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Technological advances in omics evaluation, bioinformatics, and artificial intelligence have made us rethink ways to improve
patient outcomes. Collective quantification and characterization of biological data including genomics, epigenomics,
metabolomics, and proteomics is now feasible at low cost with rapid turnover. Significant advances in the integration methods of
these multiomics data sets by machine learning promise us a holistic view of disease pathogenesis and yield biomarkers for disease
diagnosis and prognosis. Using machine learning tools and algorithms, it is possible to integrate multiomics data with clinical
information to develop predictive models that identify risk before the condition is clinically apparent, thus facilitating early
interventions to improve the health trajectories of the patients. In this review, we intend to update the readers on the recent
developments related to the use of artificial intelligence in integrating multiomic and clinical data sets in the field of perinatology,
focusing on neonatal intensive care and the opportunities for precision medicine. We intend to briefly discuss the potential
negative societal and ethical consequences of using artificial intelligence in healthcare. We are poised for a new era in medicine
where computational analysis of biological and clinical data sets will make precision medicine a reality.
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IMPACT:

● Biotechnological advances have made multiomic evaluations feasible and integration of multiomics data may provide a holistic
view of disease pathophysiology.

● Artificial Intelligence and machine learning tools are being increasingly used in healthcare for diagnosis, prognostication, and
outcome predictions.

● Leveraging artificial intelligence and machine learning tools for integration of multiomics and clinical data will pave the way for
precision medicine in perinatology.

INTRODUCTION
Technological advances have changed the way we live and work.
Today, a device worn around our wrists carries more computing
capability than devices that required large, cooled rooms in the
early 1950s. The emergence of self-driving vehicles, facial and
voice recognition, and the integration of human cognition with
the rapid processing of artificial intelligence (AI) are all examples
of these advances. Newly developed AI strategies in radiology,
retinal scanning, diagnosis of skin lesions, and interpretation of
normal or abnormal cardiac rhythmicity have improved diagnostic
capabilities that exceed those of even the most skilled
clinicians.1–3

Concomitant to and aided by the development of AI is the
emergence of the various “omic” disciplines. The sequencing of
the first human genome during the 1990s took nearly a decade to
accomplish and cost nearly a billion dollars. This task can now be
done in less than a day for slightly over 100 US dollars. As
described by Euan Angus Ashely, in his book “the Genome
Odyssey,” the relative cost of having one’s genome sequenced
compared to a couple of decades ago can be equated to being
able to buy a new Ferrari automobile for a few coins.4 Other omics

and non-omics data can now be integrated with genomic data
using various bioinformatic platforms melding nature (the
genome) with nurture (the effects of the environment) as a
means to explain the mechanisms of normal physiology and what
goes awry during disease.5

History has helped us discern three eras of medicine (Fig. 1). We
have gone through an era of “intuition-based medicine,” which
relied largely on what is known about signs and symptoms,
pathophysiology of disease, the experience of the clinician, and
their diagnostic and therapeutic skills. Currently, we strive to make
judgments using “evidence-based medicine” where diagnostics
and therapeutics are based on evidence from clinical studies and
Gaussian statistics. More recently, there has been a drive to
refocus our efforts toward prevention rather than treatment of
illnesses and health disorders. Prevention requires early detection
of features both clinical and laboratory that can be used to
minimize adverse consequences associated with a developing
illness. An example related to neonatal nutrition would be a
paradigm shift from following growth curves and acting when
growth failure is detected (delayed intervention) to the identifica-
tion of biomarkers that could predict growth failure even before it
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occurs. Biomarkers could inform individualized pre-emptive
strategies that prevent even the beginnings of growth faltering
seen on growth curves.6

The value of AI and multiomics for studying various aspects of
normal and pathologic pregnancy and the newborn period is
being increasingly recognized.7–9 In this review, we intend to
discuss recent research integrating multiomics using machine
learning (ML) tools in the field of Perinatology. Not only will we
discuss the technical advances but will discuss ethical and societal
considerations that should be addressed.

