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Foetal growth restriction (FGR) and being born small for gestational age (SGA) are associated with neurodevelopmental delay. Early
diagnosis of neurological damage is difficult in FGR and SGA neonates. Electroencephalography (EEG) has the potential as a tool for
the assessment of brain development in FGR/SGA neonates. In this review, we analyse the evidence base on the use of EEG for the
assessment of neonates with FGR or SGA. We found consistent findings that FGR/SGA is associated with measurable changes in the
EEG that present immediately after birth and persist into childhood. Early manifestations of FGR/SGA in the EEG include changes in
spectral power, symmetry/synchrony, sleep-wake cycling, and the continuity of EEG amplitude. Later manifestations of FGR/SGA
into infancy and early childhood include changes in spectral power, sleep architecture, and EEG amplitude. FGR/SGA infants had
poorer neurodevelopmental outcomes than appropriate for gestational age controls. The EEG has the potential to identify FGR/SGA
infants and assess the functional correlates of neurological damage.

Pediatric Research (2022) 92:1527-1534; https://doi.org/10.1038/541390-022-01992-2

IMPACT:

® FGR/SGA neonates have significantly different EEG activity compared to AGA neonates.
® EEG differences persist into childhood and are associated with adverse neurodevelopmental outcomes.
® EEG has the potential for early identification of brain impairment in FGR/SGA neonates.

INTRODUCTION

Foetal growth restriction (FGR) is a failure of the foetus to meet
normative in utero growth potential. It is defined using umbilical
artery doppler, birth weight for age, physiological determinants,
neonatal features of malnutrition, and in utero growth
retardation.”? It differs from a definition of small for gestational
age (SGA) which is typically defined as a birth weight less than the
10th percentile for a given gestational age, irrespective of any
pathology. Nevertheless, being born either FGR or SGA is
associated with neurodevelopmental delay.*

FGR is commonly caused by placental insufficiency, resulting in
inadequate delivery of oxygen and nutrients from the placenta to
the developing foetus. FGR newborns are at an increased risk of
mortality and morbidity.”> Chronic nutritional deficiencies have
been shown to impair brain development in FGR infants®® with
adverse long-term neurological outcomes including language
delays, learning, and behavioural problems, and cerebral palsy
(CP)>'%12 FGR infants are 5-30 times more likely to develop
CP."®"® FGR infants born <35 weeks gestation score lower than
appropriate for gestational age (AGA) children across a range of
neurodevelopmental assessments'® with neurodevelopmental
delays reported in 24-53% of FGR infants at 2 years of age.'>'®

Many babies with FGR are undiagnosed until the time of birth.'”
Neuroimaging studies, predominantly ultrasound and magnetic
resonance imaging (MRI), have been investigated as potential
methods of screening for neonatal brain injury. Cranial

ultrasounds are readily available, however, rely on operator
proficiency and lack sensitivity when detecting subtle or diffuse
brain injuries.'”® Neonatal MRIs are more sensitive and can detect
subtle neuropathology by high-resolution visualisation of struc-
tural changes.' Imaging studies have shown persistent structural
brain deficits in infants with FGR that remain at 1 year of age.'*?°
However, implementing MRI screening on a large scale is costly
and resource intensive.

