Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Special Article
  • Published:

Models of bilirubin neurological damage: lessons learned and new challenges

Abstract

Objective

Jaundice (icterus) is the visible manifestation of the accumulation of bilirubin in the tissue and is indicative of potential toxicity to the brain. Since its very first description more than 2000 years ago, many efforts have been undertaken to understand the molecular determinants of bilirubin toxicity to neuronal cells to reduce the risk of neurological sequelae through the use of available chemicals and in vitro, ex vivo, in vivo, and clinical models. Although several studies have been performed, important questions remain unanswered, such as the reasons for regional sensitivity and the interplay with brain development. The number of new molecular effects identified has increased further, which has added even more complexity to the understanding of the condition. As new research challenges emerged, so does the need to establish solid models of prematurity.

Methods

This review critically summarizes the key mechanisms of severe neonatal hyperbilirubinemia and the use of the available models and technologies for translational research.

Impact

  • We critically review the conceptual dogmas and models used for studying bilirubin-induced neurotoxicity.

  • We point out the pitfalls and translational gaps, and suggest new clinical research challenges.

  • We hope to inform researchers on the pro and cons of the models used, and to help direct their experimental focus in a most translational research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bilirubin and its toxic effects.
Fig. 2: Distribution of bilirubin accumulation in the brain, and the regions reported to be affected by bilirubin toxicity by the different models.
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Ostrow, J. D. Bile Pigments and Jaundice: Molecular, Metabolic, and Medical Aspects (Marcel Dekker Inc., New York, 1986). Illustrated edn.

    Google Scholar 

  2. Brodersen, R. Bilirubin. Solubility and interaction with albumin and phospholipid. J. Biol. Chem. 254, 2364–2369 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Ostrow, J. D., Mukerjee, P. & Tiribelli, C. Structure and binding of unconjugated bilirubin: relevance for physiological and pathophysiological function. J. Lipid Res. 35, 1715–1737 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Mediavilla, M. G. et al. Uptake of [3H] bilirubin in freshly isolated rat hepatocytes: role of free bilirubin concentration. FEBS Lett. 463, 143–145 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Diamond, I. & Schmid, R. Experimental bilirubin encephalopathy. The mode of entry of bilirubin-14C into the central nervous system. J. Clin. Invest. 45, 678–689 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Watchko, J. F. & Maisels, M. J. The enigma of low bilirubin kernicterus in premature infants: why does it still occur, and is it preventable? Semin Perinatol. 38, 397–406 (2014).

    Article  PubMed  Google Scholar 

  7. Cuperus, F. J. C. et al. Beyond plasma bilirubin: the effects of phototherapy and albumin on brain bilirubin levels in Gunn rats. J. Hepato. 58, 134–140 (2013).

    Article  CAS  Google Scholar 

  8. Schreuder, A. B. et al. Optimizing exchange transfusion for severe unconjugated hyperbilirubinemia: studies in the Gunn rat. PLoS One. 8, e77179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schreuder, A. B. et al. Albumin administration protects against bilirubin-induced auditory brainstem dysfunction in Gunn rat pups. Liver Int. 33, 1557–1565 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Vodret, S. et al. Albumin administration prevents neurological damage and death in a mouse model of severe neonatal hyperbilirubinemia. Sci. Rep. 5, 16203 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Strauss, K. A. et al. Management of hyperbilirubinemia and prevention of kernicterus in 20 patients with Crigler-Najjar disease. Eur. J. Pediatr. 165, 306–319 (2006).

