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Role of zinc in neonatal growth and brain growth:

review and scoping review

Luc P. Brion', Roy Heyne' and Cheryl S. Lair?

This manuscript includes (1) a narrative review of Zinc as an essential nutrient for fetal and neonatal growth and brain growth
and development and (2) a scoping review of studies assessing the effects of Zinc supplementation on survival, growth, brain
growth, and neurodevelopment in neonates. Very preterm infants and small for gestational age infants are at risk for Zinc
deficiency. Zinc deficiency can cause several complications including periorificial lesions, delayed wound healing, hair loss,
diarrhea, immune deficiency, growth failure with stunting, and brain atrophy and dysfunction. Zinc is considered essential for
oligodendrogenesis, neurogenesis, neuronal differentiation, white matter growth, and multiple biological and physiological
roles in neurobiology. Data support the possibility that the critical period of Zinc delivery for brain growth in the mouse starts at
18 days of a 20-21-day pregnancy and extends during lactation and in human may start at 26 weeks of gestation and extend
until at least 44 weeks of postmenstrual age. Studies are needed to better elucidate Zinc requirement in extremely low
gestational age neonates to minimize morbidity, optimize growth, and brain growth, prevent periventricular leukomalacia and

optimize neurodevelopment.
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IMPACT:

® Zinc is essential for growth and brain growth and development.

® In the USA, very preterm small for gestational age infants are at risk for Zinc deficiency.

® Data support the possibility that the critical period of Zinc delivery for brain growth in the mouse starts at 18 days of a 20-21-
day pregnancy and extends during lactation and in human may start at 26 weeks' gestation and extend until at least 44 weeks

of postmenstrual age.

® Several randomized trials of Zinc supplementation in neonates have shown improvement in growth when using high enough
dose, for long duration in patients likely to or proven to have a Zinc deficiency.

® Studies are needed to better elucidate Zinc requirement in extremely low gestational age neonates to minimize morbidity,
optimize growth and brain growth, prevent periventricular leukomalacia and optimize neurodevelopment.

INTRODUCTION
Insufficient growth in preterm infants, diagnosed by excessive
postnatal decreases in Z-scores of weight, length, and fronto-
occipital circumference (FOC), but not by percentiles at 36 weeks
postmenstrual age (PMA) or discharge, is associated with
neurodevelopmental impairment." Nutritional factors for brain
development include appropriate delivery and uptake of energy,
protein, fat, carbohydrate, iron, copper (Cu), zinc (Zn), iodine,
thiamine, folate, selenium, choline, vitamins A, B, C, D, and
optimal proportions of long-chain polyunsaturated fatty acids.>*
Several studies have shown that the developing brain has critical
growth periods; however, the critical period for Zn delivery for
brain growth has not been established.*™

This manuscript includes (A) a narrative review of the role of Zn
as an essential nutrient for fetal and neonatal growth and brain
growth and development and (B) a scoping review of the effects
of Zn supplementation on survival, growth, brain growth, and
neurodevelopment in neonates.

NARRATIVE REVIEW

Zinc as an essential nutrient

Role and distribution of Zn. Zn is an essential nutrient. Zn
deficiency is an important cause of morbidity and stunting (short
length for age and sex) in developing countries worldwide.”” Zn
is one of the most important trace elements in the body as ~10%
of the proteins in the human proteome are Zn-dependent. Zn is a
component of transcription factors, structural proteins, and
enzymes including metalloproteases, nitric oxide synthase, and
superoxide dismutase.'®'? Most Zn in the body is bound to
metallothioneins (MT), a class of proteins important for metal
chelation, antioxidant protection, cellular repair processes, nutri-
tional immunity, growth, and differentiation.'® In adults, ~60% of
Zn is stored in skeletal muscle, 30% in bone, 5% in liver, and skin.'*
Zn is absorbed in the duodenum and jejunum and distributed to
all organs, tissues, fluids, and secretions.'® The two families of Zn
transporters, Zrt- and Irt-like protein (ZIP) transporters (which
increase Zn uptake into the cytoplasm) and ZnT transporters
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(which reduce cytoplasmic Zn by exporting cellular Zn or by
moving it into intracellular organelles or extracellular space) are
ubiquitous."

