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BACKGROUND: Kawasaki disease (KD) is a systemic vasculitis that mainly affects children under 5 years of age. Up to 30% of
patients develop coronary artery abnormalities, which are reduced with early treatment. Timely diagnosis of KD is challenging but
may become more straightforward with the recent discovery of a whole-blood host response classifier that discriminates KD
patients from patients with other febrile conditions. Here, we bridged this microarray-based classifier to a clinically applicable
quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay: the Kawasaki Disease Gene Expression Profiling (KiDs-
GEP) classifier.
METHODS: We designed and optimized a qRT-PCR assay and applied it to a subset of samples previously used for the classifier
discovery to reweight the original classifier.
RESULTS: The performance of the KiDs-GEP classifier was comparable to the original classifier with a cross-validated area under the
ROC curve of 0.964 [95% CI: 0.924–1.00] vs 0.992 [95% CI: 0.978–1.00], respectively. Both classifiers demonstrated similar trends over
various disease conditions, with the clearest distinction between individuals diagnosed with KD vs viral infections.
CONCLUSION: We successfully bridged the microarray-based classifier into the KiDs-GEP classifier, a more rapid and more cost-
efficient qRT-PCR assay, bringing a diagnostic test for KD closer to the hospital clinical laboratory.

Pediatric Research (2023) 93:559–569; https://doi.org/10.1038/s41390-022-02148-y

IMPACT:

● A diagnostic test is needed for Kawasaki disease and is currently not available.
● We describe the development of a One-Step multiplex qRT-PCR assay and the subsequent modification (i.e., bridging) of the

microarray-based host response classifier previously described by Wright et al.
● The bridged KiDs-GEP classifier performs well in discriminating Kawasaki disease patients from febrile controls.
● This host response clinical test for Kawasaki disease can be adapted to the hospital clinical laboratory.

INTRODUCTION
Kawasaki disease (KD) is a systemic vasculitis of unknown etiology
that is most prevalent in children under 5 years of age.1–6 KD
patients are at risk of developing coronary artery abnormalities
(CAA), which may result in thrombosis, stenosis, or occlusion,
potentially leading to ischemic heart disease or even death.7,8

Timely treatment within the first week after fever onset with
intravenous immunoglobulin (IVIG) reduces CAA incidence from
18–31% to 2–8%.9–11 However, delays in diagnosis and treatment
are common. Recent studies show that on average, KD patients
are treated on day 7 after disease onset, and that 2.9–16.8% of KD
patients are treated after day 10.12–17 As each day of delayed
treatment increases the chance of CAA development, KD patients
treated after day 10 have a clear increased risk of developing
CAA.18,19 The increased risk of giant coronary artery aneurysms,

which more often lead to adverse events, is worrisome in these
patients.7

Diagnosis of KD can be challenging as there is no diagnostic
test available for KD. Therefore, the current diagnosis is based on
clinical symptoms with supportive laboratory data. Following the
American Heart Association (AHA) guidelines, a diagnosis of
complete KD can be made if a patient has ≥5 days of fever in
combination with ≥4 out of 5 principal clinical features: 1. bilateral
conjunctival congestion, 2. redness of the lips, and oral mucosa,
3. polymorphous exanthema, 4. reddening of the palms and soles
followed by membranous desquamation, and 5. acute non-
purulent cervical lymphadenopathy.7 However, these clinical signs
are not specific to KD and may also accompany other childhood
diseases including measles, adenoviral infection, scarlet fever, and
Stevens–Johnson syndrome. Furthermore, not all clinical signs
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may be present at the same moment in time and may have
already resolved or have yet to manifest at the time the patient is
examined by a physician.20 Finally, 20–30% of KD patients present
with less than four principal KD criteria or symptoms that are
uncommon in KD, i.e., incomplete KD.7,21–23 There is therefore a
clear need for an improved diagnostic tool that can support an
early diagnosis of KD.
In other clinical dilemmas where there is a lack of a quick and

