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Diagnostic methods for neonatal hyperbilirubinemia: benefits,
limitations, requirements, and novel developments
Christian V. Hulzebos1, Libor Vitek2, Carlos D. Coda Zabetta3, Aleš Dvořák2, Paul Schenk4, Eline A. E. van der Hagen5,6,
Christa Cobbaert4 and Claudio Tiribelli7

Invasive bilirubin measurements remain the gold standard for the diagnosis and treatment of infants with severe neonatal
hyperbilirubinemia. The present paper describes different methods currently available to assess hyperbilirubinemia in newborn
infants. Novel point-of-care bilirubin measurement methods, such as the BiliSpec and the Bilistick, would benefit many newborn
infants, especially in low-income and middle-income countries where the access to costly multi-analyzer in vitro diagnostic
instruments is limited. Total serum bilirubin test results should be accurate within permissible limits of measurement uncertainty to
be fit for clinical purposes. This implies correct implementation of internationally endorsed reference measurement systems as well
as participation in external quality assessment programs. Novel analytic methods may, apart from bilirubin, include the
determination of bilirubin photoisomers and bilirubin oxidation products in blood and even in other biological matrices.

Pediatric Research (2021) 90:277–283; https://doi.org/10.1038/s41390-021-01546-y

IMPACT:

● Key message: Bilirubin measurements in blood remain the gold standard for diagnosis and treatment of severe neonatal
hyperbilirubinemia (SNH). External quality assessment (EQA) plays an important role in revealing inaccuracies in diagnostic
bilirubin measurements.

● What does this article add to the existing literature? We provide analytic performance data on total serum bilirubin (TSB) as
measured during recent EQA surveys. We review novel diagnostic point-of-care (POC) bilirubin measurement methods and
analytic methods for determining bilirubin levels in biological matrices other than blood.

● Impact: Manufacturers should make TSB test results traceable to the internationally endorsed total bilirubin reference
measurement system and should ensure permissible limits of measurement uncertainty.

INTRODUCTION
International guidelines for the management of neonates with
unconjugated hyperbilirubinemia include treatment thresholds
that are based on total serum bilirubin (TSB) concentrations.
Bilirubin measurements are key to the management of neonatal
jaundice. An essential prerequisite for bilirubin measurements
is that they are accurate and precise to manage jaundiced
newborn infants appropriately. Over the past decades, bilirubin
measurement for severe neonatal hyperbilirubinemia (SNH)
identification has constituted a major challenge. A vast number
of methods to determine bilirubin in human serum have been
developed since it was first reported in 1858 by Frerichs
(Gmelin reaction).1,2 Van den Bergh and Snapper described
their important diazo reaction in 19133 and the colorimetric
determination by Malloy and Evelyn was published in 1937.4

This was followed by Jendrassik and Grof who refined and
modified the diazo reactions in 1938.5 For a thorough under-
standing in the subsequent paragraphs of the so-called science
of measurement and of terms such as TSB accuracy, trueness,
metrological traceability, and measurement uncertainty, we

refer to the definitions and terminology provided by the
International Vocabulary of Metrology.6

DIAGNOSTIC METHODS—INVASIVE TOTAL SERUM BILIRUBIN
MEASUREMENTS
Multiparameter instruments
Routine laboratory bilirubin measurement is commonly performed
with multichannel instruments that provide values for conjugated
(direct), unconjugated (indirect), and TSB concentrations. They
usually base the direct determination of bilirubin on diazo
(Jendrassik Grof) and vanadate oxidase chemical reactions, or on
variants.7 On account of the high costs involved and the
requirement of specialized personnel, these instruments are used
mainly in laboratories of large hospitals. Even though the
concentrations supplied by these instruments were considered
as the clinical “reference” for TSB, inconsistencies amongst the
different laboratory methods have been observed for decades.8,9