    Article  PubMed  Google Scholar 

  12. Hegyi, T. et al. Effects of soybean lipid infusion on unbound free fatty acids and unbound bilirubin in preterm infants. J. Pediatr. 184, 45–50.e1 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hegyi, T., Kathiravan, S., Stahl, G. E., Huber, A. H. & Kleinfeld, A. Unbound free fatty acids from preterm infants treated with intralipid decouples unbound from total bilirubin potentially making phototherapy ineffective. Neonatology 104, 184–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Calligaris, S. D. et al. Cytotoxicity is predicted by unbound and not total bilirubin concentration. Pediatr. Res. 62, 576–580 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Watchko, J. F. & Tiribelli, C. Bilirubin-induced neurologic damage – mechanisms and management approaches. N. Engl. J. Med. 369, 2021–2030 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Ahlfors, C. E., Wennberg, R. P., Ostrow, J. D. & Tiribelli, C. Unbound (free) bilirubin: improving the paradigm for evaluating neonatal jaundice. Clin. Chem. 55, 1288–1299 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Ahlfors, C. E., Amin, S. B. & Parker, A. E. Unbound bilirubin predicts abnormal automated auditory brainstem response in a diverse newborn population. J. Perinatol. J. Calif. Perinat. Assoc. 29, 305–309 (2009).

    CAS  Google Scholar 

  18. Hegyi, T. & Kleinfeld, A. Neonatal hyperbilirubinemia and the role of unbound bilirubin. J. Matern Fetal Neonatal Med. 0, 1–7 (2021).

    Google Scholar 

  19. Yokota, T. et al. Novel treatment strategy for Japanese newborns with high serum unbound bilirubin. Pediatr. Int J. Jpn Pediatr. Soc. 55, 54–59 (2013).

    CAS  Google Scholar 

  20. Morioka, I. Hyperbilirubinemia in preterm infants in Japan: new treatment criteria. Pediatr. Int. 60, 684–690 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Morioka, I. et al. Serum unbound bilirubin as a predictor for clinical kernicterus in extremely low birth weight infants at a late age in the neonatal intensive care unit. Brain Dev. 37, 753–757 (2015).

    Article  PubMed  Google Scholar 

  22. Huber, A. H. et al. Fluorescence sensor for the quantification of unbound bilirubin concentrations. Clin. Chem. 58, 869–876 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Hegyi, T. et al. Unbound bilirubin measurements in term and late-preterm infants. J. Matern Fetal Neonatal Med. 20, 1–7 (2020).

    Google Scholar 

  24. Bhutani, V. K., Wong, R. J. & Stevenson, D. K. Hyperbilirubinemia in preterm neonates. Clin. Perinatol. 43, 215–232 (2016).

    Article  PubMed  Google Scholar 

  25. American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 114, 297–316 (2004).

    Article  Google Scholar 

  26. Zelenka, J. et al. Highly sensitive method for quantitative determination of bilirubin in biological fluids and tissues. J. Chromatogr. B. 867, 37–42 (2008).

    Article  CAS  Google Scholar 

  27. Gazzin, S. et al. Bilirubin accumulation and Cyp mRNA expression in selected brain regions of jaundiced Gunn rat pups. Pediatr. Res. 71, 653–660 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Cuperus, F. J. C. et al. Effective treatment of unconjugated hyperbilirubinemia with oral bile salts in Gunn rats. Gastroenterology 136, 673–682.e1 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Bočkor, L. et al. Modulation of bilirubin neurotoxicity by the Abcb1 transporter in the Ugt1-/- lethal mouse model of neonatal hyperbilirubinemia. Hum. Mol. Genet. 26, 145–157 (2017).

    PubMed  Google Scholar 

  30. Øie, S. & Levy, G. Effect of sulfisoxazole on pharmacokinetics of free and plasma protein-bound bilirubin in experimental unconjugated hyperbilirubinemia. J. Pharm. Sci. 68, 6–9 (1979).

    Article  PubMed  Google Scholar 

  31. Schutta, H. S. & Johnson, L. Clinical signs and morphologic abnormalities in Gunn rats treated with sulfadimethoxine. J. Pediatr. 75, 1070–1079 (1969).

    Article  CAS  PubMed  Google Scholar 

  32. Aono, S., Semba, R., Sato, H. & Kashiwamata, S. Mode of bilirubin deposition in the cerebellum of developing jaundiced Gunn rats. Neonatology 55, 119–123 (1989).