DESCRIPTION OF MULTIOMICS
The term “omics” describes the collective characterization and
quantification of large data sets including the genome, transcrip-
tome, proteome, microbiome and epigenome that influence the
structure, function, and dynamics of a biological process.5,10

Recent biotechnological advances have enabled researchers to
generate systems-level profiling of patients at multiple omics
levels with increasing dimensionality (Fig. 2). Table 1 shows some
of the types of “omics” that are currently being explored in clinical
and basic science research.

Many of these “omics” have been studied individually (single
omics) and correlated with phenotypic data under different
stressors, which have yielded some interesting associations, but
do not provide enough mechanistic information to support causal
relationships. An interesting corollary is found in the Indian
parable of the “six blind men of Hindustan”. Each of these six men
was asked to feel a portion of an elephant. One felt the side and
was convinced this was a wall. Another felt the tusk and was
convinced this was a spear. Another felt the tail and stated this
was a rope and so on. They argued about what they felt, and their
conclusions differed. So, in addition to being blind, they were also
intellectually short sighted in that they did not open their minds
to the others’ perspectives and thus were not able to identify the
whole animal, the elephant. Similarly, if we attempt to associate
individual omics only to a particular disease or phenotype, we will
fail to identify the holistic mechanistic pathway that leads to
differences in the phenotype. Integration of multiple omics using
“state-of-the-art” bioinformatic techniques can yield networks that
provide mechanistic clues and answers that relate to causality
(Fig. 3).

DESCRIPTION OF MACHINE LEARNING
ML has been described as the ability of machines to “think” and
includes any computer program that improves its performance at
some task through experience.11 The different terminologies
related to ML are tabulated in Table 2. ML models can be
categorized as supervised and unsupervised. Supervised learning
methods use label information from samples or clinical outcome
data for model training. Unsupervised learning is used when there
are no labeled data or outcomes and identifies patterns (or
clusters) in the data by principal co-ordinate analysis. Supervised
and less commonly unsupervised learning have been most
commonly applied to multiomics data integration in perinatology.
Clinical research studies often evaluate many ML models and

choose the one based on predictive accuracy. Most commonly
evaluated ML models are logistic regression, k-nearest neighbors,
random forest, gradient boosting machine, (kernel) support vector
machine, and artificial neural networks (ANNs or NNs).12,13 ANNs
are ML models that conceptually resemble the organization of the
brain and neurons. Neural models are able to represent complex,
nonlinear functions with reasonable computational costs. More

PAST

Intuition
medicine

Signs & symptoms Clinical trials

Evidence-based
medicine

Algorithms

Precision
medicine

PRESENT FUTURE

Fig. 1 Three eras of medicine. Evolution of medicine in the past,
present, and future. In the past, medicine was practiced by
evaluation of signs and symptoms and based solely on the
knowledge of the individual physician and was intuition medicine.
Currently, medicine is based on scientific research including clinical
trials and is evidence-based medicine. In the future, medicine will be
practiced by algorithms based on the patient’s phenotype, genome,
epigenome, or other omics data that will individualize treatment
and that which constitute precision medicine.
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Fig. 2 Number of publications per year on search keywords from 2010 to 2021. Search words used were: “multiomics,” “multiomics AND
integration,” “multiomics AND machine learning” and “multiomics AND deep learning”.
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recently, kernelized version of NNs has been developed that
restricts the massive expressive power of NNs while still capturing
nonlinear relationships, and also controls the smoothness of the
resulting predictive models.14

An example of selecting the best possible model is by hyper-
parameter optimization.13 Hyper-parameters are additional,
model-dependent parameters that are specified before the
learning phase, e.g., the value of k in k-nearest neighbor or the
number of hidden units in a neural network. Ensuring proper
generalization involves finding sub-optimal values of the hyper-
parameters. Each model is subjected to the hyper-parameter
optimization procedure and the model with the highest area
under the receiver-operated characteristic curve (AUROC) is
chosen. The model is validated with a separate data set other

than the one it is trained on (internal or external data set
validation).
AUROC is the most commonly used metric of choice to

compare models for predictive accuracy. A receiver-operated
characteristic curve (ROC) is a plot of the true positive rate
(sensitivity) as a function of the false positive rate (1 – specificity)
for different values at each threshold parameter. If a classifier (or
test) is perfect, the ROC curve passes through the upper left corner
(sensitivity and specificity of 1) and therefore the AUROC
measures the overall accuracy of the classifier/test. An AUROC
value of 0.5 indicates that the model is equivalent to a coin toss,
while a value of 1.0 indicates perfect predictions. The goodness-of-
fit of the considered models is assessed by calculating the Brier
loss. The lower the Brier loss, the better the goodness-of-fit, with
values of 0.25 equivalent to a coin toss and 0 that of a perfect
forecast.15