In 2010, in the Netherlands, Cobbaert and colleagues analyzed the
accuracy of TSB levels nationwide as measured by the most
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commonly used multiparameter instruments and in vitro diag-
nostic devices (IVDs).10 In this study, a pooled human serum was
supplemented with unconjugated bilirubin to obtain target values
of 26.7 µmol/L (95% confidence interval (CI) range of 26.1–27.3
µmol/L), and 68.7 µmol/L (95% CI range of 67.2–70.2 µmol/L), as
assigned with the Doumas reference measurement procedure
(RMP) of the Joint Committee for Traceability in Laboratory
Medicine (JCTLM) listed reference laboratory in Hannover,
Germany. The Doumas RMP can be considered as the gold
standard. The two value-assigned specimens were measured in
183 medical laboratories and in-house by IVD manufacturers using
their respective routine methods. This procedure allows the
accuracy of results produced by Dutch medical laboratories and
IVD manufacturers to be assessed and to be compared to the
target values assigned with an internationally recognized refer-
ence method. The interlaboratory variability and inaccuracy of TSB
levels observed among manufacturers and individual laboratories
were substantial. This indicates that the concept of metrological
traceability, which leads to exchangeable TSB results, was not
uniformly adopted in the commercially available IVDs. Also, in-
house results produced by individual IVD manufacturers demon-
strated significant differences. Similar discrepancies were
observed by Greene and colleagues when comparing the
performance of a Beckman AU680 instrument versus Ortho-
Clinical-Diagnostics’ VITROS device.11

It is common in neonatal intensive care units (NICUs) to find blood
gas analyzer instruments like Radiometer ABL models or the
RAPIDPoint models produced by Siemens HealthCare Diagnostics
Inc.12 Blood gas analyzer instruments estimate TSB indirectly by using
whole blood co-oximetry, whereby whole blood is hemolyzed and
serum equivalent bilirubin concentration calculated. Previously, the
comparability of blood gas analysis-derived TSB levels and TSB levels
measured on routine laboratory instruments was assessed. In 2018,
Lano and colleagues reported a comparative analysis of neonatal TSB
levels by whole blood co-oximetry (Radiometer® ABL90) against
plasma bilirubin methods (Roche Diagnostics Cobas® C-601 and Ortho
Clinical Diagnostics VITROS® 350).13 Results showed good correlation
in comparison to the Roche plasma diazo method, with a mean bias
of −1.0 µmol/L across the bilirubin range examined and a 95%
confidence interval range of −20.00 to 19.00 μmol/L. However, a
statistically significant underestimation was found against the VITROS®
350 machine with a mean bias of –4.4 µmol/L over the bilirubin range
examined and a 95% confidence interval of –29.90 to 21.10 μmol/L.
Performance of the GEM Premier 4000® blood gas analyzer
(Instrumentation Laboratory, Bedford, MA) was also assessed showing
a wide range of differences compared to VITROS, with a negative bias
at low concentrations of bilirubin and a positive bias at higher
concentrations. Moreover, hemoglobin concentration and hemolysis
affected the recovery of the GEM blood gas analyzer results.14

Bench-top bilirubinometers
Other commonly used instruments for TSB measurement are
bench-top bilirubinometers. Based on direct spectrophotometry,
these are simple and rapid alternatives for assessing TSB that

require a minimal sample for analysis. In practice, an undiluted
serum is used to measure the bilirubin absorbance (at 454 nm)
and hemoglobin (at 454 and 528 nm). Hence, subtracting the
absorbance at 528 nm from that at 454 nm yields a value that can
be attributed largely to bilirubin. The prevalence of the other
forms of bilirubin and chromophores in older children and adults
limits the use of this technique to neonates younger than
2–3 weeks of age.15 Two types of direct spectrometry instruments
are available commercially: those using sample cuvettes such as
UNISTAT (Reichert Technologies, USA), and those using hematocrit
capillary tubes like One Beam (Ginevri, Italy). Although there are
many options available commercially of instruments based on
direct spectrophotometry, validation studies of this method are
limited. The advantage of bilirubinometers is the short turnaround
times for results as shown in Table 1. The requirement of sample
processing, however, and the need for additional instrumentation
such as centrifuge and trained laboratory personnel limits the use
of this method for TSB determination substantially.16,17