Electroencephalography (EEG) is a useful clinical tool for the
early identification of adverse brain outcomes in the neonatal
population.’* EEG is a well-established method that is non-
invasive and monitors changes in real time. It can continually
measure cortical function over long periods of time and is
commonly used as an aid in the assessment of seizures, sleep, and
functional neurological outcomes.>*? It also reveals clear, distinct
changes with brain maturation in infants, children, and
adolescents?®?” and has been demonstrated to be a predictor
of later neurodevelopmental deficits in preterm infants.?® How-
ever, its routine use towards optimising neurodevelopment
outcomes in this cohort is impeded by the tendency for artefact
affected recordings and limited resources in its clinical interpreta-
tion.?® In this review, we summarise the literature on the effects of
FGR/SGA on the EEG. We collate findings on EEG and amplitude-
integrated EEG (aEEG) changes in FGR/SGA infants over a range of
gestational ages (GA) from immediately after birth into early
childhood.
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METHODS
Search category—EEG studies on FGR/SGA neonates
A review of the literature was performed using PubMed, BMJ,
Cochrane Library, CINAHL, Embase, and Web of Science. Inclusion
criteria: (1) published in a peer-reviewed journal on the specific
topic of EEG on FGR/SGA neonates with both FGR/SGA and control
(AGA) groups included in the study and (2) published in English.
There was a total of 35 studies, and 7 met the inclusion criteria. An
additional paper was found by reviewing the reference lists from
the papers included. Assessment of study quality was undertaken
using the Strengthening the Reporting of Observational Studies in
Epidemiology statement checklist STROBE.*® Each checklist item
was categorised as ‘yes' (met the criteria), ‘no’ (did not meet the
criteria), or ‘not applicable’. Each manuscript was reviewed by two
co-authors (JW and NS). Each reviewer evaluated the article
content independently. Discrepancies were resolved by consensus
among the reviewers. Due to the limited number of studies and
heterogeneity of outcome measures in the studies, meta-analysis
was not undertaken.
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165% present*
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15% present
50% present
31% present
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Early aEEG studies on FGR/SGA neonates

The aEEG is a time and amplitude compressed summary measure,
or trend, of the EEG. It is typically recorded with a limited number
of electrodes (2 or 4 electrodes placed, most commonly, at frontal,
central or parietal regions). It is simple, easy to interpret, and
commonly used for brain monitoring in the neonatal intensive
care unit (NICU).?" The aEEG is typically interpreted using visual
inspection of the lower and upper margins of the aEEG trend over
a period of 3-6 h at a time. The values of these margins can be
evaluated directly or used to define distinct patterns such as
continuous normal voltage, discontinuous, burst suppression, and
seizure. The evolution of the aEEG over time can also be used to
assess the presence or absence of sleep-wake cycling (SWGC; the
oscillation between periods of awake, indeterminate, quiet, and
active sleep). These measurements can further be combined into a
single representative score that is used for prognostication.%33
There is evidence that supports improved long-term outcomes
with the presence of SWC within the first few days of life in
preterm infants.?® We found four studies that used aEEG to assess
the effect of FGR/SGA on cortical function (Table 1). These studies
encompass extremely preterm (<28 weeks), very preterm
(28-32 weeks), and moderate to late preterm (32-37 weeks)
FGR/SGA and AGA neonates.>* As FGR infants are a subgroup of
SGA infants, we report and analyse separately with similarities
drawn where appropriate.

Benavente-Fernadez et al. showed that immediately after birth
(within 12 h), a significantly higher percentage of extremely and
very preterm SGA neonates with normal neurodevelopment had
developed SWC compared to AGA controls (SGA 50%; AGA 15%).°
The selection of SGA infants with a good prognosis attempts to
define a ‘brain spared’ group. In growth-restricted infants, brain
sparing is a foetal response to limited resources and involves a
redistribution of blood flow to vital organs (such as the brain) at
the expense of other body parts resulting in asymmetric growth
restriction. Although brain sparing is considered a protective
mechanism in FGR, recent evidence has shown asymmetric FGR
infants may have worse neurodevelopmental outcomes compared
with symmetric FGR infants.2'*35-3 Furthermore, not all SGA
infants are growth restricted and may be developing along a
lower, but normal, growth trajectory.? This study raises the
interesting prospect of EEG monitoring immediately after birth
as a form of evoked potential where the analysis time is hours
rather than seconds. Many aEEG/EEG studies focus on the
immediate postnatal period in the search for diagnostic and
prognostic markers.