    Article  CAS  Google Scholar 

  33. Conlee, J. W. & Shapiro, S. M. Development of cerebellar hypoplasia in jaundiced Gunn rats: a quantitative light microscopic analysis. Acta Neuropathol. (Berl.). 93, 450–460 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Waddell, J., He, M., Tang, N., Rizzuto, C. & Bearer, C. F. A Gunn rat model of preterm hyperbilirubinemia. Pediatr. Res. 87, 480–484 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Hansen, T. W. R. Pioneers in the scientific study of neonatal jaundice and kernicterus. Pediatrics 106, e15 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Dal Ben, M., Bottin, C., Zanconati, F., Tiribelli, C. & Gazzin, S. Evaluation of region selective bilirubin-induced brain damage as a basis for a pharmacological treatment. Sci. Rep. 7, 41032 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Genc, S., Genc, K., Kumral, A., Baskin, H. & Ozkan, H. Bilirubin is cytotoxic to rat oligodendrocytes in vitro. Brain Res. 985, 135–141 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Bianco, A. et al. The extent of intracellular accumulation of bilirubin determines its anti- or pro-oxidant effect. Int J. Mol. Sci. 21, E8101 (2020).

    Article  Google Scholar 

  39. Qaisiya, M. et al. Bilirubin-induced ER stress contributes to the inflammatory response and apoptosis in neuronal cells. Arch. Toxicol. 91, 1847–1858 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Rodrigues, C. M. P., Solá, S., Brito, M. A., Brites, D. & Moura, J. J. G. Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria. J. Hepatol. 36, 335–341 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Silva, R. et al. Inhibition of glutamate uptake by unconjugated bilirubin in cultured cortical rat astrocytes: role of concentration and pH. Biochem. Biophys. Res. Commun. 265, 67–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Falcão, A. S. et al. Cross-talk between neurons and astrocytes in response to bilirubin: early beneficial effects. Neurochem Res. 38, 644–659 (2013).

    Article  PubMed  Google Scholar 

  43. Wisnowski, J. L., Panigrahy, A., Painter, M. J. & Watchko, J. F. Magnetic resonance imaging abnormalities in advanced acute bilirubin encephalopathy highlight dentato-thalamo-cortical pathways. J. Pediatr. 174, 260–263 (2016).

    Article  PubMed  Google Scholar 

  44. Wisnowski, J. L., Panigrahy, A., Painter, M. J. & Watchko, J. F. Magnetic resonance imaging of bilirubin encephalopathy: current limitations and future promise. Semin. Perinatol. 38, 422–428 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shapiro, S. M. & Riordan, S. M. Review of bilirubin neurotoxicity II: preventing and treating acute bilirubin encephalopathy and kernicterus spectrum disorders. Pediatr. Res. 87, 332–337 (2019).

    Article  PubMed  Google Scholar 

  46. Le Pichon, J.-B., Riordan, S. M., Watchko, J. & Shapiro, S. M. The neurological sequelae of neonatal hyperbilirubinemia: definitions, diagnosis and treatment of the kernicterus spectrum disorders (KSDs). Curr. Pediatr. Rev. 13, 199–209 (2017).

    PubMed  Google Scholar 

  47. Watchko, J. F. Bilirubin-induced neurotoxicity in the preterm neonate. Clin. Perinatol. 43, 297–311 (2016).

    Article  PubMed  Google Scholar 

  48. Jayanti, S., Ghersi-Egea, J.-F., Strazielle, N., Tiribelli, C. & Gazzin, S. Severe neonatal hyperbilirubinemia and the brain: the old but still evolving story. Pediatr. Med. 21-5, 1–20 (2021).

    Google Scholar 

  49. Shapiro, S. M. Bilirubin toxicity in the developing nervous system. Pediatr. Neurol. 29, 410–421 (2003).

    Article  PubMed  Google Scholar 

  50. Shapiro, S. M. Chronic bilirubin encephalopathy: diagnosis and outcome. Semin. Fetal Neonatal Med. 15, 157–163 (2010).

    Article  PubMed  Google Scholar 

  51. Brito, M. A., Pereira, P., Barroso, C., Aronica, E. & Brites, D. New autopsy findings in different brain regions of a preterm neonate with kernicterus: neurovascular alterations and up-regulation of efflux transporters. Pediatr. Neurol. 49, 431–438 (2013).