Hand-held point-of-care (POC) bilirubin instruments
Neonatal jaundice identification has always posed a challenge,
mainly in LMICs.18,19 Over the last years, with the advancement of
technology, different solutions have emerged for SNH screening. In
2017, Keahey and colleagues reported validation data of a new
screening device under development, the BiliSpec, in 94 blood
samples of 67 newborn infants between the day of birth and
24 days.20 This screening method is based on a battery-powered
low-cost reader designed to quantify serum bilirubin levels from
whole blood applied to a lateral flow card.20 From a maintenance
point of view, a drawback is that this device requires daily
calibration for routine use. The study showed a high correlation (r
= 0.97) of BiliSpec against a bench-top bilirubinometer (UNISTAT;
Reichert Technologies) within a TSB range from 19 to 393 µmol/L
with a mean (± SD) value of 181 ± 68 µmol/L and differences up to
51 µmol/L (68% of total samples deviated ≤ 17 µmol/L). The mean
bias between bench-top TSB and BiliSpec bilirubin readings was 5
µmol/L, with 95% limits of agreement of −29 to 38 µmol/L. In
practice, lateral flow cards are designed to accept drops of whole
blood obtained directly from a heel or finger prick. The separation
from corpuscular components of the blood allows the flow of
plasma into the nitrocellulose (NC) membrane by capillarity. Once
the operator has visually interpreted that the NC membrane is
saturated, the card is inserted into the reader for bilirubin
measurement. The authors report that the design of the card
allows controlling the volume of blood applied. The variability,
however, in bilirubin test results could be the effect of an
undersaturation or oversaturation of the NC membrane. In recent
years, TSB measurement by another POC diagnostic method on
capillary or venous blood samples became available with the
Bilistick® System 1.0 (BM-BS 1.0 - Bilimetrix, Italy).21 This direct
method consists of a hand-held, rechargeable battery reflectance
reader and test strips composed of a blood plasma separator
coupled with an NC membrane, both encased in a plastic cassette.
After loading the whole blood sample on the strip (35 µL -

Table 1. Characteristics of commonly used instruments to measure bilirubin concentrations in neonates.

Multiparameter instruments and
in vitro diagnostic devices (IVDs)

Bench-top bilirubinometers Hand-held POC instruments

Costs High Moderate-low Low

Time to test result Hour Minutes Minutes

Blood volume Large Moderate-small Small

Accuracy and precision Acceptable Variable Variable

Assessment in external
quality assessment (EQA)
programs

Yes No No
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hematocrit up to 70%), it requires less than 100 s for serum
separation and NC membrane saturation, depending on the
hematocrit of the sample (identified automatically by the reader
using light reflectance measurements to detect serum flow
stabilization). The reader measures reflected light from the
plasma-saturated NC membrane, using a light-emitting diode
(LED) with an emission peak at 465 nm for quantifying bilirubin. A
second LED of 570 nm detects whether hemoglobin contamination
is present. The instrument is internally calibrated to optimize
sensitivity and provides TSB measuring in a range of 17 to 684
µmol/L. The accuracy of the Bilistick® System 1.0 device was
documented by comparing results with TSB measurements from
routine laboratories. In 2018, Greco and colleagues reported the
performance of the Bilistick® System 1.0 for identifying SNH in a
multi-country approach in 1911 newborns. They showed that the
TSB level measured by Bilistick® System 1.0 was not significantly
different from laboratory TSB values in all four countries.22 The
Bilistick® System had a positive predictive value (PPV) of 92.5% and
a negative predictive value (NPV) of 92.8%. When Greco and
colleagues compared the Bilistick® System 1.0 with both transcu-
taneous bilirubinometry (JM-103) and laboratory TSB results
(Synchron CX PRU 16360, Beckman-Coulter, USA), they found the
Bilistick® System 1.0 to be a good alternative to transcutaneous
bilirubin determination for early diagnosis and proper management
of neonatal jaundice.23 In 2018, Thielemans and colleagues reported
a rather high failure rate for the Bilistick® System 1.0, especially in
highly humid climatic conditions and at high hematocrit values.24 In
2020, Kamineni and colleagues called to further improve the
accuracy of the Bilistick.25 Despite of these observations, the
reliability and clinical use of the Bilistick® System 1.0 for measuring
TSB was considered to be appropriate in other studies performed
under similar weather conditions.22,26,27 POC diagnosis of hyperbi-
lirubinemia has also been claimed by Tabatabaee and colleagues
who reported fast and reproducible TSB measurements in whole
blood with a recently developed smartphone-based bilirubin assay
kit using photoluminescent bacterial cellulose nanopaper.28 One of
the main advantages of the portable POC bilirubin instruments is
the much shorter turnaround time, that is the interval between
collecting the specimen and reporting the TSB result, compared to
commonly used multi-analyzer instruments for TSB tests (Table 1).27