accurate diagnostic tool, such as the discrimination between
bacterial and viral infections in febrile children, the host
response has been suggested to provide a solution. Classifiers
based on the host response gene expression containing only a
few features are already able to distinguish bacterial from viral
infections. These classifiers can be used together with traditional
diagnostic methods to improve diagnostic accuracy and to
support clinicians in differentiating bacterial from viral infec-
tions in febrile children.24 Recently, a host RNA classifier was
described that can aid in the diagnosis of KD.25 This classifier
discriminates between KD patients and patients with other
febrile conditions, including patients with bacterial and viral
infections, with high sensitivity and specificity. It was discovered
using genome-wide RNA expression microarrays, which are very
useful in research settings to quantify the expression of large
numbers of genes in parallel, but are not suited for the acute
clinical care setting. In clinical settings, a real-time quantitative
reverse transcription PCR (real-time qRT-PCR)-based diagnostic
tool would be more useful. It is a commonly used diagnostic
technology that is simpler, targeted, and more cost-efficient
than microarray, making it easier to adapt to a clinical setting.26

These characteristics are especially important for KD, for which a
short turnaround time and affordability are vital to make a rapid
diagnosis widely available for every child who is suspected of
having KD.

Although microarray and qRT-PCR are both methods to
measure gene expression, and multiple studies have shown
concordant readouts for differentially expressed genes in acute KD
patients, divergent results can occur due to inherent differences in
the underlying experimental methodology and technology.27–29

Therefore, transferring a classifier to another technology platform
while retaining its diagnostic accuracy and performance, requires
effort to align readouts between platforms (i.e., bridging).
In this study, we bridge the 13-gene classifier discovered by

Wright et al. from a microarray platform to a multiplex qRT-PCR
assay.25 This comprises two steps: (1) developing the multiplex
qRT-PCR assay and (2) modifying the original classifier such
that it is applicable to the assay. The bridged classifier is termed
the Kawasaki Disease Gene Expression Profiling (KiDs-GEP)
classifier.

METHODS
Patients
In this study, 489 individuals were included (Fig. 1) of which 459 were
described previously, and 30 additional individuals were included from
preexisting RNA sequencing (RNA-seq) studies.25 Subsets of these patients
were analyzed within various datasets described below in the dataset
section. Patients with KD, infectious conditions (including bacterial and
viral infections), inflammatory conditions (including juvenile idiopathic
arthritis and Henoch–Schönlein purpura), and healthy controls (children
with no recent history of fever or immunization) were prospectively
recruited at pediatric centers in the United Kingdom, Spain, the Nether-
lands, and the United States from March 1, 2009, to November 14, 2013, as
previously described.25 Recruited KD patients represent a combination of
patients seen directly in the emergency department and patients referred
from regional centers. KD was diagnosed on the basis of the AHA criteria.7

All were enrolled within the first 7 days of illness, before initiation of IVIG.
For the febrile controls, blood was drawn as soon as possible after
presentation and before a clinical diagnosis was confirmed. Patients were
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Fig. 1 Study cohort overview. Overview of the data and samples used in this study and the techniques that were used to measure gene
expression in the cohorts. KD Kawasaki disease, DB definite bacterial, DV definite viral, U infections of uncertain bacterial or viral etiology, JIA
juvenile idiopathic arthritis, HSP Henoch–Schönlein purpura, HC healthy control. The microarray data and its subdivision into the training and
test set were described by Wright et al., who excluded one microarray KD sample after a quality control analysis. The set of individuals
measured by qRT-PCR is a subset of the individuals measured by microarray, for which sufficient RNA was available. The RNA-seq dataset is
independent of the other sets, except for the five KD patients.
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assigned to diagnostic groups once the results of all investigations were
available based on predefined criteria (Supplementary Fig. S1 and
Supplementary methods). Children with comorbidities or taking medica-
tions likely to influence gene expression were excluded.

RNA isolation and processing
Whole blood was collected (2.5mL) in PAXgene blood RNA tubes
(PreAnalytiX, Hombrechtikon, Switzerland), incubated for 2 h at ambient
temperature, frozen at –20 °C within 24 h of collection, and stored at –80 °C.