    Article  PubMed  Google Scholar 

  52. Sawasaki, Y., Yamada, N. & Nakajima, H. Developmental features of cerebellar hypoplasia and brain bilirubin levels in a mutant (Gunn) rat with hereditary hyperbilirubinaemia. J. Neurochem. 27, 577–583 (1976).

    Article  CAS  PubMed  Google Scholar 

  53. Barateiro, A. et al. Reduced myelination and increased glia reactivity resulting from severe neonatal hyperbilirubinemia. Mol. Pharmacol. 89, 84–93 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hansen, T. W. R. Bilirubin entry into and clearance from rat brain during hypercarbia and hyperosmolality. Pediatr. Res. 39, 72–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Hansen, T. W. R., Øyasœter, S., Stiris, T. & Bratlid, D. Effects of sulfisoxazole, hypercarbia, and hyperosmolality on entry of bilirubin and albumin into brain regions in young rats. Neonatology 56, 22–30 (1989).

    Article  CAS  Google Scholar 

  56. Hansen, T. W. R. Bilirubin brain toxicity. J. Perinatol. 21, S48–S51 (2001).

    Article  PubMed  Google Scholar 

  57. Hu, W. et al. Ex vivo 1H nuclear magnetic resonance spectroscopy reveals systematic alterations in cerebral metabolites as the key pathogenetic mechanism of bilirubin encephalopathy. Mol. Brain. 7, 87–96 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Roger, C., Koziel, V., Vert, P. & Nehlig, A. Mapping of the consequences of bilirubin exposure in the immature rat: local cerebral metabolic rates for glucose during moderate and severe hyperbilirubinemia. Early Hum. Dev. 43, 133–144 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Vaz, A.-R.- et al. Selective vulnerability of rat brain regions to unconjugated bilirubin. Mol. Cell Neurosci. 48, 82–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Amin, S. B., Smith, T. & Timler, G. Developmental influence of unconjugated hyperbilirubinemia and neurobehavioral disorders. Pediatr. Res. 85, 191–197 (2019).

    Article  PubMed  Google Scholar 

  61. Chang, F.-Y., Lee, C.-C., Huang, C.-C. & Hsu, K.-S. Unconjugated bilirubin exposure impairs hippocampal long-term synaptic plasticity. PLoS One 4, e5876 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhang, L., Liu, W., Tanswell, A. K. & Luo, X. The effects of bilirubin on evoked potentials and long-term potentiation in rat hippocampus in vivo. Pediatr. Res. 53, 939–944 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Brito, M. A. et al. Cerebellar axon/myelin loss, angiogenic sprouting, and neuronal increase of vascular endothelial growth factor in a preterm infant with kernicterus. J. Child Neurol. 27, 615–624 (2012).

    Article  PubMed  Google Scholar 

  64. Vianello, E. et al. Histone acetylation as a new mechanism for bilirubin-induced encephalopathy in the Gunn rat. Sci. Rep. 8, 1–14 (2018).

    Article  CAS  Google Scholar 

  65. Bortolussi, G. et al. Rescue of bilirubin-induced neonatal lethality in a mouse model of Crigler-Najjar syndrome type I by AAV9-mediated gene transfer. FASEB J. 26, 1052–1063 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nguyen, N. et al. Disruption of the Ugt1 locus in mice resembles human Crigler-Najjar type I disease. J. Biol. Chem. 283, 7901–7911 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Gazzin, S. et al. Curcumin prevents cerebellar hypoplasia and restores the behavior in hyperbilirubinemic Gunn rat by a pleiotropic effect on the molecular effectors of brain damage. Int J. Mol. Sci. 22, 299 (2021).

    Article  CAS  Google Scholar 

  68. Usman, F., Diala, U., Shapiro, S., LePichon, J.-B. & Slusher, T. Acute bilirubin encephalopathy and its progression to kernicterus: current perspectives. Res Rep. Neonatol. 8, 33–44 (2018).

    Google Scholar 

  69. Silva, S. L. et al. Features of bilirubin-induced reactive microglia: from phagocytosis to inflammation. Neurobiol. Dis. 40, 663–675 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Shapiro, S. M. Reversible brainstem auditory evoked potential abnormalities in jaundiced Gunn rats given sulfonamide. Pediatr. Res. 34, 629–633 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Hansen, T. W. R. et al. Reversibility of acute intermediate phase bilirubin encephalopathy. Acta Paediatr. 98, 1689–1694 (2009).