Schwindt et al. showed that within a week, in a cohort with
similar GA, SWC is more apparent on the aEEG, in general, but the
trend reverses with SWC more prevalent in AGA controls (SGA

12-14 h of life; 46-48 h; 70-72 h
18-24 h; 42-48 h; 66-72 h; day 7;

PMA of EEG

<14 days of life

day 14, day 21, day 28
Within first 48 h life

30 weeks (28.14; 31.14)

Mean GA

27.5 weeks*

26 weeks

28.2 + 2.7 weeks
27.9 + 2.2 weeks
29.57 weeks
(27.89; 30.71)
34.3 + 1.8 weeks
33.7 + 2 weeks

Population (N)
p-SGA (47)
p-AGA (89)
p-SGA (18)
p-AGA (74)
p-SGA (50)
p-AGA (255)
p-FGR (14)
p-AGA (16)

Two biparietal channels

aEEG channel
One channel (P3-P4)
(C3-P3, C4-P4)
One channel (P3-P4)
One channel (C3-C4)

Summary of aEEG studies of FGR/SGA neonates.
GA gestational age, PMA postmenstrual age, SWC sleep-wake cycle, C continuous, D discontinuous, BS burst suppression, prefix t term, prefix p preterm.

1 increased, | decreased in FGR/SGA in comparison to AGA.
*p < 0.05; **p < 0.01; ***p < 0.001.

Schwindt et al., 2015
Benavente-Fernandez
et al, 2017
Griesmaier et al., 2015
Yerushalmy-Feler

et al, 2014

Table 1
Study
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65%; AGA 96%). A trend that alters but holds when infants without
sedatives and cerebral lesions are removed (SGA 84%; AGA
97%).>

Griesmaier et al. showed no differences in aEEG continuity
between SGA and AGA very preterm neonates when recorded
within the first 72 h of life;* although SGA neonates were found
to have a significantly increased number of aEEG bursts per hour
within 24 h of birth (SGA 17.4/h; AGA 10.1/h). The percentage of
time spent in a combined, continuous/discontinuous high voltage
pattern was increased in preterm SGA neonates with these
differences being apparent in the immediate post-natal period
(within 72 h of life).? However, no differences in aEEG background
patterns were reported in extremely preterm SGA neonates by the
second week of life; although SGA neonates were more likely to
have seizures than AGA controls.?

In a moderate to late preterm FGR cohort, Yerushalmy-Feler
et al. examined SWC and reported a similar, but not significant,
trend towards a high proportion of established SWC in FGR
neonates (FGR 50%; AGA 31%) in the aEEG recorded within 48 h of
birth. Yerulshamy-Feler et al. also showed a significant decrease in
aEEG continuity (FGR 74% £ 17; AGA 92% * 16) in moderate to late
preterm FGR neonates within 48 h of life compared with AGA
controls.*'

The findings of aEEG studies suggest that during a period of
post-natal adaption an increased proportion of SGA infants
(<32 weeks GA) establish normal aEEG activities such as SWC
and continuity more rapidly than AGA controls, resulting in more
apparent maturity. These effects of post-natal adaption are,
however, reduced as GA increases. Abnormal aEEG activity (lack
of SWC) appear in SGA/FGR infants as post-natal age increases.>*

EEG studies on FGR/SGA neonates

The EEG is recorded using either a full 10-20 international system
(19-21 electrodes) or a modified version for neonates (9-12
electrodes). In addition to the characteristics observed in the aEEG,
the EEG is visually interpreted for patterns associated with normal
maturation, such as trace discontinue, temporal theta, trace
alternant, synchrony/symmetry, and inter-burst interval, or abnor-
mal function, such as mechanical delta brushes, spikes/sharp
waves, and seizures.*> We found three studies that use EEG to
assess the effect of FGR/SGA on cortical function (Table 2).

In term neonates recorded within 72h of life, Castro Conde
et al. found spectral differences in periods of the EEG with
alternating or discontinuous patterns (patterns predominantly
associated with indeterminate or quiet sleep) between SGA and
AGA controls.** SGA neonates had a lower relative delta power
(averaged across all EEG channels) and subsequent increase in
alpha and beta powers compared to AGA neonates. Ozdemir et al.
found similar significant decreases in relative delta power and
increases in relative alpha and beta powers in quiet sleep of term
SGA neonates recorded within the first week of life; these changes
were only significant in central channels (Cz-C4). Ozdemir et al.
also found large decreases in EEG amplitude (averaged across all
EEG channels) within rapid eye movement (REM) sleep in SGA
neonates compared to AGA controls.** Yerushalmy-Feler et al.
showed increased relative delta power, and, subsequently,
decreased relative theta, alpha, and beta power, in preterm FGR
neonates compared to AGA controls.

