the majority vote among the large number of built trees.
ML methods usually require the configuration of hyperpara-

meters—knobs that can be turned to adjust the learner to the
problem at hand. Hyperparameters are specific to the method
of choice: for the LASSO we have the regularization weight, while
for the random forest there are mainly the number of estimators
(i.e., the number of trees in a forest), the maximum depth of each
tree, and the maximum number of variables that are considered
in each split. With the choice of hyperparameter values it is
possible to control the tradeoff between bias and variance, i.e.,
the complexity of a model versus its generalizability. Usually, one
seeks for a model that generalizes as well as possible (strong and

stable performance on previously unseen data) and at the same
time is as simple as possible (low complexity).
The best hyperparameter setting found for the LASSO has an

inverse regularization weight of 0.3, and for the random forest we
used 300 trees, Gini impurity as a split criterion, no depth limit for
individual trees, at least two samples per split, at least one sample
per leaf, and random sampling of
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features in each tree, where
k is the total number of features in the model.
All analyses were implemented in the Python3 programming

language using models from the scikit-learn library.25 The runtime
for the models is very fast: for the whole time series of
measurements, training time lies in the range of a few seconds,
and new predictions take only a few milliseconds to compute.

Evaluation
First, the data were divided into a training and a test set using
stratified sampling to keep the balance between observations
with and without a phototherapy treatment. 70% of the data was
used for training and the remaining 30% was left untouched for
the final evaluation. It is important to note that we stratified by
patient, so that observations from the same patient are not
mingled across both training and test data.
On the training data, a 3-fold cross-validation was performed

to select the hyperparameter values of the model; that means
the training set is further divided into three disjoint chunks of
approximately equal size. With a given hyperparameter setting, the
model was trained on two chunks and evaluated on the remaining
chunk—a procedure that was repeated three times using different
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Fig. 1 Illustration of the similarity between the UKBB and AAP guidelines for term neonates. The points represent bilirubin measurements at
the corresponding time since birth for all term neonates in the data. Bilirubin measurements that were followed by a phototherapy within the
next 48 h are highlighted in red. In contrast to the AAP guidelines, the UKBB uses a stepwise function that approximates the AAP guidelines
and in addition takes into account the birthweight of neonates. The complete UKBB guidelines are listed in the appendix (Table S1)

Table 1. Statistics about the distribution of bilirubin measurements across neonates

All (n= 362) Phototherapy only (n= 98)

Average number of measurements 4.26 2.34

Average time between measurements 26.82 22.13

95% quantile of time between measurements 72.43 50.46

Average time of the first bilirubin measurement 16.56 25.05

Time is measured in hours; the time of the first measurement is relative to the birthtime
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combinations of chunks; this technique provides an estimate for
the average performance and its variance across three partitions of
the training data. Only then the performance of the model—using
the hyperparameter values that had shown the best cross-
validation performance—was validated on the test data.
Performance was measured as AUC, i.e., the area under the

receiver operator characteristic (ROC) curve, which evaluates a
model based on the true positive rate versus false positive rate
of its predictions at different threshold values. It is a default
metric for the evaluation of binary classifiers and it has been used
in related studies,13,17,26 thus allowing us to draw a direct
comparison to previous work.

RESULTS
Of the 385 neonates, we excluded 23 who received a phototherapy
prior to their first bilirubin measurement. Of the remaining 362
neonates, 98 (27.07%) were subject to at least one phototherapy
treatment during their initial hospitalization. All first photothera-
pies occur within the first week of life, on average 66 h after birth.
Table 1 summarizes the distribution of bilirubin measurements

across neonates. In total, 1543 bilirubin measurements were
available—more than four measurements per neonate on
average. The average time between bilirubin measurements is
less than 27 h, and among those who received a phototherapy,
95% of consecutive measurements were no more than 50 h apart.
Table 2 shows descriptive statistics of a selection of variables

that capture key characteristics of the sample. Notably, there is
a relatively large number of preterm neonates: 54.1% of the
sample have a gestational age (GA) of less than 37 weeks and
41.4% have a GA of less than 35 weeks. A correlation of 0.374
was found between phototherapy and a GA of less than 37 weeks.