    Article  PubMed  Google Scholar 

  72. Barateiro, A., Vaz, A. R., Silva, S. L., Fernandes, A. & Brites, D. ER stress, mitochondrial dysfunction and calpain/JNK activation are involved in oligodendrocyte precursor cell death by unconjugated bilirubin. NeuroMolecular Med. 14, 285–302 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Palmela, I. et al. Time-dependent dual effects of high levels of unconjugated bilirubin on the human blood-brain barrier lining. Front Cell Neurosci. 6, 1–14 (2012).

    Article  Google Scholar 

  74. Gunn, C. H. Hereditary acholuric jaundice in a New Mutant Strain of Rats. J. Hered. 29, 137–139 (1938).

    Article  Google Scholar 

  75. Roger, C., Koziel, V., Vert, P. & Nehlig, A. Effects of bilirubin infusion on local cerebral glucose utilization in the immature rat. Dev. Brain Res. 76, 115–130 (1993).

    Article  CAS  Google Scholar 

  76. von Bartheld, C. S., Bahney, J. & Herculano-Houzel, S. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol. 524, 3865–3895 (2016).

    Article  Google Scholar 

  77. Ngai, K.-C., Yeung, C.-Y. & Leung, C.-S. Difference in susceptibilities of different cell lines to bilirubin damage. J. Paediatr. Child Health 36, 51–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Rodrigues, C. M. P., Solá, S., Silva, R. F. M. & Brites, D. Aging confers different sensitivity to the neurotoxic properties of unconjugated bilirubin. Pediatr. Res. 51, 112–118 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Gambaro, S. E., Robert, M. C., Tiribelli, C. & Gazzin, S. Role of brain cytochrome P450 mono-oxygenases in bilirubin oxidation-specific induction and activity. Arch. Toxicol. 90, 279–290 (2014).

    Article  PubMed  Google Scholar 

  80. Roger, C., Koziel, V., Vert, P. & Nehlig, A. Regional cerebral metabolic consequences of bilirubin in rat depend upon post-gestational age at the time of hyperbilirubinemia. Dev. Brain Res. 87, 194–202 (1995).

    Article  CAS  Google Scholar 

  81. Vaz, A. R., Falcão, A. S., Scarpa, E., Semproni, C. & Brites, D. Microglia susceptibility to free bilirubin is age-dependent. Front Pharmacol. 11, 1012 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Silva, S. L. et al. Neuritic growth impairment and cell death by unconjugated bilirubin is mediated by NO and glutamate, modulated by microglia, and prevented by glycoursodeoxycholic acid and interleukin-10. Neuropharmacology 62, 2398–2408 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Falcão, A. S., Fernandes, A., Brito, M. A., Silva, R. F. M. & Brites, D. Bilirubin-induced inflammatory response, glutamate release, and cell death in rat cortical astrocytes are enhanced in younger cells. Neurobiol. Dis. 20, 199–206 (2005).

    Article  PubMed  Google Scholar 

  84. Bortolussi, G. et al. Age-dependent pattern of cerebellar susceptibility to bilirubin neurotoxicity in vivo in mice. Dis. Model Mech. 7, 1057–1068 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Keino, H. et al. Mode of prevention by phototherapy of cerebellar hypoplasia in a new Sprague-Dawley strain of jaundiced Gunn rats. Pediatr. Neurosurg. 12, 145–150 (1985).