Castro Conde et al. found differences in several other aspects of
the EEG in SGA neonates compared to AGA controls. The ratio of
discontinuous to trace alternant activity, percentage of asynchro-
nous and asymmetric EEG activity, the percentage of EEG activity
containing delta brushes, maximum inter-burst interval, and the
number of transients per hour was all higher in SGA neonates.**

The results of spectral analyses are not always consistent across
studies. Nevertheless, significant differences in EEG spectra were
found between SGA/FGR and AGA infants. Other key phenomen-
ological characteristics of the EEG such as inter-burst interval,
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Summary of EEG studies of FGR/SGA neonates.

Table 2.

ASYM and ASYNC Amplitude

Bursts

SWC Relative

PMA of EEG

Popn (N) Mean GA

EEG channel

Study

delta power
1~48%**

TASYM 12%**,

1DB: 24%**,

L TA: 26%**,
1D: 38%**

48-72 h of life

377+

t-SGA (50)

10-20 system

Castro Conde et al., 2020

tASYNC 11%**

7 s%*,

tT/h=18**

tIBIm

1.7 weeks

ASYM 3%,

DB: 6%, IBIm:
3s,T/h: 8

~50%

TA: 52%,
D: 6%

38.1+

t-AGA (44)

ASYNC 5%

2.0 weeks

127.7%**
63.4

184%* at CzC4

88%

First week of life

39.4+0.8

t-SGA (40)

10-20 system

Ozdemir et al., 2009

39.7+0.7
343+

t-AGA (20)

186% + 3**

50% present

(C3-C4) p-FGR (14) Within first 48 h life

Yerushalmy-Feler
et al,, 2014

1.8 weeks

79% +5

31% present

33.7 + 2 weeks

p-AGA (16)

1 increased, | decreased in FGR/SGA in comparison to AGA.

GA gestational age, PMA postmenstrual age, SWC sleep-wake cycle, TA trace alternant, D discontinuity, DB bursts with delta brushes, IBIm maximum interburst interval, T/h transients/bursts per hour, ASYM

asymmetry, ASYNC asynchrony, prefix t term, prefix p preterm.

*p < 0.05; **p < 0.01; ***p < 0.001.
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asymmetry/asynchrony, and delta brushes were higher, and by
association, underdeveloped or immature in term SGA neonates
compared to AGA controls.

Phenomenological aEEG/EEG patterns are typically interpreted
with respect to age (as either mature or immature). This
interpretation can be complicated as several EEG patterns are
abnormal, independent of age, such as seizure, positive Rolandic
sharp waves, or isoelectric activity. While interpretations with
respect to age are useful, key maturational EEG characteristics
when quantified, explain considerably <50% of the variation in
age.”” The remaining 50% are explained by a range of factors
including EEG recording methods, biological variability, various
neonatal exposures, vigilance/sleep state as well as underlying
changes in brain development. It is the last factor that is of interest
but is often difficult to tease out.

Future research must focus on improving the evidence base on
the relationship between EEG changes and brain function.
Improved understanding of this relationship through the integra-
tion of EEG findings and findings from other modalities such as
MRI (infants with FGR have altered grey matter volumes,
myelination, cortical complexity, hippocampal and cerebellar
development, fractional anisotropy, and connectivity®®) can
improve our understanding of how growth restriction affects the
developing brain.

EEG studies of FGR/SGA neonates during infancy and
childhood

The EEG has also been used to assess the neurodevelopment of
FGR/SGA neonates at later stages of life. We found three studies
that used EEG to assess the effect of FGR/SGA on cortical function
during infancy and childhood (Table 3). These studies have shown
that alterations in cortical activity in FGR/SGA neonates recorded
by the EEG persist into early childhood.