Variable selection
Out of all 44 variables, it was observed that only a small subset
suffices to achieve a high predictive performance. Figure 2
illustrates which variables were most important for the prediction,
where importance was estimated by their relevance (i.e., feature
importance) in the random forest. We further performed a
backward variable selection (Figure S1 in the appendix) which
found that only four inputs suffice for a strong predictive
performance: GA, weight, bilirubin level, and hours since birth.
Notably, the ratio between bilirubin and weight was most
important for the phototherapy prediction, though it was closely
followed by weight and bilirubin level as individual variables,
indicating that there is a more complex underlying relationship
than a mere ratio. The LASSO identifies a similar set of variables
to be most important for the prediction (see Figure S2 in the
appendix), though with a different order of importance, suggest-
ing that the models are sensitive to different factors and that they
may complement each other when used in conjunction.

Quantitative performance
Figure 3 compares the test performance of three models: the
LASSO, the random forest, and an ensemble that takes a simple
average of the predictions from the former two models. The
ensemble (AUC of 0.952 ± 0.013) achieves the best overall
performance on the test set and has the lowest variance in the
cross-validation. The second best performing model is the LASSO
(AUC of 0.947 ± 0.015), followed by the random forest (AUC of
0.933 ± 0.019). The performance of each model on the holdout
set is reasonably close to the respective performance in the
cross-validation (see Table S2 in the appendix), suggesting that
the models did not overfit to the training data, but that they
generalized well to unseen data.
Additionally, the robustness of the models was checked in a

series of ablation experiments. It was verified that the models
perform well even if we consider only the first bilirubin
measurement (AUC of 0.939 for the ensemble as well as for the
LASSO, and 0.927 for the random forest). Further, the backward
variable selection (Figure S1 in the appendix) showed that the
model performance degrades if fewer features than the five
variables described previously are used. Finally, it was tested how
the models perform with less training data (Table S2 in the
appendix), finding that the ensemble is more stable than the
individual models when the amount of data is limited.
Surprisingly, the LASSO, being a more conventional approach,

still performed slightly better than the random forest. Further
investigation (Table S2 in the appendix) suggested that with more

Table 2. Descriptive statistics of the sample

5% Quantile 50% Quantile 95% Quantile Percentage

Gestational age (in days) 228 253 289 —

Birthweight (in grams) 1490 2605 4120 —

Age of mother (in years) 23 32 40 —

First bilirubin level (in µmol/L) 19 46 216 —

Gender (male) — — — 56.91

Preterma birth — — — 54.13

Multiple birth — — — 23.48

Quantiles are computed for continuous or integer-valued variables; percentages for dummy variables
aDefined as a gestational age of less than 37 weeks

Bilirubin to weight ratio
Bilirubin
Weight

Gestational age
Hours since birth

Hemoglobin
Fluid per kg

Previous bilirubin
Age of mother

Weight change
Arterial pH

Sodium
Preterm by age

Hematocrit (bga)
Hematocrit (lab)

CRP (lab)
Hemoglobin (lab)

Apgar (5 min)
Apgar (1 min)

Delivery mode

0.000 0.025 0.050 0.075 0.100
Feature importance

0.125 0.150

Fig. 2 A subset of 20 variables with highest feature importance. The
bar chart indicates that the predictive performance of the random
forest depends mostly on only a few variables with highest feature
importance. The order of variables remains relatively stable during
backward variable selection (Figure S1 in the appendix)

Enhanced early prediction of clinically relevant neonatal. . .
I Daunhawer et al.

125

Pediatric Research (2019) 86:122 – 127



data and a richer set of variables, the random forest would
perform at least as good as the LASSO, however, in the case of
limited data, conventional approaches remain a viable alternative
to state-of-the-art methods. Moreover, both approaches can be
combined to improve the performance over individual models.
To translate the predicted probabilities into concrete decisions,

it requires a decision threshold, i.e., a value above which a
predicted probability is interpreted as a positive prediction. We
computed the decision threshold as the value at which the F1-
score (i.e., the tradeoff between precision and recall) is maximized
in the cross-validation. A decision threshold of 0.38 was chosen,
based on which the model achieved a sensitivity of 0.781 and a
specificity of 0.920 on the test data. Note that the decision
threshold can be chosen differently based on practical considera-
tions, especially if one could assign a cost to false positives and
false negatives, respectively.

Online tool
Based on the best performing model (i.e., the ensemble) we have
implemented an online tool, the early phototherapy prediction
tool (EPPT), through which clinicians were able to experiment
directly with the model and provided feedback on the quality of
the predictions. The tool can be accessed online at https://ppt.
dmi.unibas.ch.