    Article  Google Scholar 

  86. Deganuto, M. et al. A proteomic approach to the bilirubin-induced toxicity in neuronal cells reveals a protective function of DJ-1 protein. Proteomics 10, 1645–1657 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Calligaris, R. et al. A transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells. BMC Genomics. 10, 543 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Grojean, S., Lievre, V., Koziel, V., Vert, P. & Daval, J.-L. Bilirubin exerts additional toxic effects in hypoxic cultured neurons from the developing rat brain by the recruitment of glutamate neurotoxicity. Pediatr. Res. 49, 507–513 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Gordo, A. C. et al. Unconjugated bilirubin activates and damages microglia. J. Neurosci. Res. 84, 194–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Fernandes, A., Silva, R. F. M., Falcão, A. S., Brito, M. A. & Brites, D. Cytokine production, glutamate release and cell death in rat cultured astrocytes treated with unconjugated bilirubin and LPS. J. Neuroimmunol. 153, 64–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Giraudi, P. J., Bellarosa, C., Coda-Zabetta, C. D., Peruzzo, P. & Tiribelli, C. Functional induction of the cystine-glutamate exchanger system Xct activity in SH-SY5Y cells by unconjugated bilirubin. PLoS One 6, e29078 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Grojean, S., Koziel, V., Vert, P. & Daval, J. L. Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons. Exp. Neurol. 166, 334–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Rodrigues, C. M. P., Solá, S. & Brites, D. Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons. Hepatol. Balt. Md. 35, 1186–1195 (2002).

    Article  CAS  Google Scholar 

  94. Brito, M. A. et al. Bilirubin injury to neurons: contribution of oxidative stress and rescue by glycoursodeoxycholic acid. Neurotoxicology 29, 259–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Rawat, V., Bortolussi, G., Gazzin, S., Tiribelli, C. & Muro, A. F. Bilirubin-induced oxidative stress leads to DNA damage in the cerebellum of hyperbilirubinemic neonatal mice and activates DNA double-strand break repair pathways in human cells. Oxid. Med. Cell Longev. 2018, e1801243 (2018).

    Article  Google Scholar 

  96. Barateiro, A., Domingues, H. S., Fernandes, A., Relvas, J. B. & Brites, D. Rat cerebellar slice cultures exposed to bilirubin evidence reactive gliosis, excitotoxicity and impaired myelinogenesis that is prevented by AMPA and TNF-α inhibitors. Mol. Neurobiol. 49, 424–439 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Robert, M. C. et al. Alterations in the cell cycle in the cerebellum of hyperbilirubinemic Gunn rat: a possible link with apoptosis? PLoS One. 8, e79073 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bortolussi, G. et al. Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice. Cell Death Dis. 6, e1739 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cohen, G., Livovsky, D. M., Kapitulnik, J. & Sasson, S. Bilirubin increases the expression of glucose transporter-1 and the rate of glucose uptake in vascular endothelial cells. Rev. Diabet. Stud. 3, 127–133 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Qaisiya, M., Mardešić, P., Pastore, B., Tiribelli, C. & Bellarosa, C. The activation of autophagy protects neurons and astrocytes against bilirubin-induced cytotoxicity. Neurosci. Lett. 661, 96–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Brodersen, R. & Bartels, P. Enzymatic oxidation of bilirubin. Eur. J. Biochem. 10, 468–473 (1969).

    Article  CAS  PubMed  Google Scholar 

  102. Hansen, T. W. Bilirubin oxidation in brain. Mol. Genet Metab. 71, 411–417 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Roseth, S., Hansen, T. W. R., Fonnum, F. & Walaas, S. I. Bilirubin inhibits transport of neurotransmitters in synaptic vesicles. Pediatr. Res. 44, 312–316 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Ahlfors, C. E. & Shapiro, S. M. Auditory brainstem response and unbound bilirubin in jaundiced (jj) Gunn rat pups. Neonatology 80, 158–162 (2001).

    Article  CAS  Google Scholar 

  105. Shapiro, S. M. Somatosensory and brainstem auditory evoked potentials in the Gunn rat model of acute bilirubin neurotoxicity. Pediatr. Res. 52, 844–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Brites, D. & Fernandes, A. Bilirubin-induced neural impairment: a special focus on myelination, age-related windows of susceptibility and associated co-morbidities. Semin. Fetal Neonatal Med. 20, 14–19 (2015).

    Article  PubMed  Google Scholar 

  107. Mancuso, C. et al. Bilirubin as an endogenous modulator of neurotrophin redox signaling. J. Neurosci. Res. 86, 2235–2249 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Falcão, A. S. et al. Apoptosis and impairment of neurite network by short exposure of immature rat cortical neurons to unconjugated bilirubin increase with cell differentiation and are additionally enhanced by an inflammatory stimulus. J. Neurosci. Res. 85, 1229–1239 (2007).