Assessing body Zn content. Assessing total body Zn content is
challenging because Zn is primarily intracellular.'® The Biomarkers
of Nutrition for Development (BOND) Zn Expert Panel recom-
mends three measurements for estimating Zn status: dietary Zn
intake, plasma Zn concentration, and height-for-age of growing
infants and children.'® The amount of dietary Zn intake is higher in
diets rich in meat and lower in strict vegetarian or vegan diets and
in the breast milk of women with SLC30A2/ZnT2 (ZnT transporter)
mutation.'®"" Factors affecting enteral Zn absorption include
gastrointestinal diseases, products interfering with Zn absorption
(uncooked cereals, geophagy, Cu, iron, and calcium), and
mutations of ZIP-4 (Zn transporter protein causing acrodermatitis
enteropathica).'®"" A meta-analysis in infants showed a significant
relationship between the population mean Zn serum or plasma
concentration and Zn intake.'®

Most Zn (80%) in the blood is in red blood cells (RBCs) and 87%
of RBC Zn is in carbonic anhydrase.'”””'® In serum, most Zn is
bound to albumin and alpha-2 macroglobulin, and a smaller
amount is bound to amino acids.?’ Serum Zn concentration may
decrease with hypoalbuminemia, systemic steroids, infection,
acute stress, increased nutritional intake, and growth rate and
may be elevated with hemolysis or catabolic state.?>?' Thus,
serum Zn concentration is not a gold standard to assess total body
Zn content. Potential and emerging biomarkers include hair Zn,
urinary Zn, nail Zn, neurobehavioral function, Zn-dependent
proteins, oxidative stress, inflammation, and DNA integrity, Zn
kinetics, and taste acuity.®2%%3 Zn depletion may occur with only a
minimal decrease in hair Zn concentration.??

Role of Zn in growth (Fig. 1)

Zn deficiency limits linear growth, weight gain, and lean body
mass accretion. This may be in part related to a reduction in
circulating insulin-like growth factor 1 (IGF-1) concentration.'" In a
randomized control trial (RCT) in stunted children <2 years of age,
Zn supplementation yielded catch-up growth and increased
serum concentration of IGF-1.2* However, in neonatal RCTs, Zn
supplementation may increase growth without increasing IGF-1
and there is no direct correlation between Zn-related growth
response and serum IGF-1 concentration.”>’ Zn is required for
phosphorylation of the IGF-1 receptor, which is essential for the
transduction of the effects of IGF-1. Zn is also required for the
activity of deoxythymidine kinase, which converts deoxythymidine
into deoxythymidine 5-monophosphate, a precursor of deox-
ythymidine triphosphate, which is needed for DNA, protein, and
collagen synthesis in rats."’

Zn in pregnancy and fetus

Maternal status in pregnancy. Maternal serum Zn concentration
normally decreases until 35 weeks’ gestational age (GA), due to
hemodilution, hormonal changes, increased urinary Zn excretion,
increased Zn uptake by maternal tissues, and active maternal-fetal
transfer of Zn.2® In contrast, RBC Zn concentration increases
during pregnancy in parallel with carbonic anhydrase.?®

Maternal Zn deficiency. Women with Zn deficiency have
lower serum Zn concentration compared to those without
deficiency.?® Risk factors for maternal Zn deficiency include
digestive disease, bariatric surgery, sickle cell disease, chronic
renal disease, smoking, alcoholism, and a vegetarian diet rich
in cereals and phytate.3°? Zn deficiency in pregnancy may
increase the risk for fetal malformations (e.g., neural tube
defects), intrauterine growth restriction (IUGR), and fetal
programming of cardiovascular and renal diseases in adult
life.>>73°> However, meta-analyses of RCTs have shown that, while
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Zn supplementation in pregnancy reduced by 14% the risk of
prematurity, it did not improve fetal growth.3™*° The latter
finding likely results from multi-nutrient deficiencies.?”-34°

Transplacental transport.  Zn is transferred from the mother to the
fetus by 2 mechanisms: endocytosis and saturable carrier-
facilitated transport.*'*? Zn is taken up against gradient from
maternal blood into microvillous borders of human syncytiotro-
phoblast resulting in Zn storage in the placenta (reaching a
concentration of 44 mcg g~ tissue, ~60x that in plasma), followed
by slow passive transfer either bidirectionally or preferentially
towards fetal umbilical venous (UV) cord blood.***” Adaptation of
Zn placental uptake was shown in an in vitro study of microvillous
membrane vesicles from preterm and term placentas of Brazilian
women.*® Zn uptake was higher in preterm (20-25 weeks GA) than
term (>37 weeks) vesicles. In term vesicles, Zn uptake was higher in
those from women in the lowest quartile of serum Zn concentra-
tion than in those from the highest quartile.”® Placental Zn
transport is upregulated in mice with a Zn-deficient diet, as shown
by the fact that whole-body Zn fetal uptake in mice is similar to
whether the diet in pregnancy is Zn-deficient or Zn-sufficient.*®
ZIP and ZnP transporters and MT are expressed in the placenta
in mouse, rat, and human.>>>" A RCT suggested the upregula-
tion of ZIP-4 and ZIP-8 mRNAs in the placenta of Gambian
women with unsupplemented vs. supplemented Zn.>? However,
this study was limited by a lack of assessment of maternal or
cord Zn concentration and of ZIP protein expression.>> Smoking
in pregnancy results in the upregulation of MT expression in the
placenta, which accumulates cadmium instead of Zn.>* In
summary, the placenta expresses Zn transporters, takes up Zn
from maternal blood, and transports Zn towards the fetus; these
processes appear to be upregulated in pregnancies with Zn
deficiency.