Total RNA was extracted using PAXgene blood RNA kits (PreAnalytiX)
according to the manufacturer’s instructions.

Datasets
Microarray, discovery dataset. For 459 individuals, gene expression
profiles were determined on the HumanHT-12 v4 BeadChip (Illumina,
San Diego, CA) by Imperial College London as described previously.25 The
data are available on the Gene Expression Omnibus under accession
number GSE73461. Details are provided as Supplementary material.
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RNA-seq, transcript-level analysis dataset. Additional patient data with
available RNA-seq data (strand specific 2 × 75 bp) was collected, consisting
of 5 KD patients overlapping the microarray discovery data (same RNA
aliquot), 10 bacterial, 10 viral, and 10 healthy controls. The shallowest
sequenced sample in the analysis reached a depth of 32.4 M fragments
that is sufficient to detect the most known splice junctions (Supplementary
Fig. S2). More details are provided as Supplementary material.

qRT-PCR, bridging dataset. A One-Step multiplex qRT-PCR assay was run
for a subset of individuals from the microarray discovery dataset (n= 107
of 459) for which sufficient total RNA was available. Prior to qRT-PCR, the
total RNA integrity number (RIN) was assessed using the Bioanalyzer
(Agilent, Santa Clara, CA). A total of 62.5 ng was used for the qRT-PCR of 15
targets (13 classifier genes + 2 reference genes described below), these
targets were divided into 5 triplexes. The qRT-PCR was performed on the
QuantStudio 5 Dx system (Applied Biosystems, Waltham, MA) using the
Reliance One-Step Multiplex qRT-PCR Supermix (4×) from BioRad (Hercules,
CA) with primers and probes described below. The following thermal
cycling protocol was used: 10 min at 50 °C, 10 min at 95 °C and 40 cycles of
10 s at 95 °C and 30 s at 60 °C.

qRT-PCR assay design
Identification of qRT-PCR reference genes. Using the microarray discovery
dataset (batch corrected for effects between sites), a shortlist of potential
reference genes was created (Supplementary Fig. S3 and Supplementary
Table S1) based on the following properties. (1) Transcripts moderately to
highly expressed (mean log2 expression between 11 and 15), (2)
expression invariant to the disease condition (genes with univariate
Limma p value < 0.05 for differential expression between disease
conditions were excluded), and (3) minimal variance in expression
between samples.30 Therefore, genes with more than three outliers as
defined by the robust Z score method as 0.6745 xi�medianðxÞ

median absolute deviate>3:5,
were excluded. The remaining (n= 173) genes were sorted by increasing
variance and assessed top-down for optimal primer/probe designs
according to the specifications listed in the primer and probe design
section below.

Primer and probe design. qRT-PCR primers and probes (TaqMan, Applied
Biosystems) were designed using Primer3 (Supplementary Table S2).31 The
assay—measuring 15 targets in triplex with FAM, ABY and VIC labeled
probes—was designed with the following rules considered: (1) reference
genes should not be combined in a triplex, (2) target length of PCR product
75–140 bp, (3) in multi-exon transcripts, at least one primer should be
intron spanning, (4) probes should not overlap with primers, (5) probes
should have a melting temperature (Tm) of approximately 10 °C above the
lowest primer Tm, and (6) the qRT-PCR primers should target similar
transcript collections as the corresponding microarray probe (Fig. 2). This
last point was assessed by a transcript-level analysis in the preexisting
RNA-seq data. To minimize the creation of unwanted side products such as
self-dimers and cross-dimers, specificity and target-specific binding were
checked in silico by Primer-BLAST and Multiple Primer Analyzer (Thermo-
Fisher Scientific, Waltham, MA), respectively.32 The performances of the
probes were assessed by evaluating the amplification curves and
expression profiles for each target in a singleplex qRT-PCR reaction. After
triplex combinations were made, fluorescent dyes were assigned to
specific probes with FAM labels assigned to probes targeting low
abundance transcripts, VIC labels assigned to probes targeting high
abundance transcripts, and ABY labels assigned to probes targeting
moderate abundance transcripts.