    Article  PubMed  Google Scholar 

  109. Hansen, T. W. R., Tommarello, S. & Allen, J. W. Subcellular localization of bilirubin in rat brain after in vivo i.v. administration of [3H] bilirubin. Pediatr. Res. 49, 203–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Rodrigues, C. M. P. et al. Perturbation of membrane dynamics in nerve cells as an early event during bilirubin-induced apoptosis. J. Lipid Res. 43, 885–894 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Mustafa, M. G. & King, T. E. Binding of bilirubin with lipid: a possible mechanism of its toxic reactions in mitochondria. J. Biol. Chem. 245, 1084–1089 (1970).

    Article  CAS  PubMed  Google Scholar 

  112. Pascolo, L., Fernetti, C., Garcia-Mediavilla, M. V., Ostrow, J. D. & Tiribelli, C. Mechanisms for the transport of unconjugated bilirubin in human trophoblastic BeWo cells. FEBS Lett. 495, 94–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Corich, L. et al. The cytotoxic effect of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells is modulated by the expression level of MRP1 but not MDR1. Biochem J. 417, 305–312 (2008).

    Article  Google Scholar 

  114. Falcão, A. S. et al. Role of multidrug resistance-associated protein 1 expression in the in vitro susceptibility of rat nerve cell to unconjugated bilirubin. Neuroscience 144, 878–888 (2007).

    Article  PubMed  Google Scholar 

  115. Calligaris, S. et al. Multidrug resistance associated protein 1 protects against bilirubin-induced cytotoxicity. FEBS Lett. 580, 1355–1359 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Gennuso, F. et al. Bilirubin protects astrocytes from its own toxicity by inducing up-regulation and translocation of multidrug resistance-associated protein 1 (Mrp1). Proc. Natl. Acad. Sci. USA 101, 2470–2475 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gazzin, S. et al. Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by bilirubin at the blood-CSF and blood-brain barriers in the Gunn rat. PLoS One 6, e16165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rodriguez-Garay, E. & Scremin, O. Transfer of bilirubin- 14 C between blood, cerebrospinal fluid, and brain tissue. Am. J. Physiol. Leg. Content 221, 1264–1270 (1971).

    Article  CAS  Google Scholar 

  119. Sequeira, D., Watchko, J. F., Daood, M. J., O’Day, T. L. & Mahmood, B. Unconjugated bilirubin efflux by bovine brain microvascular endothelial cells in vitro. Pediatr. Crit. Care Med. 8, 570–575 (2007).

    Article  PubMed  Google Scholar 

  120. Watchko, J. F., Daood, M. J. & Hansen, T. W. R. Brain bilirubin content is increased in P-glycoprotein-deficient transgenic null mutant mice. Pediatr. Res. 44, 763–766 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Hankø, E., Tommarello, S., Watchko, J. F. & Hansen, T. W. R. Administration of drugs known to inhibit P-glycoprotein increases brain bilirubin and alters the regional distribution of bilirubin in rat brain. Pediatr. Res. 54, 441–445 (2003).

    Article  PubMed  Google Scholar 

  122. Cardoso, F. L. et al. Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells. PLoS One 7, e35919 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Katoh-Semba, R. & Kashiwamata, S. Interaction of bilirubin with brain capillaries and its toxicity. Biochim. Biophys. Acta Bba. 632, 290–297 (1980).