ML approaches like neural networks are a new frontier in clinical
decision-making, having recently made dramatic advances in
medical image analysis and other fields.16–18 Recent evidence
suggests that ML approaches may improve clinical outcomes in a
variety of diseases including congenital cataracts, metastatic
breast cancer, postprandial glucose prediction, and diabetic
retinopathy.19–25

INTEGRATION OF MULTIOMICS WITH MACHINE LEARNING
STRATEGIES
As with the six blind men parable, it would have helped had they
collaborated and discussed their findings and then developed a
conclusion. Multiomic integration approaches that evaluate
changes over time are needed, especially in perinatology, which
presents critical windows for nutrition, growth, and epigenetic
modeling.6

Multiomics data integration approaches may be categorized as
early, intermediate and late (Fig. 4).10,26 Early integration or early
concatenation although not complicated, may have problems
with very few data points but numerous features, often known as
the “curse of dimensionality”.27 For example, multiomics data sets
may contain more than thousands of features when the genome,
transcriptome, and proteome are combined but the number of
patient samples may be relatively small (hundreds or less).
Another problem that needs to be addressed is heterogeneity;
omics data sets can have variable data distribution or data types
(e.g., numerical, categorical, continuous, discrete) and differ
significantly in the number of features. Dimensionality reduction
is the process of reducing the number of variables or features in
order to decrease the dimensionality and noise of a data set. Early
and intermediate integration processes often require prior
dimensionality reduction to be more effective and functional.
The intermediate integration strategy transforms each omics

data set independently into a simpler representation, thus
overcoming some issues with the early integration strategy.
Transformation facilitates analysis by converting the data set to a

Table 1. Multiomics technologies.

“Omic” technology Description

Genome Using the basic template of DNA, . technologies can identify genetic (DNA) variants associated with diseases.

Microbiome Allows for the accurate quantitative determination of microbial taxa, their abundance, and diversity that can be associated
with healthy and diseased states.

Transcriptome Examines RNA levels transcribed from DNA template. A small amount of RNA is transcribed for protein synthesis, a much
larger amount is encoded for other purposes, which may be implicated in disease.

Proteome Quantifies peptides that may be used as disease biomarkers.

Metabolome Detects and quantifies small molecules that include carbohydrates, amino and fatty acids, and other products of cellular
metabolism. Abnormally high or low levels may predict disease.

Epigenome Characterizes modifications of DNA or DNA-associated proteins.
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Fig. 3 Schema for integration of omics data and approaches to
disease (reproduced from Hasan et al., open access data).58

Multiple omics data types are depicted in the different layers. Circles
in each colored panel represent the entire pool of molecules from
which the omics data are collected. Genetic regulation and
environment impact the molecules in each layer except the genome
layer. The thin black arrows represent potential interactions or
correlations detected between molecules in different layers, for
example, the red transcript can be correlated with multiple proteins.
Thick colored arrows near the top of the panel point to different
potential starting points for consolidating multiple omics data to
understand biological systems and pathogenesis of disease. The
genome first approach (thick gray arrow) implies that one starts
from the associated genetic locus, while the phenotype first
approach may start from any other omics layer. The environment
first approach (not shown) examines environmental perturbations.
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less dimensional and less noisy one and also decreases hetero-
geneity between omics data sets such as the data’s type or size
differences. The transformed and combined representation can
then be analyzed by classical ML models, which include three
transformation methods namely kernel-based methods, graph-
based methods, and deep learning.28 ML methods used for
intermediate integration are either general-purpose methods that
couple dimensionality reduction with different downstream
algorithms for a variety of tasks or applications or end-to-end
models designed for one specific task.10