Probe mapping. The HumanHT-12 v4 BeadChip probe sequences were
obtained from the Gene Expression Omnibus platform annotation
(Accession number: GPL10558). Together with the qRT-PCR constructs,
they were aligned (Supplementary Table S3) to the GRCh38 reference
genome by single-pass STAR (v2.7.8a) using the GENCODE release 38 gene
model (evidence-based annotation in Ensembl 104) to generate the splice
junction database.33

Model building
Calculating qRT-PCR ΔCt. Within the qRT-PCR assay, target transcript
levels were reported relative to two stably expressed reference genes as
ΔCttarget=½(Ctref1+ Ctref2)–Cttarget.

34 For the current purpose, i.e., a robust
outcome of the bridged classifier—the qRT-PCR amplification efficiencies

were assumed not to vary within a gene, although they may vary
between genes.

Reweighting a linear model. To bridge the 13-gene classifier from one
gene expression representation to an alternative representation (e.g.,
microarray to qRT-PCR), we required both methods to be performed on
the same patient material (i.e., paired samples), and assumed
that expression measurements between both platforms are linearly
related. A mathematical description of the method is detailed in the
Supplementary methods. Briefly, a multiple linear regression was
performed to express the microarray log2 intensity values in terms of
all qRT-PCR ΔCt values to be included in the model. The reweighted
model was obtained by substituting the found regression coefficients
into the original model.

Cross-validation. The performance of the bridged model was assessed by
calculating risk scores in a leave-one-out cross-validation, which was
compared against the predictions of the original model.35 Within each
cross-validation loop, one sample was left out. Based on the remaining
samples, inner fold models were built by the reweighting procedure. Using
the inner fold models that were independent of the left-out sample, scores
were calculated for the left-out sample. Subsequently, in the next fold,
another sample was removed, until all were drawn once. At that point, the
predicted scores were compared with the scores obtained by the
original model.

Statistical analysis. All analyses were done in R (v4.0.3).36 Linear
regression was performed with the “lm” function. Principal components
were determined using the “prcomp” function. Wilcoxon rank-sum and
Fisher exact statistics were calculated using the “wilcox.test” and “fisher.
test” functions, respectively. Receiver operator characteristics (ROC) and
related metrics such as area under the curve (AUC) with 95% confidence
interval (95% CI), and Youden J statistics were calculated by the pROC
package (v1.17.0.1).37

RESULTS
Identification of potential reference genes
An overview of the entire bridging process is shown in Fig. 3,
detailing the design of a new one-step multiplex qRT-PCR assay,
and subsequent modification of the original classifier into the
KiDs-GEP classifier. Based on the microarray discovery data,
AURKAIP1 and SSU72 were the highest-ranked potential reference
genes meeting our predefined criteria for the design of qRT-PCR
primers and probes and were therefore selected as reference
genes for the qRT-PCR assay.

Probe mapping
For each of the 15 microarray probes (13 classifier genes + 2
reference genes), multiplex qRT-PCR assay primers and probes
were designed (Supplementary Table S2). All microarray probe
sequences were mapped to the reference genome (Supplemen-
tary Table S3). The ILMN_1898691 probe targets a locus on the
positive strand of chromosome 3 without an associated gene in
GENCODE. There is however a predicted transcript (GenBank
Accession: XR_002959502.1) for TIGIT that overlaps the locus. As
this transcript was expressed in the RNA-seq data, we designed
the corresponding qRT-PCR construct, spanning the nearest intron
within TIGIT.