    Article  CAS  PubMed  Google Scholar 

  124. Blondel, S. et al. Vascular network expansion, integrity of blood–brain interfaces, and cerebrospinal fluid cytokine concentration during postnatal development in the normal and jaundiced rat. Fluids Barriers Cns. 19, 47 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rice, A. C., Chiou, V. L., Zuckoff, S. B. & Shapiro, S. M. Profile of minocycline neuroprotection in bilirubin-induced auditory system dysfunction. Brain Res. 1368, 290–298 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Rice, A. C. & Shapiro, S. M. A new animal model of hemolytic hyperbilirubinemia-induced bilirubin encephalopathy (kernicterus). Pediatr. Res. 64, 265–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Mesner, O. et al. Hyperbilirubinemia diminishes respiratory drive in a rat pup model. Pediatr. Res. 64, 270–274 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rice, A. C. & Shapiro, S. M. Biliverdin-induced brainstem auditory evoked potential abnormalities in the jaundiced Gunn rat. Brain Res. 1107, 215–221 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Toietta, G. et al. Lifelong elimination of hyperbilirubinemia in the Gunn rat with a single injection of helper-dependent adenoviral vector. Proc. Natl. Acad. Sci. USA 102, 3930–3935 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Drummond, G. S. & Kappas, A. Prevention of neonatal hyperbilirubinemia by tin protoporphyrin IX, a potent competitive inhibitor of heme oxidation. Proc. Natl. Acad. Sci. USA 78, 6466–6470 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang, F.-C. et al. Fate of neural progenitor cells transplanted into jaundiced and nonjaundiced rat brains. Cell Transplant. 26, 605–611 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lin, S. et al. Minocycline blocks bilirubin neurotoxicity and prevents hyperbilirubinemia-induced cerebellar hypoplasia in the Gunn rat. Eur. J. Neurosci. 22, 21–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Geiger, A. S., Rice, A. C. & Shapiro, S. M. Minocycline blocks acute bilirubin-induced neurological dysfunction in jaundiced Gunn rats. Neonatology 92, 219–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Vodret, S. et al. Attenuation of neuro-inflammation improves survival and neurodegeneration in a mouse model of severe neonatal hyperbilirubinemia. Brain Behav. Immun. 70, 166–178 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Daood, M. J., Hoyson, M. & Watchko, J. F. Lipid peroxidation is not the primary mechanism of bilirubin-induced neurologic dysfunction in jaundiced Gunn rat pups. Pediatr. Res. 72, 455–459 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Waddell, J., Rickman, N. C., He, M., Tang, N. & Bearer, C. F. Choline supplementation prevents the effects of bilirubin on cerebellar-mediated behavior in choline-restricted Gunn rat pups. Pediatr. Res. 89, 1414–1419 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Rice, D. & Barone, S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect. 108, 511–533 (2000).

    PubMed  PubMed Central  Google Scholar 

  138. Clancy, B., Darlington, R. B. & Finlay, B. L. Translating developmental time across mammalian species. Neuroscience 105, 7–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Kinney, H. C. & Volpe, J. J. Modeling the encephalopathy of prematurity in animals: the important role of translational research. Neurol. Res Int. 2012, e295389 (2012).

    Article  Google Scholar 

  140. Volpe, J. J. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J. Child Neurol. 24, 1085–1104 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Riordan, S. M. et al. A hypothesis for using pathway genetic load analysis for understanding complex outcomes in bilirubin encephalopathy. Front. Neurosci. 10, 376 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank Prof. Jon F. Watchko for his inspiring presentation at the “Yellow seminars” of December 6, 2021 (http://bit.ly/YW_Watchko), and Dr Lorraine Kay Cabral for critical reading of this review.

Funding

S.J., C.T., and S.G. were financed in part by an internal grant of the Fondazione Italiana Fegato – Onlus. S.J. was financed by a fellowship from the Lembaga Pengelola Dana Pendidikan (Indonesia Endowment Fund for Education), in part by an internal grant of the Fondazione Italiana Fegato – Onlus.

Author information

Authors and Affiliations

Authors

Contributions

S.G. made substantial contribution to conception and design, acquisition, and revision of the literature, and wrote the article. S.J. contributed to acquisition and revision of the literature and wrote the article. C.T. discussed the results, revised the article for intellectual content, and contributed to the final revision of the English. All the authors read and approved the final version of the article.

Corresponding author

Correspondence to Silvia Gazzin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazzin, S., Jayanti, S. & Tiribelli, C. Models of bilirubin neurological damage: lessons learned and new challenges. Pediatr Res 93, 1838–1845 (2023). https://doi.org/10.1038/s41390-022-02351-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-022-02351-x

This article is cited by

Search

Quick links