Late integration combines the results from each omics layer or
each omics data set by ML tools (or manually) and the predictions
performed terminally.10,28 Since each omics data set is analyzed by
omic-specific ML tools, the problems of noise and heterogeneity
found in other strategies are not present. However, the downside
of the late integration strategy is that it cannot capture inter-omics

interactions as the different ML models (for the different omics
data sets) do not share complementary information between
omics.28 Combining predictions as in the late integration strategy
may not fully bring out the details and complexity of multiomics
data analysis and interpretation to understand the biological
mechanisms of diseases.
Various software for multiomics integrations already exist and

innovative methods and procedures are being developed to
integrate multiomics data with the clinical phenotype. Using these
techniques one can delineate and understand the strength of
correlations between the individual’s omics data including the
genome, microbiome, metabolome, and epigenome. Multiset
sparse partial least squares path modeling (msPLS) for high-
dimensional omics data analysis (https://doi.org/10.1186/s12859-
019-3286-3)29 is a novel statistical method that models and helps
us understand biological pathways and genetic architectures of

Table 2. Common computational terminologies.

Machine learning An application of artificial intelligence that provides systems the ability to automatically learn and improve from
experience without being explicitly programmed. Machine learning focuses on the development of computer
programs that can access data and use it to learn for themselves.

Deep learning Deep learning is a subset of machine learning (ML), where artificial neural networks, algorithms modeled to work like
the human brain, learn from large amounts of data.

Neural networks Computer systems modeled on the human brain and nervous system. These are collections of interconnected nodes
organized in multiple layers and are connected via weighted links. Learning is performed by adjusting the weights to
perform a task at hand with maximum accuracy.

Supervised learning Algorithms that learn to predict a certain property or outcome associated with a given set of input features and
outcome labels.

Unsupervised learning Derives hidden structure from the data with no knowledge of an outcome or a label.

Semi-supervised learning Combines a small amount of labeled data with a large amount of unlabeled data during training. Unlabeled data,
when used in conjunction with a small amount of labeled data, can produce considerable improvement in learning
accuracy.

High-dimensional data Data with many features that typically exceed the number of observations.

Dimensionality reduction Transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional
representation retains some meaningful properties of the original data, ideally close to its intrinsic dimension.
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Fig. 4 Illustration of the timing of integration for multiomic data matrices (reproduced from Cai et al.10) Multiomics data integration may
be categorized by the timing of integration related to analysis and interpretation as early, intermediate, and late. The features from different
data matrices are concatenated early in early integration but challenged by high dimensionality but few number of samples. Intermediate
integration strategy involves each omic data set being transformed into a simpler representation by dimensionality reduction and the
combined data set is consolidated by machine learning without concatenating features or merging results. Late integration involves the
results of each multiomic data set combined terminally after each omics layer is analyzed independently.
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complex phenotypes. The effect of multiple molecular markers,
from multiple omics domains, on the variation of multiple
phenotypic variables is simultaneously modeled. The sparsity in
the model provides interpretable results from analyses of
hundreds of thousands of biomolecular variables. msPLS has
been shown to outperform Multi-Omics Factor Analysis30 in terms
of variation explained in a chronic lymphocytic leukemia data set.
Another method called MOTA (https://doi.org/10.3390/
metabo10040144) is a network-based method that uses multio-
mics data to rank candidate disease biomarkers.31 Thus, research-
ers can use MOTA to investigate the biological significance of the
highly ranked biomarkers.31

CLINICAL APPLICATIONS
Challenges of pregnancy
Pregnancy-associated pathology may lead to complications such
as preterm birth (PTB), preeclampsia, and fetal growth restriction.
Prematurity is the leading cause of neonatal morbidity and
mortality. Many babies born preterm require prolonged neonatal
hospital stays and have complications such as necrotizing
enterocolitis (NEC), bronchopulmonary dysplasia (BPD), neurode-
velopmental disorders, and growth delays. The application of
omics data from high throughput analysis such as with
epigenomics data that show modifications of DNA or histone
configurations may help us understand the cellular processes of
different cell types in the developing fetus and placenta and
whether they are functioning properly for a successful pregnancy.
Longitudinal multiomic data analysis during the various stages of
pregnancy is likely to lead to early diagnosis of risk and novel
methods for therapy and prevention. Some examples of the use of
multiomics and ML in pregnancy are discussed below.
Multiomics modeling and delineating metabolome adaptations

during human pregnancy may provide the framework for future
studies.32 Ghaemi et al. performed a multiomics analysis of the
immunome, transcriptome, microbiome, proteome, and metabo-
lome from 17 pregnant women (51 samples), delivering at term.32