Transcript-level analysis
A gene can be represented as a collection of transcripts,
characterized by alternative splicing, and alternative start and
stop codons (Fig. 2). It is important that the qRT-PCR primers and
probes target the same transcript collection as the microarray
probes because these transcripts may be differentially expressed.
Therefore, the overlap with known transcripts for each of the 15
genes of interest was determined in silico for both the microarray
and qRT-PCR probes (Supplementary Table S4). Although in
general there was a large overlap in the set of transcripts targeted
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by both platforms, for most genes there were transcripts that were
targeted by only one of the platforms.
Not all transcripts will be expressed or detected in the whole

blood of individuals in the classifier’s intended population.
Therefore, we observed the actual transcript abundance in the
RNA-seq data, and estimated the abundance for both the
microarray probe and the qRT-PCR construct, by aggregating the
level of abundance of transcripts overlapping the probe (Fig. 4). For
12 genes, the correlation between the estimated microarray and
qRT-PCR transcript abundance was high (R2 ≥ 0.90), suggesting that
measuring transcript abundance with the qRT-PCR probes instead
of the microarray probes had no major effect on the quantification
of transcripts in the intended population. The lowest correlations
were seen for PYROXD2 (R2= 0.86; p < 1 × 10–10), SMOX (R2= 0.62;
p= 1.1 × 10–8) and TIGIT (R2= 0.59; p= 5.6 × 10–8). Although the
correlation observed for TIGIT was lower, and thus was affected by
using the qRT-PCR probes instead of the microarray probes, there
was a clear non-random correlation indicating that the microarray
probe indeed targets TIGIT.

Correlation microarray and qRT-PCR data
To bridge the 13-gene signature from microarray to qRT-PCR, we
employed gene expression measurements for 107 individuals
from both the microarray and qRT-PCR platforms (Fig. 1). To
ensure the accuracy of quantification, only samples with a RIN >
8.0—commonly considered high-quality RNA—were included in
subsequent analyses (n= 83), unless mentioned otherwise.38

Clinical characteristics, demographics, and microarray results for
the 15 genes did not differ between the bridging dataset and the
discovery training set used for building the original model (Table 1
and Supplementary Table S5A–D), suggesting a representative

sampling of the discovery set. By comparing the log2 normalized
microarray intensity values with the ΔCt qRT-PCR values, positively
correlated linear relations were observed for all 13 genes (Fig. 5a).
There was a level of co-regulation between genes as suggested by
the observed correlations (Supplementary Fig. S4). Although
correlations between platforms were mostly highest between
matching probes (e.g., the correlation for IFI27 between micro-
array and qRT-PCR), this was not true for DDIAS, LINC02035, TIGIT,
and SMOX, suggesting platform specific-differences for these
probes. For example, the correlation for DDIAS between micro-
array and qRT-PCR was lower than the correlation between DDIAS
on microarray vs KLHL2 on qRT-PCR.
Genes affected by alternatively targeted transcripts in the RNA-

seq analysis were indeed among the genes with the poorest
correlations in this microarray vs qRT-PCR dataset. There also
appeared to be a relationship with gene expression level; lower
abundance genes tended to have lower correlations (Supplemen-
tary Fig. S5). For genes that were expressed with great variability
among samples, the correlations were highest, as was most
prominently seen for IFI27 and S100P having differences of >9
between the highest and lowest log2 microarray intensities, of
which 98% (p < 1 × 10–10) and 94% (p < 1 × 10–10) of their variances
were captured by the qRT-PCR assay respectively. Other genes with
less dynamic expression ranges and no evidence of targeting
alternative transcripts, generally tended to show a good correlation
between platforms. In contrast, there was a low correlation for TIGIT
—the qRT-PCR assay only explained 7% (p= 0.01) of the variance in
the microarray. Other relatively low correlations between platforms
(R2 < 0.5) were observed for DDIAS (R2= 0.30; p= 8.4 × 10–8), SMOX
(R2= 0.34; p= 6.0 × 10–9), PYROXD2 (R2= 0.41; p < 1 × 10–10), and
LINC02035 (R2= 0.47; p < 1 × 10–10).

Identify potential housekeeping genes

Design qRT-PCR constructs

RNAseq transcript level analysis

Run qRT-PCR assay

Reweight original classifier

Performance assessment

Abundance in microarray data:
Moderate to high

a

Invariant to disease condition
Not varying between samples

For each of the 15 microarray probes (13 classifier genes + 2 reference genes):
Map probe sequences to the reference genome
Design qRT-PCR probe and primers for the found loci

Assess transcript collection targeted by qRT-PCR and microarray, and differences in
their abundance.