External blinded validation
The EPPT was further validated in an experiment for which a new
time series of bilirubin measurements (n= 187), based on n= 57
patients admitted in 2017 to the UKBB and fulfilling the above
mentioned criteria were used. This experiment was designed
to test the performance of the EPPT in a realistic setting,
where the model has no potential access to information about
upcoming phototherapies before it computes the predictions
and in which only the four values required for the EPPT were
provided.
Overall, the EPPT retained a strong predictive performance

(AUC= 0.954), which is slightly better than its performance on
the holdout set. Based on the decision threshold from above, the
early detection was successful in 5 out of 8 phototherapy cases,
for which a phototherapy was predicted on average 23 h before
the bilirubin level exceeded the critical limit of the phototherapy
initiation guidelines. A single case, whose bilirubin value was still
32 µmol/L below the phototherapy threshold of 300 µmol/L,
turned out to be a false positive.

Overall, the blinded validation confirmed in a realistic setting
that neonates at risk can be detected well in advance, which
leaves time for decisions and actions, such as closer monitoring
or later discharge.

DISCUSSION
We here present empirical evidence for an enhanced early
assessment of clinically relevant hyperbilirubinemia by leveraging
ML methods. For this, we provided a computational model for
early phototherapy prediction by applying an ensemble—
consisting of a random forest and a logistic regression—which
can detect with high AUC, sensitivity and specificity whether a
neonate will receive a phototherapy within the next 48 h after
a bilirubin measurement. The model was trained on a large
dataset containing several dozen clinical and laboratory variables
of which finally just four inputs suffice for a strong predictive
performance. Finally, the model was provided as an open web
application—the early phototherapy prediction tool—and further
validated in an external blinded validation.
Although prediction is usually the main goal of ML, this study

also shed light on the factors that influence the development of
neonatal jaundice. It was found that bilirubin, weight, gestational
age, and hours since birth are the most significant predictors in
the model; in particular, it appears that there is a complex
relationship between these factors, which is an interesting starting
point for the analysis of bilirubin kinetics.
Compared to previous research,13,16,17 the EPPT achieves a

significant performance improvement of 6 percentage-points
AUC. In addition, the EPPT has the following advantages: it can
be applied after every new bilirubin measurement (not only at a
predefined point in time), even if only a single measurement
is provided, and requires only a small set of variables that are
available in most hospitals. Consequently, the resulting model is
more generally applicable in a clinical context.
In the following, we discuss the limitations of the model and

point to opportunities for further research. First, the predictions
were limited to a 48-hour interval, which seems adequate in a
clinical context, but can be improved nevertheless. Secondly, the
outcome variable was based on the phototherapy initiation
guidelines of the UKBB, which are quite similar to the widely
adapted AAP guidelines (as illustrated in Fig. 1), but a more
generally applicable model could be trained on a dataset that
follows the AAP guidelines more precisely. For institutions that
use substantially different phototherapy initiation guidelines,
the model would first need to be re-trained with data that
contains the same set of variables (GA, weight, hours since birth,
bilirubin level, phototherapy within the next 48 h).
Finally, before integrating the EPPT into clinical decision-

making, a clinical study is needed to test the sensitivity and
specificity prospectively, and the model should be validated
before it is applied in populations that differ substantially from
the study population, for example, in populations with a high
prevalence of G6DH-deficiency27 or in extreme preterm cases.
Apart from external validation on diverse populations, interest-

ing opportunities for further research include the extension of
the model to different phototherapy initiation guidelines (in this
context, multi-task learning28 might be a promising approach),
or the prediction of not only phototherapy initiation, but also
its duration and intensity.

CONCLUSION
Undetected and untreated hyperbilirubinemia in the neonatal
period can cause major and life-long disability. Our developed
EPPT can support caregivers in bilirubin surveillance to identify
high-risk neonates up to 48 h in advance to the onset of clinically
relevant hyperbilirubinemia. The model, on which the tool is
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based, has demonstrated high sensitivity and specificity for the
early detection of hyperbilirubinemia. Its external validity was
further confirmed in a blinded validation.
More generally, we demonstrated how a personalized medicine

approach, based on state-of-the-art ML methods, allows research-
ers to create decision-support systems for early detection based
on historical information about treatment decisions.
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