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The human milk oligosaccharides 2’-fucosyllactose and 6’-
sialyllactose protect against the development of necrotizing
enterocolitis by inhibiting toll-like receptor 4 signaling
Chhinder P. Sodhi1,2, Peter Wipf3, Yukihiro Yamaguchi1,2, William B. Fulton1,2, Mark Kovler1,2, Diego F. Niño1,2, Qinjie Zhou1,2,
Emilyn Banfield1, Adam D. Werts3, Mitchell R. Ladd1,2, Rachael H. Buck4, Karen C. Goehring4, Thomas Prindle Jr1,2, Sanxia Wang1,2,
Hongpeng Jia1,2, Peng Lu1,2 and David J. Hackam 1,2

BACKGROUND: Necrotizing enterocolitis (NEC) develops through exaggerated toll-like receptor 4 (TLR4) signaling in the intestinal
epithelium. Breast milk is rich in non-digestible oligosaccharides and prevents NEC through unclear mechanisms. We now
hypothesize that the human milk oligosaccharides 2’-fucosyllactose (2’-FL) and 6’-sialyllactose (6’-SL) can reduce NEC through
inhibition of TLR4 signaling.
METHODS: NEC was induced in newborn mice and premature piglets and infant formula was supplemented with 2’-FL, 6’-SL, or
lactose. Intestinal tissue was obtained at surgical resection. HMO inhibition of TLR4 was assessed in IEC-6 enterocytes, mice, and
human tissue explants and via in silico modeling.
RESULTS: Supplementation of infant formula with either 2’-FL and/or 6’-SL, but not the parent sugar lactose, reduced NEC in mice
and piglets via reduced apoptosis, inflammation, weight loss, and histological appearance. Mechanistically, both 2’-FL and 6’-SL, but
not lactose, reduced TLR4-mediated nuclear factor kappa light-chain enhancer of activated B cells (NF-kB) inflammatory signaling in
the mouse and human intestine. Strikingly, in silico modeling revealed 2’-FL and 6’-SL, but not lactose, to dock into the binding
pocket of the TLR4–MD2 complex, explaining their ability to inhibit TLR4 signaling.
CONCLUSIONS: 2’-FL and 6’-SL, but not lactose, prevent NEC in mice and piglet models and attenuate NEC inflammation in the
human ileum, in part through TLR4 inhibition.
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IMPACT:

● Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in premature infants that occurs in the setting of
bacterial colonization of the gut and administration of formula feeds and activation by the innate immune receptor toll-like
receptor 4 (TLR4). Breast milk prevents NEC through unclear mechanisms. We now show that breast milk-enriched human milk
oligosaccharides (HMOs) that are derived from lactose prevent NEC through inhibition of TLR4.

● The human milk oligosaccharides 2’-FL and 6’-SL, but not the backbone sugar lactose, prevent NEC in mice and piglets.
● 2’-FL and 6’-SL but not lactose inhibited TLR4 signaling in cultured enterocytes, in enteroids derived from mouse intestine, and

in human intestinal explants obtained at the time of surgical resection for patients with NEC.
● In seeking the mechanisms involved, 2’-FL and 6’-SL but not lactose were found to directly bind to TLR4, explaining the

inhibition and protection against NEC.
● These findings may impact clinical practice by suggesting that administration of HMOs could serve as a preventive strategy for

premature infants at risk for NEC development.

INTRODUCTION
Necrotizing enterocolitis (NEC) is the leading cause of death from
gastrointestinal disease in premature infants and is characterized
by sudden necrosis of the small intestine, leading to over-
whelming sepsis and death in many cases.1 The overall survival for
patients with NEC has not improved since the disease was first

described,2 and with the steady rise in the overall number of
premature births worldwide,3 there exists a greater urgency than
ever to understand its origins and to develop novel prevention
strategies. We4–6 and others7 have identified a molecular explanation
for NEC development, in which NEC results from exaggerated
signaling in the intestinal epithelium in response to activation of the
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lipopolysaccharide receptor toll-like receptor 4 (TLR4), which is higher
in the premature as compared with the full-term intestine.8 TLR4
activation by luminal lipopolysaccharide (LPS) leads to a disruption of
the intestinal mucosa,9 resulting in bacterial translocation into the
blood stream,10 where the activation of TLR4 on the endothelium
results in vasoconstriction and the intestinal ischemia that char-
acterizes NEC.11 Given the lack of specific treatments for NEC, the
focus has shifted to prevention strategies, especially in those infants
at the greatest risk for disease development.
Of all the strategies that are associated with NEC protection in