Run assay on the original classifier’s discovery subset of whole blood samples.

Note: DDIAS is excluded in this phase due to unstable behavior.

Leave-one-out cross-validation

b

Fig. 3 Methodological flowchart of bridging steps. a Design of the one-step multiplex qRT-PCR assay, and b adjustment of classifier weights
by comparison of readouts of paired samples (microarray vs qRT-PCR), and assessment of the performance of the bridged model.
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Bridging
We bridged the microarray-derived 13-gene classifier to render
it applicable to the qRT-PCR assay by reweighting the original
model coefficients by means of multiple linear regression
(Table 2A).25 As the DDIAS qRT-PCR probe showed unstable
behavior resulting in undeterminable Ct values, this qRT-PCR

probe was not included as an explanatory term in the model.
After expressing the 13 microarray probes in terms of 12 qRT-
PCR ΔCts, the correlations increased, especially for those genes
that had the lowest correlations prior to the modeling (Fig. 5
and Supplementary Table S6A–M). For example, even though
DDIAS was not included as a term in the reweighted model, its

12
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co-regulation with other genes in the model caused the
information to be retained, and even improved the predicted
microarray expression relative to the pre-modeling situation
(R2= 0.31 vs R2-cv= 0.55). A similar effect was seen for
LINC02035, resulting in an improved correlation (R2= 0.47 vs
R2-cv= 0.73). The KiDs-GEP model was obtained by substituting
the qRT-PCR-based modeled expressions into the original
13-gene model (Table 2B, C). The cross-validated AUC and
95% CI were 0.964 [0.924–1.00], which was in line with the
observed AUC of 0.992 [0.978–1.00] for the original model
(Fig. 6). Both classifiers demonstrated similar trends over the
various disease conditions, with a clearest classifier score
distinction between individuals diagnosed with KD and viral
infections, showing interquartile ranges of [KD: 25.0–27.5] and
[viral: 18.7–20.5] for the KiDs-GEP classifier versus [KD: 25.7–28.6]
and [viral: 19.0–20.5] for the original model. In comparison,
Individuals diagnosed with bacterial infections had a classifier
score with interquartile ranges of [bacterial: 21.7–24.1] for the
KiDs-GEP model and [bacterial: 22.6–23.6] for the original model.
When applying the original 13-gene classifier or the KiDs-GEP

classifier to samples with RIN ≤ 8.0 or non-quantifiable RIN, no
evidence was found for a bias in classifier score related to RIN

values (Supplementary Fig. S6). The average classifier score for the
13 KD samples with RIN values ≤8.0 did not differ significantly
from the 14 KD samples with RIN > 8 in a Wilcoxon rank-sum exact
test (KiDs-GEP: p= 0.58 and original model: p= 0.35).

DISCUSSION
A molecular test for diagnosing KD is currently not available, but
would be a valuable tool to aid clinicians in the timely diagnosis of
KD. The original description of the 13-gene classifier was an
important first step, but required translation to the clinical acute
care setting. In the current study, we describe the development of
a qRT-PCR assay and subsequent bridging of the microarray-based
13-gene classifier into a clinically applicable qRT-PCR test. We also
provide robust justification for two reference genes that could be
generally adopted for whole-blood gene expression studies in KD
research.
Prior to modeling, varying degrees of correlation were observed

between microarray and qRT-PCR expression levels (R2 ranging
from 7% to 98%). DDIAS in particular showed unstable behavior
resulting in undeterminable Ct values. Therefore, we concluded
that the designed DDIAS qRT-PCR construct was not sufficiently
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reliable for the assay, and it was not taken into account for the
KiDs-GEP.
Several intrinsic differences between the platforms led to