Serum Zn concentration in the umbilical cord. No study has
compared serum Zn concentration in maternal arterial blood and
uterine vein with UV and umbilical arterial (UA) blood, which
would be the comparisons of choice for analyzing uptake and
release in the feto-placental unit.>* All studies comparing maternal
to UA and UV Zn concentrations have used peripheral venous
maternal blood instead of arterial blood.>* Many studies have
shown that serum Zn UV concentration is higher than UA
concentration.”®*® However, results are inconsistent across
studies. Serum Zn concentration in UA and UV blood or both
may be affected by labor, preeclampsia, IUGR, and maternal
diabetes and obesity;>>°° no data are available in extremely low
GA neonates (ELGANSs). Cord blood Zn concentration is negatively
correlated with GA in studies with many ELGANs, especially AGA
infants.®’®? Meta-analysis showed that cord blood serum Zn
concentration is lower in small for GA (SGA) or IUGR neonates.® In
summary, cord serum Zn concentration decreases with GA and is
lower in SGA and IUGR than in AGA neonates.

Zn accretion in the fetus. Most of Zn accretion in utero occurs
during the last trimester of pregnancy; therefore, preterm infants,
especially ELGANS, are at risk for Zn deficiency. Accretion of Zn by
the human fetus during the third trimester is believed to range
between 211 and 270 mcg kg~ ' d~".5® The fetus accumulates Zn in
the liver (mostly in MT) at very high concentration, which peaks at
200-1020 mcg g’1 of wet tissue (in US, Japan, and New Zealand)
at 22-30 wks GA and later decreases to 140-380 mcg g~ ' at term
and 50-60 mcg g~ ' in infants, children, and adults.®*%® Liver
expression of MT decreases during the third trimester of pregnancy
and the first months postnatal.64 In the baboon fetus, MT
expression decreases progressiveLy in response to increasing
maternal estrogen concentration.®® It appears that MT released
from the liver may provide an endogenous source of Zn in early
postnatal life, possibly up to 2 months postnatal in preterm
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Fig. 1 Zinc role in growth and brain growth and development. Zn is the second most abundant metal in the body. Approximately 10% of
the proteins in the human proteome are Zn-dependent. Zn is primarily intracellular, where it is stored in MT and is a component of multiple
proteins. In the fetus, Zn is stored in liver MT-1, from which it can be released over the first months of postnatal life. Zn interacts with the gut
microbiome, immunity, and inflammation. In the brain, Zn has multiple roles in growth, differentiation, and repair. Zn deficiency may result
from' insufficient storage in pregnancy due to severe maternal Zn deficiency, smoking, extreme prematurity, and small size for age;
insufficient Zn intake due to low Zn concentration in breast milk due to SLC30A2/ZnT2 mutation or maternal Zn deficiency,? or decreased Zn
absorption in the duodenum and jejunum due to SLC39A4/ZIP-4 mutation leading to acrodermatitis enteropathica, or to bowel resection. Zn
deficiency may affect multiple transcription factors, storage and structural proteins, enzymes including deoxythymidine kinase, and may
decrease the serum concentration of IGF—1 and phosphorylation of the IGF—1 receptor. CA carbonic anhydrase, IGF insulin-like growth factor,
MT metallothionein, NMDA N-Methyl-p-aspartate, SLC30A2/ZnT2 mutation leading to lack of Zinc in breast milk, SLC39A4/ZIP-4 mutation
leading to acrodermatitis enteropathica, ZIC Zinc finger proteins of the cerebellum, ZIP Zrt- and Irt-like protein, Zn Zinc, ZnT zinc transporter

protein.

infants.5*%® In Brazil, where Zn deficiency is prevalent, lower
ranges of liver Zn concentration have been reported in autopsies
(30-304 mcgg ' at 26-38 weeks' gestation, 13-268 mcgg ™' at
40-41 weeks' gestation, and 3-299 mcgg ™' at <16 weeks post-
delivery).”® Smoking mothers have fetuses with lower liver MT
expression, which could be due to competition of cadmium with
Zn.”" In summary, most Zn accretion by the fetus takes place in the
third trimester. Liver Zn concentration peaks at 22-30 weeks and
presumably provides an endogenous source of Zn.