Ozdemir et al. found decreases in relative delta power in quiet
sleep in SGA neonates within the first week of life compared to
AGA controls evolved to increases in relative delta power at 1 and
3 months of age.** This was due to a combination of increases in
relative delta power with age in SGA infants and decreases in
relative delta power with age in AGA infants.

Cohen et al. performed a longitudinal study of preterm FGR and
AGA infants at 1 and 6 months of age with additional term AGA
infants as controls.*® While measures of growth such as bodyweight
had normalised by 1 month of age, there were still notable
differences in the EEG spectrum of preterm FGR infants. In quiet
sleep, FGR infants had lower spectral edge frequency due to
decreased delta power and subsequent increases in theta, alpha,
and beta power compared with preterm AGA controls. These
differences were not apparent at 6 months of age. No differences
were found in active sleep between preterm FGR, preterm AGA and
term AGA controls. A key difference between preterm FGR and AGA
groups in this cohort was the proportion of neurological injury such
as intraventricular haemorrhage (IVH) and periventricular leukoma-
lacia (PVL); 35% of the preterm-AGA group had neurological injuries
during their stay in the neonatal intensive care unit compared to no
recorded injuries in the FGR group. This imbalance in neurological
injuries between FGR and AGA groups is not typical,*” but possible
when collecting small samples. The unusual distribution of
neurological injury in these cohorts should be considered when
interpreting EEG findings and maybe why no differences were
observed at 6 months of age between cohorts, in contrast to the
two studies demonstrating long-term EEG alterations.***®

Yiallourou et al. showed changes in the EEG persist into later
childhood. They report several differences in the microarchitecture
of sleep (relative spectral band-power within sleep states)
between preterm FGR, preterm AGA, and term AGA infants at 5
and 12 years of age.*® Interestingly, the sleep microarchitecture of
children born prematurely and FGR was more closely related to
children born at term and AGA than children born preterm and

SPRINGER NATURE

AGA. This similarity between preterm FGR and term AGA groups
was also seen when assessing the macro-architecture of sleep (the
relative proportion of sleep states). Yiallourou et al. found no
associations between birth weight, head circumference percen-
tiles, or head circumference to weight ratio with any of the sleep
microarchitecture measures.*®

EEG assessments of interventions on FGR/SGA neonates
Although there are holistic approaches aimed at minimising
exposure to modifiable risk factors that are associated with FGR/
SGA such as smoking and recreational drug use,*® many other risk
factors of FGR/SGA such as maternal age at pregnancy, fertility
treatments, and stress are not as easily addressed.*® Pre-partum
clinical trials aimed at improving the growth of fetuses identified
as being at risk of FGR/SGA include in utero administration of
sildenafil, melatonin, and vascular endothelial growth factor gene
therapy.”' ™ However, limited benefit has been shown by
interventions to treat FGR in utero® as have other approaches,
such as optimising the timing of delivery.>* Difficulties in trialling
in utero interventions are exacerbated by difficulties in accurately
diagnosing FGR; approximately 40% of FGR/SGA neonates are not
detected until birth.'” This implies that post-partum interventional
studies may better stratify FGR/SGA and AGA neonates. These
trials are less common, with the NIDCAP (Newborn Individualized
Developmental Care and Assessment Program) trial the most
comprehensive in terms of follow-up using EEG analysis.>> NIDCAP
is a combination of various therapies that aim to “maintain an
intimate connection between parents and preterm infants by
embedding the infant in the natural parent niche, avoiding over-
stimulation, stress, pain, and isolation while supporting self-
regulation, competence, and goal orientation”.>® The authors
analyse the EEG to examine the connectivity between brain
regions corresponding to EEG electrode positioning. This analysis
breaks EEG activity into a sequence of 40 spatio-frequency
patterns that explain 65% of the variance of quiet sleep in a
previously collected EEG dataset of 312 neurologically normal
infants at 42 weeks PMA.>” They found that FGR infants treated
with NIDCAP had underlying patterning of the EEG more similar to
normal healthy term infants, at 9 months of age, than FGR
controls. In particular, they noted reduced connectivity and a
higher ratio of long- to short-range connections in FGR infants
treated with NIDCAP.>>>® Differences in EEG connectivity between
treated and untreated infants were still present in the eyes closed,
alert state at 9 years of age.®