disparities in the quantitation of transcript abundance. First, many
of the largest discrepancies were observed in the lowest abundant
transcripts, indicating that depending on expression level, the
sensitivity and specificity are affected differently in both platforms,
perhaps due to altered amplification efficiency or cross-
hybridization level. A second likely cause of differences in
measured transcript abundance between the two different
platforms may be the different strategies to reduce genomic
DNA contamination. In the microarray, an oligo-dT primer is used
to prime the poly-A tail to amplify all mRNAs simultaneously,
hence microarray probes are often located distant from introns, at
the far 3’-end. In qRT-PCR, sensitivity to genomic contamination is
reduced by using an intron-spanning primer. This constraint
eliminates the possibility to position a qRT-PCR construct at the
same locus as its cognate microarray probe. Even though probes
are targeting the same gene, they may be targeting different
transcripts. A different challenge was observed with LINC02035, for
which it was not possible to design an intron-spanning primer as
the gene has no introns. Therefore, especially for this gene, the
qRT-PCR assay might amplify genomic DNA. Indeed, we observed
higher transcript abundance by qRT-PCR in a subset of samples for
this particular construct, underlining the importance of incorpor-
ating methods to reduce amplification of genomic sequences.
Despite earlier reports stating that probes for microarray and for
RT-PCR should be close together in order to have highly correlated
quantitation of transcripts, the intron nearest the 3’-end may not
always be optimal due to alternative splicing.39 Therefore,
analyzing RNA-seq data can be helpful to guide qRT primer
design.
The poorest correlation between platforms was observed for

TIGIT. The microarray TIGIT probe is unusual in several respects. Of
all the 13 genes, TIGIT had the lowest expression level
(Supplementary Fig. S5), was outside the common gene annota-
tion for TIGIT, and another gene, ZBTB20, is expressed on the
opposite strand. The possibility that the microarray probe actually
targets both strands was excluded after consultation with the
manufacturer. Therefore, it is likely that the low correlation

between the two platforms was caused by low TIGIT expression
levels. Despite the low correlation, the effect on the KiDs-GEP
classifier was minimal, as the mean/variance normalized weight
corresponding to TIGIT was among the smallest.
A number of samples had a RIN ≤ 8.0 or non-quantifiable RIN at

the time of running the qRT-PCR assay. Many of those samples
demonstrated higher LINC02035 expression levels on qRT-PCR
than on microarray. As discussed above, this could be due to
genomic contamination, which is supported by visual inspection
of the Bioanalyzer electropherograms (Supplementary Fig. S7).
Interestingly, the effect of the suspected genomic contamination
was less pronounced in the modeled data, because the model
weights were redistributed over other genes that were less
susceptible to DNA contamination (Supplementary Table S6G).
We successfully reweighted the classifier to the qRT-PCR data.

This KiDs-GEP classifier distinguishes KD from other febrile
conditions with a performance comparable to the original report.
The classifier’s best performance was in the separation of KD
patients from patients with a known viral infection. Children with
viral infections form a large group who are often difficult to
distinguish from KD based on clinical signs. Another major group
that is difficult to distinguish from KD is patients with bacterial
infections due to the overlap in inflammatory features between
bacterial infection and KD. Therefore, a clinically useful classifier
needs to distinguish KD from both bacterial and viral illness, for
which the KiDs-GEP shows good performance.
Other host response classifiers for KD that have been described

include: a 25-gene classifier that discriminates KD from adenovirus
infection, a 10-gene classifier that discriminates the KD from group
A streptococcus infection, and a 332-gene classifier that dis-
criminates KD from both viral and bacterial infections.40,41 All were
identified using microarray and have, to the best of our
knowledge, not yet been bridged to a qRT-PCR assay or any
similar platform.
The development of the KiDs-GEP assay is a significant step

towards the development of a diagnostic test for KD. However,
before such a test can be introduced in the clinic, the performance
of the KiDs-GEP must be clinically and analytically validated. The
primary aim of the clinical validation would be to confirm the
performance in patients similar to those currently tested. Other

Table 2. Three alternative representations of the KD classifier models.