Zn in the neonatal period

Zn as an essential nutrient in neonates. There is no consensus
about Zn requirements in neonates.'? Using a factorial method
taking into account, endogenous liver Zn supply, Klein estimated
Zn requirements in preterm infants as 1.5-2 mg kg~' d™' for
those <1 kg, 1.2-1.7 mg kg~ ' d~" at 1-2 kg, and 1.0-1.3 mg kg™
d™" at 2-3 kg.®® Griffin reviewed 11 studies on Zn retention and
showed that Zn retention was significantly higher at higher Zn
intakes, and higher in formula-based diets than in human milk-
based diets.”” Zn intakes of 1.8-2.4 mg kg™' d™' (from formula-
based diets) and 2.3-2.4 mg kg~' d~' (from human milk-based
diets) were required to achieve adequate Zn retention to maintain
normal growth in preterm infants.”? Intestinal absorption of Zn in
preterm infants follows saturable kinetics similar to the adult.”® Zn
concentration in breast milk decreases over the early months
postpartum, therefore unsupplemented pooled donor breast milk
in the USA is not expected to meet Zn requirements for preterm
infants.”*~7¢ Total parenteral Zn requirement in preterm infants is
estimated as 450 mcg kg ' d~';”7 however, this may be
insufficient, especially after bowel resection and enterostomy.

Pediatric Research (2021) 89:1627 - 1640

Zn deficiency in neonates. In countries where Zn deficiency is
endemic, Zn deficiency at birth is more frequent in SGA especially
preterm neonates.”® In the US, Zn deficiency is more likely in SGA
ELGANs.”® Zn deficiency has been reported in some breastfed
neonates because of very low Zn concentration in breast milk, due
to deficiency in ZnT2 transporter.'®®®®" |n one study the
frequency of significant ZnT2 polymorphisms was 8 among 750
or 1%% Low Zn concentration in breast milk can also be
secondary to maternal Zn deficiency. In one case, Zn deficiency
was reported in a baby born to a mother with Zn deficiency with
low breast milk Zn concentration. The baby improved with enteral
Zn supplementation and maternal serum and breast milk
concentrations improved with enteral Zn supplementation 2

Postnatal Zn deficiency has multiple potential complications
including periorificial lesions, delayed wound healing, hair loss,
diarrhea, immune deficiency, growth failure with stunting,
decreased head growth, and cognitive impairment, which may
improve with Zn supplementation.”'2489-88 71 deficiency may
contribute to abnormal gut-brain signaling by altering gut
physiology and microbiota composition and by triggering an
increase of inflammatory markers.®

Assessing Zn deficiency in the neonate. Normal serum Zn
concentration in preterm infants decreases during the first weeks
postnatal.’> The European Society for Paediatric Gastroenterology
Hepatology and Nutrition (ESPGHAN) recommends a normative
Zn concentration of 0.74-1.46 mcg ml~".”” Hair Zn concentrations
in term neonates are correlated with maternal hair Zn concentra-
tions.”® In one cohort study in 29 wks preterm infants, hair Zn
concentrations decreased by ~40% within 6 months postnatal
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compared with term infants.”® More data are needed for hair Zn
concentrations.'®

Zn role in brain growth, differentiation, and repair after injury
Zn role in brain growth and differentiation. Zn affects neuronal
differentiation and white matter growth.”’ C,H,-type Zn finger
proteins are transcription factors that contribute to the regulation
of brain morphogenesis, influencing the proliferation, migration,
and cell fate of stem cells and neural progenitor cells and their
differentiation into neuronal cells.”> The concentration of free Zn
in oligodendrocytes decreases from the preoligodendrocyte stage
to the mature oligodendrocyte.”® This decrease in Zn concentra-
tion may mediate differentiation by modulating transcription
factors, enzyme activities, and signaling pathways. mRNA expres-
sion of ZnP and ZIP transporters in oligodendrocytes is
developmentally regulated in the mouse.®* Expression of ZnT1
protein was shown in oligodendrocytes.”® Saturable Zn uptake
was demonstrated in oligodendrocyte progenitors.®® Among
those, an oligodendrocyte-specific Zn finger protein (Zfp 488)
functions as a transcriptional co-regulator important for oligoden-
drocyte differentiation.”