The investigators used multivariate predictive modeling using the
Elastic Net algorithm to measure the ability of each data set to
predict gestational age. Multiomics data sets were combined
using stacked generalization, which increased the predictive
power and revealed novel interactions among multiomic
data sets.
A healthy pregnancy is a cumulation of complex interrelated

biological adaptations involving placentation, maternal immune
responses, and hormonal homeostasis. Understanding these
biological adaptations by multiomics integration using state-of-
the-art machine-learning methods is imperative to predict short-
and long-term health trajectories for a mother and the offspring.
These principles are delineated by data-driven modeling of
pregnancy-related complications.33 Maric et al. investigated
modeling of preeclampsia using longitudinal multiomics data
and developed a multiomics model using ML.34 The multiomics
model had high accuracy (AUROC of 0.94 [95% confidence
intervals (CI) 0.90–0.99]). Ten urine metabolites were found to be
major players in this model, which was validated using an
independent cohort of 16 women (AUROC of 0.87 [95% CI
0.76–0.99]). The prediction accuracy of the urine metabolome
model could be improved with the integration of clinical variables
(AUC= 0.90 [95% CI 0.80–0.99]). This multiomics integration study
identified several biological pathways associated with
preeclampsia.
Integration of multiomics trajectories of the maternal metabo-

lome, proteome, and immunome may be useful to predict labor
onset.35 Progression of pregnancy toward birth is associated with
major transitions that occur in feto-maternal immune, metabolic,
and endocrine systems. In a longitudinal study conducted on 63
women who went into spontaneous labor, serial blood samples

were collected during the last 100 days of pregnancy. More than
7000 plasma analytes and peripheral immune cell responses were
analyzed using untargeted mass spectrometry, aptamer-based
proteomic technology, and single-cell mass cytometry. An
integrated multiomic model predicted the time to spontaneous
labor [(R= 0.85, 95% CI [0.79–0.89], P= 1.2 × 10−40, N= 53,
training set); (R= 0.81, 95% CI [0.61–0.91], P= 3.9 × 10−7, N= 10,
independent test set)]. Coordinated alterations in the maternal
metabolome, proteome, and immunome marked a molecular shift
from pregnancy maintenance to pre-labor biology, 2–4 weeks
before delivery. Regulation of inflammatory responses preceded
labor that was associated with a surge in steroid hormone
metabolites and interleukin-1 receptor type 4.
Multiomics integration and modeling of transcriptomics and

proteomics profiling of plasma and urine metabolomics may
identify PTB (delivery before 37 weeks gestation).36 Plasma and
urine samples were analyzed from 81 pregnant women in 5
biorepository cohorts in low- and middle-income countries. Of the
81 pregnant women, 39 had PTBs (48.1%) and 42 had term
pregnancies (51.9%) (mean [SD] age of 24.8 [5.3] years). A cohort-
adjusted ML algorithm was applied to each biological data set,
and the results were combined into a final integrative model using
ML. The integrated model was more accurate, with an AUROC of
0.83 [95% CI, 0.72–0.91] compared with the models derived for
each independent omic data set (transcriptomics AUROC, 0.73
[95% CI, 0.61–0.83]; metabolomics AUROC, 0.59 [95% CI,
0.47–0.72]; and proteomics AUROC, 0.75 [95% CI, 0.64–0.85]).
Primary features associated with PTB included a serum inflamma-
tory module and a urine metabolomic module associated with
glutamine and glutamate metabolism and valine, leucine, and
isoleucine biosynthesis pathways. This is an excellent example of
the integration of multiomic data sets with ML tools that will lead
to predictive tests and intervention candidates for preventing PTB.

The neonatal intensive care unit
There are numerous areas in neonatal intensive care where AI
combined with multiomics shows promise and will likely become
an important adjunct for disease prediction, diagnostics, and
therapeutics. Longitudinal continuous monitoring of heart rate
tracings, pulse oximetry, and ventilation patterns generate data
that can be interrogated by ML. Several poorly defined “diseases”
in neonatal intensive care such as sepsis, NEC, BPD, and various
forms of encephalopathy for which use of AI and multiomic-based
methods have the potential to markedly alter our current
definitions and improve management.