A Original B KiDs-GEP (mean/VAR) C KiDs-GEP

Illumina probe Weight qRT-PCR probe Weight Mean SD qRT-PCR probe Weight

INTERCEPT – INTERCEPT 21.720 – – INTERCEPT 23.972

ILMN_1664047 0.955 CACNA1E 0.746 –4.763 1.751 CACNA1E 0.426

ILMN_1790100 0.844 DDIAS – – – DDIAS –

ILMN_1701837 0.789 KLHL2 1.227 –0.865 1.299 KLHL2 0.945

ILMN_1684497 0.727 PYROXD2 0.347 –4.385 1.149 PYROXD2 0.302

ILMN_1775380 0.675 SMOX 1.061 –1.885 1.182 SMOX 0.898

ILMN_1802888 0.646 ZNF185 0.044 –1.185 0.863 ZNF185 0.051

ILMN_3236239 0.561 LINC02035 0.776 –3.382 2.029 LINC02035 0.382

ILMN_1796423 0.464 CLIC3 0.161 –2.690 1.244 CLIC3 0.129

ILMN_1801216 –0.405 S100P 0.379 0.591 2.114 S100P 0.179

ILMN_2058782 –0.426 IFI27 –1.138 –0.309 3.819 IFI27 –0.298

ILMN_1898691 –0.599 TIGIT –0.196 –2.959 1.014 TIGIT –0.193

ILMN_2379599 –0.638 CD163 –1.870 –1.791 1.497 CD163 –1.249

ILMN_1756928 –0.69 RTN1 –0.905 –2.643 1.037 RTN1 –0.873

A The original model that is applicable to the log2 intensity values of the Illumina HumanHT-12 v.4 Expression BeadChip, B the KiDs-GEP model applied to the
mean/variance normalized ΔCt values of the qRT-PCR assay, and C the same KiDs-GEP model applied to the raw ΔCt values of the qRT-PCR assay. See
Supplementary Table S5B–D for means and variances as observed per condition in the microarray and qRT-PCR data.
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clinical questions to be addressed include the performance of the
classifier in subsets of KD patients, including those with CAA,
those with incomplete clinical criteria, and infants. A study by
Jaggi et al. showed that the gene expression profile of incomplete
KD patients is almost identical to complete KD patients. It will be
interesting to investigate if this is the case for the KiDs-GEP
prediction as well.40 The performance of the classifier in
discriminating KD from the multisystem inflammatory syndrome
in children should also be tested.42 For analytical validity, key
factors determining the stability of the assay must be investigated,
including the stability of amplification efficiency as well as the
robustness of the KiDs-GEP against samples with lower RIN values.
A limitation encountered in the current study was the

available sample size. The original 13-gene classifier was built
to predict the dichotomized class labels KD vs. non-KD in RNA
from 60 KD patients, 261 febrile, and 43 healthy controls. After
the selection of patients with sufficient RNA and a RIN > 8.0 for
the bridging, 83 patients remained of which 13 were KD
patients. This number is too small to perform subanalyses:
incomplete vs. complete, CAA vs. no CAA, and IVIG responders
vs. IVIG non-responders. A validation study will be required to
gain insight into the role and performance of KiDs-GEP in these
subgroups. In addition, given the sample size, remodeling a new
classifier from scratch would suffer from reduced power relative
to the original model, with a high probability of severe over-
fitting of the data, and in the end would likely result in a
classifier dissimilar from the one intended to be bridged.
Therefore, instead of remodeling, we reweighted the original
model coefficients by means of multiple linear regression.
Modeling against the continuous expression instead of the
dichotomized disease labels increases power.43 In this approach,
the gene associations with outcome, and their corresponding
original model weights are considered to be established, and
the relation between the two representations was required to be
linear.
In conclusion, we successfully bridged the microarray-based 13-

gene classifier into the KiDs-GEP classifier, a faster and less costly
14-gene (i.e., 12 disease related + 2 reference genes) qRT-PCR
assay, which brings this classifier based on host response one step
closer to implementation in the clinical hospital laboratory.
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