infants, the administration of breast milk is decidedly the most
effective. In seeking to understand the molecular components of
breast milk that could be responsible for its protective benefits, we12

and others13,14 have shown that human milk oligosaccharides
(HMOs), a family of non-digestible carbohydrates present in breast
milk, can prevent NEC in experimental models, through mechanisms
that are unknown. Moreover, there remains controversy regarding the
role of HMOs early in life, as previous authors have shown that certain
HMOs may not prevent NEC in piglets early in life.13 We now
hypothesize that HMOs prevent NEC in part through direct inhibition
of TLR4 signaling in the premature intestine, which we seek to test
using mouse, piglet, and human tissue models of this disease.

METHODS
Chemical reagents
RNeasy® Kit (catalog no. 74106; Qiagen) and QuantiTect® Reverse
Transcription (catalog no. 205313; Qiagen), TUNEL (terminal deox-
ynucleotidyl transferase-mediated dUTP-fluorescein nick end labeling)
Kit (In Situ Cell Death Detection Kit, Fluorescein, catalog no.
11684795910; Roche), 3’-nitrotyrosine (3’-NT) antibody (catalog no.
ab61392; Abcam), NF-kBp65(F-6) antibody (catalog no. sc-8008; Santa
Cruz Biotechnology), 4’,6-diamidino-2-phenylindole, dihydrochloride
(catalog no. D9542; Sigma), and LPS from Escherichia coli 0127:B8
(Sigma; catalog no. L3129) were used. Forward and reverse primers
were custom designed using NCBI Primer-BLAST online program and
ordered from Integrated DNA Technologies and are listed in Table 1.
The small intestinal epithelial cell IEC-6 was obtained from American
Type Culture Collection (ATCC, Manassas, VA). TUNEL was from Roche
Life sciences. Quantitative real-time PCR was performed using primers
in Table 1 as described.15 All human intestine was obtained via a
waiver of consent from the Office of Human Subjects Research, Johns
Hopkins University (IRB00094036) and was collected in a de-identified
manner. Galacto-oligosaccharide (GOS) was from Biosynth Carbosynth
(Newbury, Berkshire, UK).

Animal studies
All experiments involving mice were carried out in accordance with
the recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health and are
approved by Animal Care and Use Committee of The Johns Hopkins

University (Protocol numbers MO17M304 and SW18M206), accord-
ing to The ARRIVE Guidelines of the “NC3R.”16 Experimental NEC was
induced in 7–8-day-old (approximately 3 g body weight) neonatal
mice pups as previously described and validated.17 NEC was
induced after the oral gavage of formula that is described in our
recent paper18 and is composed of Similac Advance: Esbilac Canine
Milk Replacer in equal concentrations, supplemented with bacterial
stock that had been cultured from the stool of an infant with severe
NEC (12.5 μl of stool slurry in 1ml of formula). Neonatal pups were
gavage-fed (50 μl/g) five times per day with formula supplemented
with bacterial slurry using a 24-French angiocatheter placed into the
mouse esophagus. Mice were exposed to hypoxia (5% O2, 95% N2)
for 10min in a chamber (Billups-Rothenberg Inc.) at 7 a.m. and 1 p.
m. immediately after feed for 4 days. NEC formula was supplemen-
ted with 2’-FL, 6’-SL, or lactose (LAT) or GOS where indicated. In
parallel, 3-week-old C57/BL6 mice were randomly divided into six
groups: (i) saline-control, (ii) LPS, (iii) LPS+ 2’-FL, (iv) LPS+ 6’-SL, (v)
LPS+ 2’-FL+ 6’-SL, and (vi) LPS+ LAT. Where indicated, HMO, GOS,
or LAT was administered orally at 10mg/kg in 200 μl/mice 1 h
before injection of LPS (5mg/kg, intraperitonially). All mice were
euthanized 6 h later, and samples of the small intestine were
harvested.
NEC was induced in piglets to determine the effects of 2’-FL and

6’-SL as we have described.19 Timed-pregnant White Yorkshire
(Yorkshire × Landrace) sows were obtained from Oak Hill Genetics
(Ewing, IL), and piglets were delivered prematurely via cesarean
section at ~90% gestation and administered either 2’-FL or 6’-SL
(10 mg/ml, each individually or 5 mg/ml in combination). Piglets
that were not induced to develop NEC were euthanized at birth
and used as controls.