In rats, gestational Zn deficiency may cause neural tube defects
and other brain malformations and affect brain development (e.g.,
stem cell proliferation and neuronal number, neuronal specifica-
tion, myelination, gene expression, N-methyl-p-aspartate [NMDA]
receptor expression) and impairs learning and memory into
adulthood.””®°" In a model of differentiation of human
pluripotent stem cells into motor neurons, mRNA expression of
ZnTs and Shank proteins (multidomain scaffold proteins
expressed in synapses) was highly regulated during neuronal
differentiation.’®® In that model, low Zn concentration in the
media was associated with increased apoptosis and decreased cell
survival, altered neuronal differentiation, and, in particular,
synaptic function.'® In summary, Zn may regulate brain
ontogeny, neuronal and oligodendrocyte proliferation, differentia-
tion, and function.

In patients with acrodermatitis enteropathica, homozygous or
compound loss-of-function mutations in the SLC39A4/ZIP-4 gene
result in Zn depletion by blocking gut absorption of Zn; in one
case report diffuse cortical atrophy seen on computerized
tomography resolved following Zn repletion.'®

Critical period of Zn intake for brain growth and differentiation.
The critical period of Zn delivery for human brain growth has not
been defined.*® In the rat, distribution of MT | and Il is limited to
the septum and hippocampus at birth and progressively involves
all forebrain postnatally; vesicular Zn has a similar pattern
of development.'® In mice, Zn deprivation starting at 18 days
of pregnancy and continuing during lactation reduces weights of
pup body, whole brain, and cerebellum during the suckling period
when compared with pups from dams fed a diet adequate in
Zn.'®® In contrast, Zn restriction only in pregnancy or only during
the lactational period resulted in smaller changes.'”>'% In
summary, data in the mouse provides evidence showing that
the critical period of Zn delivery for brain growth starts at 18 days
of pregnancy and extends during lactation.

In the human brain, MT | and Il containing glial cells appear in
the subventricular and periventricular zones at 21 weeks of GA
and migrate progressively, reaching the entire white and gray
matter by 35 weeks GA.'7'% A minor population of late
oligodendrocyte progenitors is present in the white matter at
18-27 weeks’ GA, i.e, months before these cells commit to
myelinogenesis.'®® Starting at 28 weeks GA, the number of
immature oligodendrocytes increases, followed by an increase in
myelin-binding protein (MBP) and myelin sheets in the periven-
tricular area; this process coincides with the developmental
window of vulnerability for periventricular white matter
injury.'®1° Limited data suggest that Zn concentration in the
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human brain progressively decreases from 8 mcg g~ ' (wet tissue)
at 12 weeks GA to 3-5 mcg g ' at 23-26 weeks and then
increases again to 9 (range 17-22) mcg g ' at term and in early
infancy.5”'7'=113 These data suggest that the critical period of Zn
delivery for brain growth is species-specific, i.e., starts at 18 days of
pregnancy and extends during lactation in the mouse and could
start at 26 weeks and extend until at least 35 weeks of PMA in
the human.

Zn role in cerebellar development. Zinc finger proteins of the
cerebellum (Zic) may mediate cerebellar developmental control
via regulation of neuronal progenitor proliferation-differentiation
and the patterning of the cerebellar primordium."'* Zic proteins
interact with sonic hedgehog signaling, retinoic acid signaling,
and TGFB signaling during mouse cerebellar development.'™
Heterozygous deficiency in Zic1 and Zic4 is associated with
Dandy-Walker malformation.'"

Zn role in brain injury, degeneration, and repair. Zn has roles in
DNA repair, protection against oxidation injury, and repair after
ischemia.''®""” Experimental models of ischemic and excitotoxic
death acutely alter Zn distribution and increase free Zn
concentrations in brain tissue."'®'2° A block in oligodendrocyte
differentiation into MBP-expressing cells is a central problem in
periventricular leukomalacia (PVL).'?'"'?? In the chronic stage of
PVL cells expressing myelin transcription factor 1, a Zn-dependent
DNA binding protein, are significantly increased around necrotic
foci and some of the regions are coincident with increasing MBP
immunoreactivity.'**

Vela et al.'** have reviewed the literature suggesting a possible
link between bowel and brain development in autism spectrum
disorders. In summary, Zn repletion is important in repair in the
chronic phase after brain injury, but not during the acute phase
because of increased free Zn concentration in the brain
immediately after an ischemic insult.