Neurodevelopmental outcomes

FGR and SGA neonates present with multiple neurodevelopmental
deficits into childhood.*'*%° Three studies examined the correla-
tion between EEG/aEEG and neurodevelopmental outcomes in
FGR/SGA neonates.

Schwindt et al. perfformed aEEG at <14 days for 3 hours in a
preterm SGA cohort3® Neurodevelopment was assessed with
Bayley Scales of Infant Development Second Edition (Bayley Il) and
a standardised neurologic examination including gross motor
function classification system (GMFCS) at 2 years of age. Preterm
SGA infants had poorer neurodevelopmental outcomes at 2 years
and were more likely to develop multiple complications of
prematurity, such as IVH (37.5%), PVL (20.5%), chronic lung disease
(30.8%), necrotising enterocolitis (NEC; 30.8%), CP (25.7%), epilepsy
(10.3%), and death (21.3%). A correlation between aEEG and
neurodevelopmental outcome was observed in both SGA and AGA
groups; aEEG correlated with neurodevelopmental outcome more
closely in AGA than SGA. The authors speculate that this reduction
in correlation could be due to the high morbidity rate and small
sample size in the SGA cohort. They suggested earlier, longer
recording could improve the prognostic value of this method.

Castro Conde et al. performed continuous EEG at 48-72 hours
after birth in a term SGA cohort.** Neurodevelopment was
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Table 3. Summary of EEG studies of FGR/SGA neonates during infancy/childhood.
Study EEG channel Popn (N) Mean GA PMA of EEG SWC Spectral power Mean EEG
amplitude
Cohen C3-M2, 01-M2  p-FGR (13) 3237 (24%7-35°’7)  First month; |Relative delta power**
et al,, 2018 or sixth month was lower in QS at Tm
C4-M1, 02-M1 TRelative theta**,
alpha** and beta**
power were higher in
QSat1m
p-AGA (17) 32 (27%7-35°7)
Yiallourou C4-M1, p-FGR (17) 301 5-12 years 1Sleep duration 1Total*, delta*, theta¥,
et al, 2018 02-M1, F4-M1 Total—509 mins*  and alpha* power
TNREM—335 were higher
mins*
TN2-198 mins*
IN3-101 mins*
Sleep Proportion
TN2-50%*
IN3-25%*
p-AGA (15) 291 Sleep duration
Total—497 min
NREM—295 mins
N2-154 min
N3-112 min
Sleep proportion
N2-42%
N3-32%
Ozdemir 10-20 system t-SGA (40) 394+0.8 first month; tRelative delta power 130%**/38*%**
et al., 2009 third month 88%/89%*** 1Tm/3m
1m/3m at CzC4 in QS
t-AGA (20) 39.7+0.7 Relative delta 66/74
power 85/83% 1m/3m

1m/3m at CzC4 in QS

1 indicate an increase in the SGA/FGR group, | indicate a decrease in the FGR/SGA group.
GA gestational age, PMA postmenstrual age, SWC sleep-wake cycle, NREM non-rapid eye movement, N3 deep sleep, prefix t term, prefix p preterm, QS

quiet sleep.
*p < 0.05; **p < 0.01; ***p < 0.001.

assessed with Bayley Scales of Infant Development Third Edition
(Bayley Ill) at 2 years of age. Lower neurodevelopmental scores
were evident in the SGA children compared with the AGA cohort.
High rates of particular EEG patterns were associated with lower
scores in one or more neurodevelopmental scores. A negative
correlation between language scores and relative alpha power
and a positive correlation between delta, alpha ratio with
language, and motor scores were reported.