Evaluation of molecular docking of 2’-FL, 6’-SL, and LAT with TLR4-
MD2
Molecular docking was used to analyze the binding efficiency of 2’-
FL, 6’-SL, and a negative standard, LAT, to the LPS-binding pocket of
the TLR4-MD2 complex. Spartan 18 (Wavefunction, Inc., Irvine, CA)
was used to remove the antagonist Eritoran from PDB Code 2Z65,
the crystal structure of the ternary eritoran-TLR4-MD2 complex,20

and to prepare the resulting TLR4-MD2 apoprotein complex for
molecular docking. Biologically relevant conformations of 2’-FL and
6’-SL, extracted from PDB Code 5DUX21 and 4EN9,22 respectively,
were then used for the docking experiment to TLR4-MD2. Autodock
VinaTM combined with PyRxTM yielded optimized docked complexes
with docking scores of −5.6 kcal/mol for 2’-FL and −6.7 kcal/mol for
6’-SL. In contrast, docking of the negative control LAT provided a
lower docking score of −4.8 kcal/mol. Following the standard
docking procedure, ligands were docked by defining a grid box of
20 Å × 20 Å× 20 Å around the cup-sized LPS recognition pocket
of the TLR4-MD2 complex. PyMOLTM (The PyMOL Molecular
Graphics System, Version 2.3.1 Schrödinger, LLC) was used for
visualizations.

Table 1. Primer sequences.

Gene Species Forward sequence Reverse sequence Amplicon (bp)

IL-1β Mouse AGTGTGGATCCCAAGCAATACCCA TGTCCTGACCACTGTTGTTTCCCA 175

Pig CCGTCTTCCTGGGAAACTCC GTCAGCTTCGGGGTTCTTCA 121

iNOS Mouse, rat CTGCTGGTGGTGACAAGCACATTT ATGTCATGAGCAAAGGCGCAGAAC 167

TLR4 Human AAGCCGAAAGGTGATTGTTG CTGAGCAGGGTCTTCTCCAC 153

Mouse TTTATTCAGAGCCGTTGGTG CAGAGGATTGTCCTCCCATT 186

Pig TGCGTCAGTTCTCACCTTCC TCTTCGTCCTGGCTGGAGTA 153

Rat ACTGGGTGAGAAACGAGCTGGTA AAGCCTTCCTGGATGATGTTGGCA 124

TNF-α Mouse TTCCGAATTCACTGGAGCCTCGAA TGCACCTCAGGGAAGAATCTGGAA 144

Human GGCGTGGAGCTGAGAGATAAC GGTGTGGGTGAGGAGCACAT 120

Pig GCCCTTCCACCAACGTTTTC TCTGGCAAGGGCTCTTGATG 102

Rplp0 Human, mouse, rat, pig GGCGACCTGGAAGTCCAACT CCATCAGCACCACAGCCTTC 143
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Fig. 1 Supplementation of nutritional formula with 2’-FL and 6’-SL protects from disease development in neonatal mice subjected to an
experimental model of necrotizing enterocolitis (NEC). a(i–iv), c(i, ii) Photomicrographs showing gross morphology, b(i–iv), d(i, ii)
Hematoxylin–eosin (H&E)-stained images showing histology of the small intestine (ileum), e quantitative real-time PCR (qRT-PCR) of pro-
inflammatory cytokine tumor necrosis factor-alpha (TNF-α), f NEC severity scores, g nested graph showing body weight changes in neonatal
mice subjected to no treatment (Ctrl, control breast-fed) or experimental NEC treatments without or with supplementation with lactose (10
mg/ml), 2’-FL (10mg/ml), 6’-SL (10mg/ml), or 2’-FL+ 6’-SL (5 mg/ml, each). **p < 0·01, ***p < 0·001, each dot in dot graphs represents data
from an individual mouse.
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RESULTS
Supplementation of infant formula with 2’-FL and 6’-SL prevents
NEC in mice in a dose-dependent manner
We first sought to evaluate whether the most abundant neutral
HMO, namely, 2’-FL, and the most abundant acidic HMO, namely,