SCOPING REVIEW: ZINC SUPPLEMENTATION FOR NEONATAL
SURVIVAL, GROWTH, BRAIN GROWTH, AND
NEURODEVELOPMENT

Method

On August 28, 2020, we conducted a PubMed search using the
following search words: Zinc supplementation neonate. The
Pubmed search engine translated these words into the following
strings: (“zinc"[MeSH Terms] OR “zinc”[All Fields]) AND (“supple-
mental”[All Fields] OR “supplementating”[All Fields] OR “supple-
mentation”[All Fields] OR “supplementation s"[All Fields] OR
“supplementations”[All Fields] OR “supplemention”[All Fields])
AND (“infant, newborn”[MeSH Terms] OR (“infant”[All Fields]
AND “newborn”[All Fields]) OR “newborn infant”[All Fields] OR
“neonatal”[All Fields] OR “neonate”[All Fields] OR “neonates”[All
Fields] OR “neonatality”[All Fields] OR “neonatals"[All Fields] OR
“neonate s”[All Fields]).

We selected neonatal studies assessing one or more of four
outcomes: survival, growth, brain growth, and neurodevelopment.
We excluded case reports and studies if they assessed the effects
of antenatal Zn supplementation, initiation of Zn supplementation
at >28 days (4 weeks) after due dates, and/or supplementation of
other nutrients (except Cu to compensate for Zn and Cu
competition for gastrointestinal absorption, or studies with
factorial design).

Results
The search yielded 411 manuscripts, among which 33 were
assessed on full-text copy and 22 studies met criteria (Fig. 2).

Observational  studies. Four studies met the criteria
(Table 1).7986125126 |n one retrospective study of 60 preterm

Pediatric Research (2021) 89:1627 — 1640
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Publications identified through
database searching 8/28/2020
(n=409)

Additional Publications identified
through other sources
(n=2)

!

.

Publications after duplicates removed

(n=410)

* Reviews (n=64)
Publications screened
(n=410)

Publications excluded (n = 377)

|, | ® Not neonatal population (n = 256)
* Not zinc supplementation (n = 44)

l * No relevant outcome (n = 2)

¢ Case reports (n=

11)

Full-text publications

assessed for eligibility
(n=33)

—>

* Reviews (n=1)

i * Other patient population (n = 3)

Publications included (n = 22)
* Randomized trials (n = 18)

* No relevant outco

Publications excluded (n = 11)

* Not zinc supplementation (n = 5)

me (n=2)

* Observational studies (n = 4)

Fig. 2 Flow diagram of the scoping review. This diagram shows the number of manuscripts found by Pubmed search (using Zinc
supplementation neonate) and other sources, as well as the process used to select manuscripts relevant to this review.

Table 1. Observational studies of Zinc supplementation started before or at 28 days after due dates (44%7 weeks PMA) assessing mortality, growth,
head growth or brain function in neonates or preterm infants.

Harris et al.2®

Infants born at 26-37 weeks

n=105 GA (mean 31.8 2.5 weeks GA,
USA 1.8+0.1 kg)

Brion et al.”® ELGANSs born at

n =302 23-28 weeks GA

USA

Study Subjects Design/intervention Results
El Mashad Healthy preterm infants below Retrospective cohort study Zn-supplemented infants had higher weight
et al.'® 37 weeks of age Zn-supplemented group fed with breast milk  and length at the age of 6 months compared
n=60 Mean GA 35+ 1 weeks and supplemented with Zn (2 mgkg~'day™") with unsupplemented controls
Egypt since the first day of life, and a non-Zn-

supplemented group fed with breast milk
Shaikhkhalil ELBW with chronic lung Retrospective cohort study Weight gain increased from 10.9 gkg ™' day '
et al."?® disease (oxygen at Zn supplementation (1.7+0.6 mgkg ™' day™") before supplementation to 19.9 gkg™' day™'
n=>52 36 weeks PMA) starting at 33 + 2 weeks PMA for a duration after supplementation
USA Mean GA 25 + 2 weeks ranging between 9.3 and 43 weeks in infants  Linear growth increased from 0.7 cm week '

who had poor weight gain

Prospective cohort study

Prospective cohort study

Serum Zn concentration was obtained in
infants with poor linear growth after
optimizing other nutrients.