Yerushalmy-Feler et al. performed aEEG within 48 h of birth for
3h in a preterm FGR cohort.*' Neurodevelopment was assessed
with the Lacey Assessment of the Preterm Infant (LAPI) before
discharge, after reaching the 35™ gestational week. LAPI pre-
discharge examination demonstrated significant differences in
tone and development score (sum of all scores) in the FGR group
in comparison to AGA but no differences in the motor and
neurologic scores. aEEG bandwidth was negatively correlated with
the tone, motor, and development scores and relative delta power
was negatively correlated with oral motor, tone, and development
scores.

Although all three studies demonstrated correlations in certain
domains of neurodevelopmental assessments with EEG/aEEG in
FGR/SGA cohorts, the predictive values of these outputs regarding
developmental deficits were not defined. Heterogeneity in study
design also limits the ability to draw conclusions between studies.

Strengths and limitations

All studies show EEG/aEEG differences between SGA and AGA
infants. These differences are present at different stages of
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development and persist into later childhood. Interestingly, there
are changes in EEG in preterm SGA infants without clear signs of
early neurological injury.®*

In general, according to the STROBE checklist, these studies
were of high quality (Table S1). Studies analysed were prospec-
tively designed, used sufficient sample sizes, included control AGA
groups (group-level matched), and several efforts to control for
confounders (reducing study bias). Nevertheless, there are
inherent difficulties associated with studying critically ill infants
in the NICU where interventions related to infant care increase the
variability within study cohorts.

The key sources of heterogeneity between these studies were
GA and postmenstrual age (PMA) at the time of aEEG/EEG
recording. GA ranged from extremely preterm to term, PMA
ranged from <72 h to 4 weeks after birth, with later recordings up
to 9 years of age. There are rapid changes in aEEG/EEG with GA, ex
utero vs in utero exposure, and post-natal adaption.*>®"62
Prematurity is independently associated with neurological mala-
daptation and subsequent changes in the EEG.°*®* Premature
infants are at a high risk of several, acute and chronic injuries from
IVH to an encephalopathy of prematurity.®>°® This increased risk
also manifests in FGR infants with preterm FGR infants at higher
risk of abnormal neurodevelopmental outcome than term FGR
infants." No studies compared the difference between AGA and
SGA/FGR on cohorts of both term and preterm infants.

An additional source of heterogeneity between SGA and AGA
infants that may confound the interpretation of the aEEG is general
infant health; SGA infants tended to have poorer health
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outcome.*>*1*346 Only two studies excluded infants with abnormal
neurodevelopmental outcome®** nevertheless, they showed
differences in the EEG between SGA and AGA infants. Schwindt
et al. performed additional analysis on subgroups of SGA and AGA
infants without sedatives or the manifestation of cerebral lesions
and showed similar differences between SGA and AGA groups.3
They also showed early preterm SGA infants had higher rates of
morbidity and mortality compared to AGA infants. In aEEG analyses,
there were differences in definitions and granularity of aEEG grades,
with the predominant definitions based on the influential work of
Hellstrom-Westas et al.®” The larger array of summary measures
that can be estimated from multi-channel EEG results in increased
heterogeneity. While most studies used spectral power and
measures of sleep architecture, each study examined unique
measures such as burst frequency, inter-burst interval, asymmetry,
asynchrony, and amplitude. Another key difference between SGA
and AGA infants that may affect the EEG is the smaller head
circumference in SGA infants—EEG amplitude, and potentially
spectral power, are altered by the proximity of electrodes used to
form the bipolar montage studied.’® There were also technical
differences between studies in the electrode locations used for
spectral analysis and the definition of frequency bands.

These sources of heterogeneity do not explicitly affect study
conclusions, but rather complicate the interpretation of the
literature, where superficially contradictory findings across several
studies can be explained by cohort differences such as the GA of
the infants, PMA of the EEG recording, and differences in EEG
analyses. This difficulty limits meta-interpretations of the data
across studies.