6’-SL could prevent NEC, either alone or in combination, in well-
established models of NEC. As shown in Fig. 1, the intestine of
mice that were induced to develop NEC show extensive
edema, thinning of the wall, and air within the bowel wall (also
called pneumatosis intestinalis, a signature finding in human NEC),
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Fig. 2 2’-FL and 6’-SL supplementations in nutritional formula prevents small intestinal mucosal injury in mice induced to develop
necrotizing enterocolitis (NEC). a (i–v, i’–v’) Immunofluorescence images of 3'-nitrotyrosine (3’-NT, green fluorescence) as an indicator of
oxidative injury and b(i–v, i’–v’) immunofluorescence images of TUNEL (green fluorescence) as an indicator of apoptosis in ileal sections of
neonatal mice subjected to no treatment (Ctrl, control breast-fed) or experimental NEC without or with supplementation with 2’-FL (10mg/ml),
6’-SL (10mg/ml), or 2’-FL+ 6’-SL (5mg/ml, each), c quantification of fluorescent intensity of 3’-NT staining and d TUNEL staining measured
using the ImageJ software, ***P < 0·001. Each dot in dot graphs represents data from an individual mouse.
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which is not seen in dam-fed control mice, where the intestine is
pink and healthy appearing (Fig. 1a(i, ii)). Histological examination
of NEC intestine revealed extensive villous sloughing, separation
of submucosa, and edema in the submucosal and muscular layers

(Fig. 1b(i, ii)). NEC induction also resulted in significant inflamma-
tion in the intestinal mucosa, as indicated by the expression of
pro-inflammatory cytokine tumor necrosis factor (TNF)-α and high
NEC severity score as assessed using our well-validated scoring
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system,23 in comparison to breast-fed controls, in which pro-
inflammatory cytokine induction and disease severity scores were
both minimal (Fig. 1e, f). Since both 2’-FL and 6’-SL are derived
from the milk carbohydrate LAT, we evaluated LAT as a negative
control, given that it is an carbohydrate that can be enzymatically
digested, unlike the HMOs 2’-FL and 6’-SL, and because it serves as
the molecular backbone of these HMOs.24 As shown in Fig. 1, the
administration of infant formula that was supplemented with LAT
resulted in no protective benefit against NEC, as measured by
gross appearance of the intestine (Fig. 1aiii), intestinal histology
(Fig. 1biii), cytokine induction (Fig. 1e), NEC severity (Fig. 1f), and
body weight (Fig. 1g). By contrast, supplementation of the infant
formula with either 2’-FL or 6’-SL significantly protected against
NEC development, as manifest by improved gross appearance of
the intestine (Fig. 1aiv, ci), intestinal histology (Fig. 1biv, di),
cytokine induction (Fig. 1e), NEC severity (Fig. 1f), and body weight
(Fig. 1g). The combination of 2’-FL and 6’-SL together and at the
same total HMO dosage as either carbohydrate alone yielded no
additional protection (Fig. 1e, f). It is noteworthy that lower doses
of either 2’-FL or 6’-SL had no effect on NEC severity, especially at
the shorter time points (Supplementary Fig. s1).
To further evaluate the extent to which 2’-FL and 6’-SL could

prevent NEC, two additional measurements that are integral into
the pathogenesis of NEC were undertaken: reactive oxygen
species-mediated mucosal damage, as revealed by the expression
of 3’-NT in the intestinal mucosa,25 and enterocyte apoptosis, as
measured by TUNEL staining. As shown in Fig. 2, 3’-NT and TUNEL
staining were both strongly expressed within the intestinal
epithelium of mice with NEC (Fig. 2a(ii, ii’), b(ii, ii’)), while breast-
fed control mice showed minimal expression (Fig. 2a(i, i’), b(i, i’)),
consistent with our prior reports.23,26 Importantly, both 3’-NT and
TUNEL staining in the intestinal mucosa were significantly reduced
in mice with NEC in which the infant formula was supplemented
with either 2’-FL or 6’-SL (Fig. 2a(iii, iv, iii’, iv’), b(iii, iv, iii’, iv’)) or
their combination (Fig. 2a(v, v’), b(v, v’)), see quantification in
Fig. 2c, d. Taken together, these findings illustrate that the
administration of 2’-FL and 6’-SL, alone or in combination, protect
against NEC in a mouse model. To evaluate the potential
translational significance of these findings, we next evaluated a
well-validated piglet model of the disease.19