Retinopathy of prematurity
An excellent example of the use of AI is retinopathy of prematurity
(ROP), which can now be detected much earlier and more
accurately using these methods.37–39 As an illustration (Fig. 5),
features seen in the retina during development in preterm infants
can be utilized using user-defined definitions or machine-learned
features to provide an accurate diagnosis of this disease.1

Necrotizing enterocolitis
Defining NEC remains an enigma and 8 different definitions have
been proposed,40 but none are considered satisfactory. Definitions
attempt to define distinct entities and what we term “NEC” today
is not a distinct entity,41 thus is not readily amenable to a
definition.
The need to revise the outdated modified Bell staging criteria is

crucial in improving NEC management.41,42 Recent data suggests
that genetic susceptibility and stool microbiota signatures may
help identify preterm infants at increased risk of the disease.43,44

Ongoing studies using single or multiomic approaches may help
to characterize biomarkers that could predict different intestinal
injuries currently being termed as “NEC”. Intestinal ultrasound may
improve diagnostic accuracy for NEC but has been slow in
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adoption. Patient family perspectives are key in accelerating our
efforts to integrate newer diagnostic methods into practice.42 At
the very least, we are beginning to recognize that the Bell staging
criteria are not optimal and better criteria are needed.40

Several attempts have been made to differentiate what we term
classical NEC from some of the “imposters.” For example, NEC can
be confused with spontaneous intestinal perforation (SIP) even
with the availability of clinical and laboratory information.45,46

Supervised ML was used to evaluate NEC versus SIP, which can be
differentiated at laparotomy, but the increasing use of peritoneal
drains without direct visualization of the bowel limits the accuracy
of the diagnosis. In a recent study that evaluated several clinical
and radiographic features in infants who had undergone surgery
where necrosis was clearly found versus isolated ileal perforation,
ML was able to readily delineate several features that are helpful in
differentiating these two outcomes prior to surgery.47

Other studies have evaluated the stool microbiome prior to NEC
using ML techniques that suggest the possibility of their use as
biomarkers.48 Another study employed clinical and imaging
preterm infant data from six neonatal centers using AI approaches
to determine their relationship to the development of NEC and
found that such an approach may be feasible.49 Now, it is
reasonable to infer that a completely new approach to intestinal
injuries in the neonatal intestine is in order. Use of multiomic
approaches along with AI47 can be used to differentiate the
different forms of intestinal injury or dysfunction that are labeled
as NEC.50,51 AI strategies may make it possible to redefine the
different forms of intestinal injury commonly seen in preterm
infants into different clusters that derive from different patho-
physiology. By doing this, each one of these clusters can be better
evaluated for discrete mechanisms, biomarkers, and preventative
strategies.

PRECISION NUTRITION AS AN EXAMPLE OF INTEGRATION OF
OMICS AND AI
One of the greatest challenges in Neonatology remains how to
optimize the timing and composition of nutrition in preterm
infants to achieve appropriate growth, while minimizing devastat-
ing outcomes such as intestinal injury, LOS, BPD, and ROP.
Progress has been made since the era of delayed feeding of high-
risk preterm infants. Many guideline-based approaches have been
developed that have good evidence-based foundations (as
described in the second era of medicine in the Introductory
section of this review). Such approaches may be adequate for
many of these infants, but a significant percentage require a more
personalized (precision) approach based on the individual’s
genetic makeup and omics data rather than traditional dogma,
anecdotal clinical experience, or even good clinical studies that

evaluate populations rather than individuals. In accordance with
concerns raised by the National Institute of Health (NIH) Precision
Nutrition Initiative, the “one size fits all” approach marginalizes
many of these infants and may even lead to harm. For example,
not until recently has sex been evaluated as an important variable
that relates to nutritional needs. In addition, preterm infants may
exhibit weight gains commensurate with standardized growth
curves, but still develop adverse outcomes such as NEC, ROP, BPD,
and LOS. Some of these outcomes may depend on previous in
utero developmental events that are not considered when simply
using a postnatal growth curve approach.
The development of precision-based nutritional strategies that