Low-cost POC instruments appear to be an effective alternative for
the measurement of TSB in newborns, particularly when conven-
tional laboratory methods are not available or inaccessible.
As shown by comparative analysis, the unacceptable high

variability in TSB measurement among methods continues to pose
a real challenge to result harmonization of clinical routine
methods. When Lo and colleagues evaluated the trueness of
neonatal TSB using value-assigned, commutable specimens in four
major instrument groups (Dimension, Olympus, Synchron, and
VITROS), they found a systematic error in TSB measurement
associated primarily with the failure of instrument manufacturers
to produce reliable bilirubin calibrators.17 High variabilities were
also observed when comparing TSB levels in patient specimens on
multiparameter analyzers, transcutaneous bilirubin, and direct
spectrophotometry instruments.29 Other potential sources of
inaccuracy include sample integrity and sample handling. These
were, however, typically identified as random errors. An in-depth
analysis of results reported by the College of American
Pathologists Neonatal Bilirubin PT Survey from 2011 to 2015,
showed how changes in TSB test results—when trying to
recalibrate instruments—can lead to completely opposite clinical
interpretations.30 Standardization of TSB measurement remains a
formidable challenge for laboratory medicine.31,32

The relevance of correctly implementing the internationally
endorsed reference measurement systems
Inaccuracy and non-equivalence of TSB results among IVD
manufacturers are well known.17,30 But why are TSB tests not

standardized adequately? It appears that there is insufficient
awareness of the metrological traceability concept and its essential
implementation through an unbroken chain of calibration hierar-
chies. Standardization is key to guaranteeing that TSB test results
correspond properly to internationally agreed standards of a higher
order (Fig. 1).33,34 To achieve global standardization of measure-
ment results in medical laboratories, the International Federation of
Clinical Chemistry and Laboratory Medicine (IFCC) and the JCTLM
promote the concept of metrological traceability of test results to
internationally accepted standards. For proper commercial test
calibration, medical test results must be anchored to higher-order
reference materials and higher-order reference procedures. In the
case of total bilirubin, tests were standardized with a Doumas
reference method for bilirubin (using diazo-based spectrophoto-
metry) and National Institute of Standards and Technology Standard
Reference Material (NIST SRM) 916a reference material according to
a strict calibration hierarchy. The former NIST SRM 916a reference
material went missing years ago (it ran out of stock) and consisted
of three isomers, two of which were not present in native human
sera. It was decided therefore to use the specific molar extinction
coefficient (ε) of 7649m2/mol for bilirubin quantitation as it is
superior to control the accuracy of a standard solution. Conse-
quently, an updated and extended reference measurement system
(RMS) was established and has been in place since 2018. To that
end, Klauke and colleagues re-evaluated the Doumas candidate
Reference Method and established a next-generation RMS without
any need for a calibrator or SRM.35 Currently, in this RMS total
bilirubin is described as a so-called operative measurand, defined by
a set of measurement parameters.
The German Society for Clinical Chemistry and Laboratory