Heterogeneity is also apparent in the definition of FGR/SGA.
Although SGA fetuses are physiologically small, they are at lower
risk for adverse perinatal outcomes compared to FGR fetuses.
Most of the studies use a definition of SGA as a body weight <10th
percentile of local norms with others using additional conditions
such as middle cerebral artery Doppler assessment and biometric
measurements of the foetal ultrasound. No study conforms to
recent attempts to standardise the definition of FGR,? although
several use many of the criteria. Three of the studies in this review
report their population are FGR,*'*6% with the others reporting
on SGA 233404344 However, some of the SGA cohorts may indeed
be FGR according to the definition of the population.** A further
source of heterogeneity in the FGR cohort is the FGR phenotype.
FGR can generally be classified as early- or late-onset with these
two different forms resulting in differences in neurodevelop-
mental outcomes.®® Only one of the studies classified their cohort
as late-onset FGR.*' Cohen et al. report slowing of foetal growth
velocity in their cohort which may implicate late-onset FGR.”
Finally, there was obvious heterogeneity in the tools used to
define neurodevelopment/disability. The use of age-appropriate
standardised tests of neurodevelopmental outcomes limited
comparisons between studies.

All studies used visual interpretation of the EEG with a
proportion complemented with quantitative EEG analysis (eg
spectral power). The visual interpretation of the EEG is well studied
but subject to inter-rater variability. Quantitative EEG is objective,
can be consistently applied across EEG studies, and can represent
EEG characteristics that may not be possible with visual
interpretation.”’”? Quantitative EEG analyses are also well-suited
to standardisation improving study heterogeneity. Furthermore,
improving the accessibility of the EEG recordings would alleviate
study heterogeneity. This could be achieved by using centralised
repositories where researchers across different centres can upload
aEEG/EEG recordings along with clinical data (although issues
around patient privacy complicate this process).

Summary

There is growing evidence from clinical and epidemiological
studies that neurodevelopmental disabilities such as CP, learning,
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attention, and behavioural disorders result from a prenatal chronic
insult such as FGR.3'"73 EEG/aEEG is an effective way of assessing
brain development in infants and children and is different
between FGR/SGA and AGA infants. Changes in EEG were
generally consistent across studies with FGR/SGA resulting in
measurable effects on the EEG that present immediately after
birth and persist into childhood. Early manifestations of FGR/SGA
in the EEG include changes in spectral power, symmetry/
synchrony, sleep-wake cycling, and the continuity of EEG
amplitude. Later manifestations of FGR/SGA in the EEG include
changes in spectral power, sleep architecture, and EEG amplitude.

Future research will help to determine if FGR results in a
relatively normal brain with delayed maturation, a fundamentally
different brain, or merely a brain that is more susceptible to
architecture-altering insults. This is challenging, as the links
between brain development, disruption, and cortical activity (as
measured by the EEG) are predominantly circumstantial.”* The
diagnostic and prognostic utility of EEG for FGR/SGA infants also
requires further elucidation to determine which combination of
EEG/aEEG characteristics and timeframes of measurement provide
the best discrimination between FGR/SGA and AGA infants. If this
separation is sufficiently large, EEG criteria may be useful to
complement definitions of FGR/SGA, and normalisation of the EEG
may be considered as an outcome measure for intervention effect.
Of particular interest, is the use of EEG in FGR/SGA infants for the
early prediction of adverse neurodevelopment. Incorporating
EEG biomarkers that are associated with SGA/FGR with other
measures of abnormal EEG”” also offer the possibility of accurate
prognostication.”>”7¢

Automated methods of analysis have been applied to neonatal
EEG; automatically extracting information from the preterm
EEG.?””7 No automated methods have been used in the FGR/
SGA neonate so far. However, even though automated methods
are appealing caution is required when using these modern
techniques, as the recordings can be influenced by several factors
which must be considered for accurate interpretation, including
the behavioural state of the infant and artefact.”® Nonetheless, the
EEG holds promise as a tool to achieve early diagnosis and
prognosis in FGR/SGA neonates.
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