leverage newly developed integration of “multiomics,” systems
biology, and ML will significantly improve and optimize growth
and reduce adverse outcomes in preterm infants. Using multio-
mics (microbiome, metabolome, and inflammasome) based
systems biology network analysis along with AI will then identify
biomarkers to guide personalized interventional strategies for
high-risk infants in order to mitigate adverse short- and long-term
outcomes experienced by these infants. ML Integration of blood
parameters, dietary habits, anthropometrics, physical activity, and
gut microbiota has shown to predict personalized postprandial
glycemic response to real-life meals in adults.21,52 Similar studies
promoting precision nutrition in neonates have not been
performed.
Precision nutrition explores and incorporates the effects of the

complex interplay among genetics, microbiome, antibiotic and
probiotic use, metabolism, food environment, and physical
activity, as well as economic, social, and other behavioral
characteristics.53 The NIH is leading efforts to advance the field
of precision nutrition with a plan 2020–2030 with strategic goals
to address precision nutrition research.54

SOCIETAL AND ETHICAL ISSUES RELATED TO THE USE OF AI IN
HEALTHCARE
The intent of AI/ML use in healthcare is to improve diagnosis or
predict clinical phenotypes that require intervention, which will
then translate to better patient outcomes. However, we should
also be mindful of the potential adverse consequences of the use
of AI and ML in healthcare as they are increasingly explored for
patient care. Societal issues relate to fairness, explainability,
privacy, ethics, and legislation, which should be sufficiently
addressed in new projects.55 Fairness is a central perspective in
healthcare and the models developed by AI/ML should be fair to
human characteristics including gender, race, and ethnicity. For
example, a predictive model that is developed with one gender,
race, or ethnic group only is not likely be applicable to the
population at large and is bound to fail in the real world. Privacy is

Retina

Feature extraction

Features

CLASSIFICATION

DIAGNOSIS

Vessel type, dilation
tortuosity, location

Fig. 5 Diagnosis of retinopathy of prematurity by machine learning. Early efforts to automate the diagnosis of ROP used features such as
vessel type, dilation, tortuosity, and location, and a score was developed without a computer algorithm (e.g., ROPtool). Machine learning uses
a classifier step that relates the features to the diagnosis. Deep convoluted neural networks (CNN) differ from traditional ML algorithms such
as support vector machine by letting the machine learn the features related to the input image that correlates with the diagnosis without
human-defined features.
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another critical issue in healthcare and the anonymity and privacy
of the patients should be respected, if the ML modeling is
performed using private information of the patients, e.g.,
identifiers such as medical record numbers, social security
numbers, or even the zip code where they live. Explainability
and interpretability are important aspects of clinical medicine, e.g.,
how a certain exposure leads to disease or a drug leads to side
effects. However, ML algorithms, especially deep learning models
are considered black boxes where the connection between input
and output is obscure, and the function is not explainable. This
might be all the more important when the model does not work
very well, and the issues are not explainable. Ethical research is the
cornerstone of medicine and healthcare, and several questions
need to be addressed. Will it be possible for AI and ML models to
follow or address the basic biomedical ethical principles of respect
for autonomy, non-maleficence, beneficence, and justice? Could
the use of AI, if the model is poorly developed, cause more harm
than good? Could the use of AI in some way by their predictions
increase psychological stress in parents, make the patients poor
insurance clients if we predict long-term poor outcomes early? Are
there ethical concerns, conflicts of interest, individual on the part
of the researcher or clinician, hospital or institution – financial or
otherwise?56 How are medico-legal risks that arise from use of AI
managed?57 We as proponents of the use of AI/ML should make
sure that we address the societal and ethical issues adequately to
maximize risk-benefit ratios.

SUMMARY AND THE FUTURE
There are tremendous opportunities for enhancing patient
outcomes that technological advances have brought forth,
integrating multiomics and clinical data sets with modern
computing platforms using ML. The advances and capabilities
have the potential to bring about paradigm shifts in how we
practice medicine in the fields of perinatal and neonatal medicine.
Predictive analytics hold promise for the prevention of disease
and improved diagnostics and therapeutics. Potential ethical and
societal issues due to the use of ML techniques in healthcare need
to be addressed with foresight and wise judgment.
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