Supplementation of nutritional formula with 2’-FL and 6’-SL
protects against NEC development in a piglet model of NEC
As compared to piglets administered control formula without the
addition of HMOs, the supplementation of formula with either 2’-
FL (10 mg/kg) or 6’-SL (10 mg/kg) or their combination at 10mg/
kg each, significantly reduced NEC severity (Fig. 3), as revealed by
improved gross morphological appearance (Fig. 3a), intact
histological architecture (Fig. 3b), normal levels of pro-
inflammatory cytokines TNF-α and interleukin-1β (Fig. 3c), and
significantly lower average NEC scores (Fig. 3d). Moreover, while
3’-NT expression and mucosal epithelial apoptosis were both
abundant in the intestinal mucosa of piglets with NEC (Fig. 3e, f),
these findings were both significantly reduced to the levels of

expression in the control piglets (Fig. 3e(i, i’), f(i, i’)), in NEC piglets
supplemented with 2’-FL alone (Fig. 3e(iii, iii’), f(iii, iii’)), 6’-SL alone
(Fig. 3e(iv, iv’), f(iv, iv’)), or both HMOs combined (Fig. 3e(v, v’), F(v,
v’), and fluorescence quantification of 3’-NT and TUNEL staining is
shown in Fig. 3g, h. Taken together, these findings illustrate that
2’-FL and 6’-SL protect against NEC development in both small
and large animal models. We next sought to investigate the
mechanisms involved, and so we next determined whether these
HMOs could inhibit TLR4 signaling.

2’-FL and 6’-SL inhibit TLR4 signaling in IEC-6 enterocytes
Given the critical importance of TLR signaling in the pathogenesis
of NEC,4,5,8 we next sought to determine whether 2’-FL and 6’-SL
could protect against NEC development through TLR4 inhibition.
To determine whether 2’-FL or 6’-SL could block TLR4 signaling,
we first measured the effects of these HMOs on LPS-induced
nuclear factor kappa light-chain enhancer of activated B cell (NF-
kB) translocation from the cytoplasm into the nucleus (Fig. 4) and
on TLR4-induced enterocyte apoptosis, pathways which are
central to the mucosal inflammation that leads to NEC induction.
These studies were performed using the model cell line IEC-6,
which is a non-transformed crypt cell line that expresses TLR4
abundantly and responds to LPS,27 and thus allows for the direct
study of HMO–TLR4 interactions without the potential influence of
circulating factors. As shown in Fig. 4, as compared with control
cells in which the p65 subunit of NF-kB is localized in the
cytoplasm (Fig. 4a(i, i’)), LPS induced its translocation to the
nucleus (Fig. 4a(ii, ii’), quantification in Fig. 4b). Although
pretreatment with LAT had no effect on the degree of LPS-
induced NF-kB translocation (Fig. 4a(iii, iii’), b), treatment of IEC
with 2’-FL or 6’-SL, either alone or in combination, significantly
blocked LPS-induced NF-kB signaling (Fig. 4a(iv–vi, iv’–vi’), b). In
parallel, while LPS induced significant apoptosis (Fig. 4c(ii, ii’), d) of
IEC-6 cells, the degree of apoptosis was not reduced by LAT
(Fig. 4c(iii, iii’), d), but was markedly reduced by both 2’-FL and 6’-
SL, either alone or in combination (Fig. 4c(iv–vi, iv’–vi’)). Taken
together, these findings illustrate that 2’-FL and 6’-SL prevent
TLR4 signaling in vitro, providing a mechanism by which they
reduce NEC severity. We next sought to determine the impact on
TLR4 signaling in human and mouse explants.