Medicine runs the Reference Laboratories International Federation
of Clinical Chemistry (RELA IFCC) external quality assessment
scheme. It periodically checks how to reference laboratories
perform using their RMP, i.e., the gold standard for total bilirubin
(http://www.dgkl-rfb.de:81).
Notwithstanding the existence of approved reference measure-

ment systems (the former Doumas and AACC RMS (1985) versus
the new RMS (2018)),35 the levels of standardization and trueness
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Fig. 1 Reference measurement system and metrological trace-
ability chain for TSB. This measurement system was adapted from
ISO 17511:2020 and based on the re-evaluated reference measure-
ment procedure from Klauke and colleagues.35 Total serum bilirubin
is described as an operative measurand, as defined by the reference
measurement procedure. Through this reference measurement
system, with its unbroken chain of calibrator materials and methods,
bilirubin test results are anchored and made traceable to the
International System of Units. Measurement uncertainty should
remain within allowable limits to make the test fit for the purpose. SI
International System of Units; ε the molar absorption coefficient of
bilirubin (conventional quantity value of 7649 m2/mol); Mfr, IVD
manufacturer who supplies CE-IVD kits for routine analyses to the
European market.
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of routine total bilirubin test results consistently differ amongst
manufacturers—as demonstrated in external quality assessment
(EQA) programs that use commutable EQA samples—and has
often been questioned. Yet, TSB tests can only be declared fit for
clinical purposes if results are accurate within permissible limits of
measurement uncertainty. The latter is often translated into
desirable analytic performance specifications derived from biolo-
gical variation data. In the case of TSB, rational and desirable
analytic performances in adults are a CVa (analytical variation) of
<12.8%, an allowable bias of less than 10%, and a total allowable

error of 31.1% (https://biologicalvariation.eu/).36 For neonatal
bilirubin no biological variation data are available. Consequently,
pediatricians can determine the analytic performance criteria
needed to make the neonatal bilirubin test fit for purpose
themselves.

Relevance of accuracy-based external quality assessment for
trueness verification
External quality assessment (EQA) plays an essential role in
helping to assure the quality of laboratory medicine on a daily
basis. EQA schemes may reveal significant and systematic
between-method variability for measurements of the same
analyte in the same specimen. Detection of between-method
variability through EQA is also a major driver for further
improvement of test standardization.
Medical laboratories are obliged to perform an EQA and when

used effectively it can provide many opportunities for improving
test accuracy. In the Netherlands, an accuracy-based EQA was
developed by the Dutch Foundation for Quality Assessment in
Medical Laboratories (Stichting Kwaliteitsbewaking Medische
Laboratoria, SKML) for general chemistry analytes. Thus far,
however, these did not include TSB. To develop an accuracy-
based EQA, native, commutable, value-assigned EQA samples are
essential to give medical laboratories insight into trueness and
imprecision of their bilirubin tests as well as other chemistry tests.
In this way, inaccuracy, and absolute bias as a result of, for
example, lot-to-lot variation or method changes, can be mon-
itored in a longitudinal and sustainable way by every participating
laboratory. To date, no proven commutable EQA samples have
been developed for TSB. This has not been accomplished yet
because the EQA samples used until now are spiked with either
unconjugated and/or conjugated bilirubin. It was demonstrated
that the TSB recoveries are affected by the spiking material,
hampering trueness verification. Nevertheless, interlaboratory and
intermethod variations are monitored bi-weekly for TSB in
approximately 185 Dutch laboratories. Figure 2 demonstrates
the interlaboratory and intermethod variations in Dutch medical
laboratories using common reagents. In the recent EQA surveys,
SKML 2019.4 and SKML 2020.1, overall interlaboratory CVs ranged
from 3% to 6% for TSB in the concentration range of 13 to 110
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a Fig. 2 Total serum bilirubin measured in EQA samples by ~185
medical laboratories, common IVD manufacturers, and a JCTLM-
endorsed reference laboratory. Pooled human serum was supple-
mented with bilirubin. Serum samples were dispensed, frozen below
−70 °C, and shipped on dry ice to the laboratories participating in
the regular general clinical chemistry external quality assessment
program of the Dutch Foundation for Quality Assessment in Medical
Laboratories (SKML). In 2009 (a) and 2020 (c), samples were
supplemented with unconjugated bilirubin alone (>98%, mixed
isomers, Sigma-Aldrich). In 2019 (b), both unconjugated bilirubin
and conjugated bilirubin were added. Each participating laboratory-
measured total bilirubin. Results are plotted with the high-
concentration sample on the x axis and the low-concentration
sample on the y axis (17.1 µmol/L= 1mg/dL). Colored squares
represent mean bilirubin concentrations ± 1 standard deviation in
both samples, as measured by the routine medical laboratories in
the quality assessment program and using the methods by the
respective manufacturers as indicated. The numbers inside the
colored squares indicate the numbers of participants for each
category. In panel a, stars represent bilirubin concentrations
measured in-house by the corresponding manufacturers. The red
dots are the targets set in the JCTLM-listed reference laboratory of
Prof. Gerhard Schumann and Dr. Denis Grote-Koska in Hannover,
Germany (Institut für Klinische Chemie - Zentrallabor, Medizinische
Hochschule Hannover). Panel a was adapted from Cobbaert and
colleagues.10 Data for panels b and c were supplied by the Dutch
Foundation for Quality Assessment in Medical Laboratories and
used with their permission.
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µmol/L. The interlaboratory spreading has improved compared to
the situation in 2009 (data not shown).