Zn supplementation to increase total Zn intake
to 3-3.5 mg kg~ day ' (average
supplementation 1.27+0.33 mg kg™ day™") in
infants with poor linear growth and serum Zn
concentration <0.74 mcg/ml;

Cu supplementation if needed to bring total
daily intake to 300-350 mcg kg~ ' day '

before supplementation to 1.1 cm week ™" after
supplementation

Total enteral Zn intake positively associated
with weight gain and FOC growth in NICU
Higher Zn intake linked to weight gain after
accounting for GA

Birth cohort: n =302: Zn deficiency (serum Zn
concentration <0.74 mcg/ml) in 8 of 24 (33%)
small for GA (SGA) vs. 35 of 278 (13%) non-SGA
infants

Zn cohort: n = 64: Zn deficiency in 52. In 41 Zn-
deficient infants, Zn supplementation starting at
36 weeks PMA (range 32-44) in for >2 weeks
(but not <2 weeks) increased FOC growth rate
(assessed by change in Z-score over time) but
not weight or length growth in the absence of
simultaneous administration of systemic
steroids

OR “supplementating”[All

Pubmed search was conducted on 8/28/2020 using the following search strings: (“zinc”[MeSH Terms] OR “zinc"[All Fields]) AND (((((“supplemental”[All Fields]
Fields]) OR “supplementation”[All

Fields]) OR “supplementation s"[All

Fields]) OR “supplementations”[All Fields]) OR

“supplemention”[All Fields]) AND (((((((“infant, newborn”[MeSH Terms] OR (“infant”[All Fields] AND “newborn”[All Fields])) OR “newborn infant”[All Fields])
OR “neonatal”[All Fields]) OR “neonate”[All Fields]) OR “neonates”[All Fields]) OR “neonatality”[All Fields]) OR “neonatals”[All Fields]) OR “neonate s"[All Fields]).
We excluded case reports and studies that assessed the effects of antenatal Zn supplementation, initiation of Zn supplementation at >28 days (4 weeks) after
due dates, and/or multiple simultaneous interventions along with enteral Zn supplementation (except for a small amount of copper because Zn
supplementation may inhibit the absorption of copper or studies with factoral design) or did not assess any of the pre-specified outcomes.

Cu copper, ELBW extremely low birth weight infant, ELGAN extremely low gestational age neonate, FOC fronto-occipital circumference, GA gestational age, NICU
neonatal intensive care unit, PMA postmenstrual age, SGA small for GA, Zn zinc.
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infants born at 35 + 1 weeks GA in Egypt, those who received Zn
since the first day of life had higher weight and length at the age
of 6 months compared with unsupplemented controls.'*® The
three studies done in the US included FOC measurements. In
one retrospective cohort study of 52 ELBW infants (mean GA 25
+ 2 weeks) with chronic lung disease, weight gain increased by
83% and linear growth velocity increased by 57% after
supplementing Zn starting at 33 + 2 weeks PMA for a range of
9.3-43 weeks."?® In a prospective cohort of 105 infants born at
26-37 weeks GA there was a direct relationship between Zn
intake and FOC growth.®¢

In a prospective cohort study of 302 ELGANs who received
recommended Zn intake, a serum Zn concentration was
obtained in 52 who had insufficient linear growth; Zn deficiency
(serum concentration <0.74 mcg/ml) was diagnosed in 43
infants.”® The odds of Zn deficiency increased in SGA infants
and with decreasing GA. In a model including postnatal
variables, the odds of Zn deficiency increased with decreasing
GA, severe bronchopulmonary dysplasia (BPD), and longer
duration of parenteral nutrition.”? In the absence of Zn
supplementation, the change in FOC Z-score from time of Zn
concentration to discharge or 50 weeks PMA was lower in
infants with Zn concentration <0.74 mcg ml~' than in those
with Zn concentration >0.74 mcg ml~". In Zn-deficient infants,
Zn supplementation started at 36 weeks PMA (range 32-44) for
>2 weeks but not <2 weeks increased FOC growth rate, but not
weight or length growth, in the absence of systemic steroids.
The chan%;e in FOC Z-score in response to Zn supplementation
increased’ with a duration of Zn supplementation (>2 weeks vs.
<2 weeks),? lower change in FOC Z-score in response to prior
supplementation of protein and® severe co-morbidity (defined
as either severe BPD, gastrointestinal perforation, necrotizing
enterocolitis, or severe organ failure). The FOC response to Zn
was not affected by PMA at the initiation of therapy. This latter
data suggest that the critical period of Zn delivery for brain
growth could extend longer than suggested by basic sciences
data, i.e., until at least 44 weeks PMA.