2’-FL and 6’-SL inhibit TLR4 signaling in NEC and in human and
mouse intestinal explants
We next evaluated the potential effects of 2’-FL and 6’-SL on LPS-
TLR4 signaling in vivo. As shown in Fig. 5, the induction of NEC in
mice and piglets led to an increase in the expression of TLR4 in the
intestine as compared to controls—consistent with increased
TLR4 signaling—and was reduced after 2’-FL and 6’-SL adminis-
tration (Fig. 5a(i, ii)). To directly evaluate whether 2’-FL or 6’-SL
could inhibit LPS-TLR4 signaling in vivo, newborn mice were
administered a single dose of either 2’-FL or 6’-SL by oral gavage 1
h before the intraperitoneal injection of LPS, and TLR4 expression
and TLR4-induced cytokine expression were assessed in the
intestinal epithelium. As shown in Fig. 5b, the injection of LPS

Fig. 3 Supplementation of nutritional formula with 2’-FL and 6’-SL protects from disease development in a piglet model of necrotizing
enterocolitis (NEC). a (i–v) Representative photomicrographs of gross morphology and b (i–v) hematoxylin–eosin (H&E)-stained images of
premature piglets that were either untreated and euthanized at birth (controls) or induced to develop experimental NEC in the absence or
presence of 2’-FL, 6’-SL, or 2’-FL+ 6’-SL, 5-μm paraffin-embedded sections of the small intestine (ileum), c (i, ii) quantitative real-time PCR (qRT-
PCR) of pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-beta (IL-1β), d NEC severity scores. ***P < 0·001, each
dot in dot graphs represents data from an individual piglet. e–h 2’-FL) and 6’-SL supplementation prevents small intestinal mucosal damage in
a piglet model of necrotizing enterocolitis (NEC). e (i–v, i’–v’) Immunofluorescence images of 3'-nitrotyrosine (3’-NT, green fluorescence) as an
indicator of oxidative mucosal injury and f (i–v, i’–v’) immunofluorescence images of TUNEL (green fluorescence) as an indicator of apoptosis
injury in the small intestine (ileum) sections of premature piglets subjected to no treatment (Ctrl, control breast-fed) or experimental NEC
treatments without or with supplementation with 2’-FL (10mg/ml), 6’-SL (10mg/ml), or 2’-FL+ 6’-SL (5 mg/ml, each); g quantification of
fluorescent intensity of 3’-NT staining and h quantification of fluorescent intensity of TUNEL staining measured using the ImageJ software,
***P < 0·001. Each dot in dot graphs represents data from an individual piglet.
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significantly upregulated both TLR4 and TNF-α (Fig. 5b(i, ii)), and
these were both reduced by 2’-FL, 6’-SL, or their combination
(Fig. 5b(i, ii)). Further, the treatment of intestinal explants from
either embryonic mice or premature human infants (obtained
during stoma closure surgery) with LPS similarly led to increased
expression of both TLR4 and TNF, which were both reduced by
treatment with 2’-FL or 6’-SL (Fig. 5c(i, ii), d(i, ii)). In additional
negative control experiments, we tested the effects of GOS on
TLR4 signaling in vitro and in vivo, given that Autran et al. have
shown that GOS do not impact NEC severity.14 As shown in
Supplementary Fig. s2, GOS supplementation of formula did not
reduce NEC as reflected by gross morphological and the
histological appearance of the small intestine, which were still
typical of NEC. GOS treatment also failed to reduce LPS signaling
in the intestinal mucosa of 7-day-old mice or in IEC-6 enterocytes
(Supplementary Fig. s3) and did not reduce LPS-induced NF-kB
translocation (Supplementary Fig. s4i–iii, vii) or apoptosis (Supple-
mentary Fig. s4iv–vi, viii) in IEC-6 cells. Taken together, these
findings illustrate that the HMOs 2’-FL and 6’-SL can inhibit

TLR4 signaling, both in vitro and in vivo. We next sought to assess
the underlying mechanisms involved and focused on the
possibility that 2’-FL and 6’-SL could directly bind to TLR4 and
thus interfere with LPS signaling, as assessed below.