Other methods to study bilirubin metabolism—determination of
bilirubin in tissues and cells
It is well known that the concentration of unconjugated free
bilirubin correlates better with bilirubin neurotoxicity in compar-
ison to total serum bilirubin concentration. Because bilirubin
behaves like a real signaling molecule,37 its blood concentrations
can serve only as a rough surrogate marker of bilirubin
metabolism within the cells. Although serum or plasma bilirubin
concentrations are in dynamic equilibrium with other biological
compartments, its tissue and cell concentrations differ substan-
tially even within one organ as proved, for example, in the
brain.38 Knowledge of bilirubin kinetics and dynamics within
individual human body compartments is essential to understand
its role in the pathophysiology of various clinical conditions.
Besides, bilirubin undergoes extensive metabolization, in parti-
cular, due to oxidation and photooxidation processes, forming
tetra-, tri-, di- as well as monopyrrolic oxidation derivatives, which
are likely to exert biological activities and may serve as important
biomarkers of pathological conditions. Because cellular bilirubin
concentrations are within the submicromolar range, the standard
analytic, mostly diazo reaction-based methods, which are used in
routine clinical chemistry, have insufficient sensitivity, and do not
enable quantitation of bilirubin in the cells, tissues, and organs.
This drawback of standard clinical chemistry methods is
eliminated by using high-performance liquid chromatography
(HPLC) techniques. These techniques enable accurate separation
and quantitation of individual bilirubin fractions, such as delta
bilirubin, unconjugated bilirubin, bilirubin monoglucuronosides,
and diglucuronosides, and can be used under specific circum-
stances even in clinical settings.39 Simultaneously, HPLC methods
overcome the overestimation of bilirubin concentrations caused
by the presence of unidentified diazo-positive compounds
distinct from bilirubin.40 High-performance liquid chromatogra-
phy methods are also capable of differentiating various bilirubin
isomers present under certain conditions in the biological
systems.41 Importantly, determination of the bilirubin subfrac-
tional changes, including detection of delta bilirubin, may help in
the prediction of the risk of human diseases, such as cholestasis
or gallstone disease, or in the differential diagnosis of such
diseases.42,43 Interestingly, the first method for separation and
quantitative estimation of serum and biliary bilirubin fractions
from serum and of three bilirubin fractions from bile was
published as early as 1966.44 Since that time, various chromato-
graphic approaches were explored and a number of methods
developed, including separation of native as well as derivatized
bilirubins, such as ethyl anthranilate azo pigments or bilirubin
methyl esters (for a review see ref. 44). These methods were
gradually improved. The separation was enhanced by stepping
from isocratic, normal-phase HPLC, to various gradient, reverse-
phase systems.45 The use of internal standards, such as
xanthobilirubic acid40 or mesobilirubin,46 led to improvements
in accuracy. Further enhancement was reached with the employ-
ment of mass spectrometric detection.47 With these analytic
advances, methods for the detection of bilirubin and its
metabolites in tissues and cells were established. In contrast to
the early insufficient attempts to determine bilirubin in brain
tissue, which were based on spectrophotometry,48 HPLC-based
methods demonstrated much higher sensitivity and accuracy.
Using a newly developed HPLC method based on C8-column
separation with the implementation of the methanol/water/
tetrabutyl ammonium hydroxide mobile phase and equipped
with the diode array detector, it was possible to detect as little as
10 pmol of bilirubin per gram of tissue.46 This method was used in
experimental studies quantifying bilirubin in numerous organs,
including the heart,49 and especially brain tissues,38,50–56 which

are essential to understand the pathophysiology of bilirubin
neurotoxicity.