Randomized controlled trials. Eighteen studies met the criteria
(Table 2).257271277141 Most studies had some risk of bias limiting
the level of evidence (right column, Table 2) and seven studies
had no documented sample size analglsis. Inclusion criteria were'
SGA, LBW, or IUGR? prematurity,® clinical sepsis,® or low
socioeconomic status. There was substantial heterogeneity in
country, duration (10 days-1 year), and a dose of Zn supplemen-
tation, type, and timing of assessment tools, and documented or
possible confounding variables (micronutrient deficiencies, severe
comorbidities, systemic steroids). This heterogeneity limited the
validity of a meta-analysis.

Among LBW or preterm neonates in countries where Zn
deficiency is prevalent or has been reported in association with
stunting (India, Iran, Egypt), prolonged Zn supplementation
improved weight in 7/9 studies, length in 6/9, and FOC in 3/5;
in other countries (Spain, Italy, USA), respective numbers were 1/4,
2/3, and 0/3.

Five studies assessed the effect of Zn supplementation for at
least 8 weeks in SGA or IUGR term infants (studies 1-5, Table 2).
Among two studies using a low dose of Zn (1 mgday™'), one
showed no effect on growth and no effect on Bayley scores at
6-12 months; the other one, conducted in India, showed that Zn
supplementation reduced diarrhea and mortalit?/. Among three
studies using higher dose Zn (3-5 mgday '), 1/3 showed
increased weight gain and linear growth.

Among 8 studies enrolling LBW or VLBW infants that were
mostly or exclusively preterm (studies 7-14, Table 2), prolonged
Zn supplementation improved weight gain in 4/8 studies, linear

SPRINGERNATURE

growth in 5/7, FOC in 3/7, and 2/2 studies showed improved
neurologic assessment (one in the NICU and one at 12 months).
One Italian RCT using high dose Zn supplementation in VLBW
infants showed decreased mortality and composite morbidity
(composite of late-onset sepsis, periventricular leukomalacia,
necrotizing enterocolitis, retinopathy of prematurity) and
increased weight at discharge ®*

Three studies assessed short (10 days or until discharge) Zn
supplementation (1 or 6 mgkg 'day ') for neonates with
clinical sepsis (studies 15-17, Table 2). Two of three studies
showed no improvement in mortality and one showed no
improvement in developmental assessment at 1 year of age.
None of these studies assessed growth.

The single study assessing Zn supplementation for low
economic status in Chile (study 18, Table 2) showed no effect
on growth and showed improvement in Bayley score at
6 months but not at 1 year.

In summary, Zn supplementation was most likely to increase
growth in preterm infants in countries where Zn deficiency is
prevalent. Zn supplementation may reduce mortality in selected
populations. None of the studies assessed important long-term
(at least 18 months postnatal age corrected for prematurity)
neurodevelopmental outcomes.

Summary

Available data in the mouse provide evidence showing
that the critical period of Zn delivery for brain growth starts
at 18 days of pregnancy and extends during lactation. Based
on limited available data in the human we speculate that the
critical period could be from 26 weeks GA until at least
44 weeks PMA.

In countries where Zn deficiency is prevalent, Zn supplemen-
tation may help growth in preterm infants and survival in
LBW infants. In the US, Zn deficiency is associated with
ELGAN, SGA, poor postnatal growth, severe BPD, and prolonged
need for parenteral nutrition. Much less frequently, Zn
deficiency results from genetic mutations or from maternal Zn
deficiency.

Zn deficiency in neonates is best identified with a serum
concentration <0.74 mcg/ml and should be treated with Zn
supplementation for >2 weeks. Variability in growth response to
Zn supplementation depends on several factors:' patient selection
and accuracy of serum level in the detection of Zn deficiency;?
sufficiency of dose and duration of supplementation;*> comorbid-
ities (nutritional, systemic, and medications).

Research gaps

Data are needed to assess markers of total body and brain Zn
content in neonates. More data are needed to assess the validity
of serum and hair Zn concentration and other biomarkers for this
purpose.

No RCT of Zn supplementation was focused on ELGANs or
ELBW infants starting before 29 weeks PMA and no RCT has
assessed the effect of Zn supplementation on long-term
neurodevelopment. Studies are urgently needed to determine
the optimal dose, timing, and duration of supplemental Zn in
ELGANs that will minimize morbidity, optimize growth and brain
growth, prevent periventricular leukomalacia, and optimize
neurodevelopment. However, Zn supplementation may not
result in optimized growth and brain growth if co-existing
nutritional deficiencies exist. Since growth failure is ELGANs is
often multifactorial, precision medicine approach may be
the best method, requiring a systems biology approach that
could include metallomics (assessing trace elements), metabo-
lomics (snapshots of multiple biochemical compounds), and
microbiome 891427144
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