2’-FL and 6’-SL but not LAT dock into the LPS-binding pocket of
TLR4
In the final series of studies, we considered whether 2’-FL and 6’-SL
could dock into the LPS-binding pocket of TLR4 as an explanation
of their ability to inhibit TLR4 signaling and prevent NEC. To assess
this possibility directly, we performed molecular modeling studies
of binding using Autodock VinaTM in PyRxTM. As shown in Fig. 6,
both 2’-FL and 6’-SL were found to dock with relative affinities of
−5.6 and −6.7 kcal/mol, respectively, into the narrow, deep
pocket of the TLR4-MD2 complex (Fig. 6a, b). This pocket is
thought to bind LPS through a combination of internal hydro-
phobic residues and positively charged residues lining the rim of
the cavity. Importantly, and in contrast, LAT was found to be a
poorer fit (Fig. 6c), and its docking score into the same cavity is
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only −4.8 kcal/mol, which is consistent with the lack of protective
activity of LAT against TLR4 signaling or NEC in Fig. 1. Taken
together, these findings reveal that 2’-FL and 6’-SL inhibit
TLR4 signaling through direct binding, providing a direct
mechanism to explain their protection against the development
of NEC in mice and piglets.

DISCUSSION
We now demonstrate that the HMOs 2’-FL and 6’-SL play important
roles in preventing the development of NEC in both mice and
piglet models. In defining their mechanisms of action, we show
that 2’-FL and 6’-SL, but not the control lactose backbone, inhibit
TLR4 signaling in cultured enterocytes, as well as in intestinal
explants from mice and humans, an effect that was revealed
through computational analysis to involve direct binding to the
LPS docking pocket. Given the critical role of TLR4 in the
pathogenesis of NEC,4 these findings provide an explanation as
to how HMOs can prevent NEC and also explain their protective
effects on intestinal epithelial apoptosis and mucosal barrier injury.
Perhaps most importantly, these findings suggest the possibility
that HMOs may soon be part of the armamentarium of tools that
could be administered to neonates at risk of NEC, with the hope of
either preventing or treating this devastating disease. Further, ours
is the first study to evaluate both 2’-FL and 6’-SL alone or in
combination, to evaluate their roles in mouse, piglet and human
tissue, and to link HMO effects to the inhibition of TLR4 signaling.
While we now show that HMOs 2’-FL and 6’-SL exert their NEC

protective effects through TLR4 inhibition, other protective mechan-
isms have been described and are almost certain to play
contributing roles. Specifically, prior authors have shown that 2’-FL
and disialyl-lacto-N-tetraose act as prebiotics with putative effects on
the ability of bacteria to bind to the colonic epithelium.28 In addition,
HMOs are thought to encourage the growth of Bifidobacterium that
are associated with a non-inflammatory state within the intestinal
mucosa, suggesting a possible protective mechanism.29 While
certainly plausible, it is not clear how these various oligosaccharides
would interface with the rich oligosaccharides containing mucus
layer, which itself has important effects on the microflora, and which
would seemingly be endowed with oligosaccharides at much
greater concentrations than that of any exogenously provided
molecules. More recently, Pierro and colleagues have revealed that
HMOs can modify the transcriptional profile of the intestinal
epithelium, resulting in a shift toward goblet cells, with subsequent
protective effects on the intestinal mucosa and protection from
barrier injury.30 Our group has shown using cultured endothelial
cells that the addition of HMOs can lead to an induction of the
vasodilatory enzyme endothelial nitric oxide synthase (eNOS),
resulting in the observation that mesenteric perfusion is significantly
elevated in HMO-fed mice, and that the eNOS inhibitor can reverse
the proactive effects of HMO for NEC.11 Given the various differences
in the proposed and also demonstrated mechanisms of action of
individual HMOs, additional studies will be required in order to
evaluate their roles as preventive strategies specifically for infants at
risk for the development of NEC.
In summary, we have now shown that 2’-FL and 6’-SL—two HMOs

—act to prevent NEC in mice and piglet models and that our
docking studies predict that these molecules interact with the LPS-
binding site of TLR4, providing a mechanism of action. Taken
together, we propose that the addition of 2’-FL and 6’-SL, either
alone or in combination, can exert anti-NEC effects and may offer
new approaches for the prevention of this devastating disease.
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