Determination of bilirubin photoisomers and oxidation products
With increasing knowledge on the biological importance of
bilirubin derivatives formed during oxidation processes,57 sensi-
tive and accurate analytic methods are becoming essential. These
derivatives include tetra-, tri-, di-, and monopyrrolic bilirubin
oxidation derivatives. Probably the most clinically important are
bilirubin photoisomers formed during PT of severe unconjugated
hyperbilirubinemia. However, the determination of these bilirubin
derivatives in biological material is not trivial, because of the lack
of commercial standards as well as instability of the pigments. In
terms of the determination of bilirubin photoisomers, several
methods were published.58 Previously, an improved analytic HPLC
method for the simultaneous determination of major bilirubin
photoisomers, lumirubin, Z,E- and E,Z-bilirubins, and bilirubin was
described using lumirubin as well as internal standards with
tandem mass detection.57 The method was validated on serum
samples of jaundiced neonates treated with PT. It has the
potential of facilitating our understanding of the kinetics and
biology of bilirubin photoproducts, which to date are practically
unknown. Research into other bilirubin oxidation products is also
progressing. Tripyrrolic biopyrrins, which are clinically relevant
markers of increased oxidative stress, can be analyzed by
immunochemical methods using specific anti-bilirubin monoclo-
nal antibodies.59 Reliable analytic methods for dipyrrolic propent-
dyopents and monopyrrolic bilirubin oxidation products, Z-BOX A
and B, with potential clinical implications were also published
recently.60,61 Finally, tetrapyrrolic compounds and their oxidation
products were also studied in plants recently using these novel
analytic methods and it will certainly improve our understanding
of the biological relevance of these pigments.62,63

Summary and conclusion
Invasive TSB measurements remain the gold standard on which
the definitive diagnosis of SNH is based. According to international
guidelines for neonatal jaundice management, the clinical decision
for treatment of neonatal hyperbilirubinemia should be based on
bilirubin levels measured in blood by diagnostic instrumentation.
Any non-invasive bilirubin estimation must be confirmed by an
invasive diagnostic method. Bench-top bilirubinometers and hand-
held POC instruments have a few advantages over multiparameter
instruments of being cheaper and faster. Test results are available
immediately compared to results of TSB measurements using
multiparameter instruments in a central laboratory. In addition, less
blood is needed as the bench-top biliribinometers and hand-held
POC instruments require minimal sample volumes. Novel POC
bilirubin measurement methods, such as the BiliSpec and the
Bilistick® System are of interest for many newborn infants,
especially in LMICs, where the access to costly multiparameter
instruments is limited. The main disadvantages of hand-held POC
instruments and bench-top biliribinometers are that agreement
with routine laboratory TSB varies and that they are still not
included in EQA programs. TSB test results on these instruments
should be accurate within permissible limits of measurement
uncertainty to be fit for clinical purposes. The key to accomplish
this is anchoring TSB test results to the latest internationally
endorsed RMS for bilirubin. In addition, participation in EQA
programs for TSB in the neonatal range, and close interdisciplinary
cooperation between physicians and clinical chemists are needed
to assure the desired analytic and clinical performance of TSB
testing. It is surprising that after bilirubin was first measured two
centuries ago, uncertainty still exists on how to correctly assess the
concentration of this yellow pigment. Universal implementation of
endorsed calibration hierarchies for test standardization remains a
daunting task. Recently, analytic methods for bilirubin measure-
ment in biological matrices, such as HPLC thermal lens
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spectrometry, spectrophotometric, molecular imprinting, and
piezoelectric techniques were developed. These methods employ
novel techniques that could further accelerate bilirubin research to
improve the management of newborn infants with SNH.
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