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Coronavirus disease 2019 in children presents with milder clinical manifestations than in adults. On the other hand, the presence of
a wide range of inflammatory manifestations, including multisystem inflammatory syndrome in children (MIS-C), in the period after
infection suggests a particular susceptibility of some children toward severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2). Both protective factors that prevent evolution to severe forms and risk factors for post-infectious conditions are likely to be
found in age-related differences in the immune system. The prompt innate response with type I IFN production and the generation
of neutralizing antibodies play a crucial role in containing the infection. The greater number of naive and regulatory cells in children
helps to avoid the cytokine storm while the causes of the intense inflammatory response in MIS-C need to be elucidated. This
review aims to analyze the main results of the recent literature assessing immune response to SARS-CoV-2 over the pediatric age
group. We summarized such observations by dividing them into innate and acquired immunity, then reporting how altered
immune responses can determine post-infectious conditions.
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IMPACT:

● The main immune markers of acute SARS-CoV-2 infection in children are summarized in this review.
● This paper reports a broad overview of age-related differences in the immune response to SARS-CoV-2 and emerging post-

infection conditions.
● A summary of currently available therapies for the pediatric age group is provided.

INTRODUCTION
Since the earliest descriptions of coronavirus disease 2019 (COVID-
19), it has become clear that most children experience SARS-CoV-2
infection with a milder clinical course than adults.1–3 Severe and
critical pediatric cases (2.5% and 0.6%, respectively) are signifi-
cantly less frequent than in adults even in children with
comorbidities.4–7 Apart from the course of the acute SARS-CoV-2
infection, one of the most remarkable features in pediatrics is the
wide range of post-infectious immune and inflammatory condi-
tions including multisystem inflammatory syndrome in children
(MIS-C),8–12 cutaneous lesions,13–16 Long COVID,17 and the recent
increased incidence of diabetes.18

Altogether, the evidence of such different clinical pictures in
response to SARS-CoV-2 infection suggests the existence of
immunological, genetic, viral, or environmental factors that
distinguish the “successful” immune response that resists or
contains the virus, from the unsuccessful response that leads to
the range of severe outcomes.
Understanding the immunological mechanisms underlying the

different host responses to SARS-CoV-2 could be critical in
identifying individuals at risk of adverse outcomes, preventing
progression to severe disease, and improving treatment.

As many of the specificities of COVID-19 clinical pictures are
age-related, the immunological response to the virus in children
could provide important insights.

METHODS
This review aims to analyze the main results of the recent
literature assessing immune response to SARS-CoV-2 in children.
We attempted a comprehensive search related to COVID-19 in
children and major post-infectious conditions by studying the
most relevant literature available on PubMed.
We summarized such observations by dividing them into innate

and acquired immunity (Fig. 1), then reporting how altered
immune responses can determine post-infectious conditions.

The “barrier” of innate immunity
Virus entry. Once SARS-CoV-2 reaches the human airways via
airborne transmission, it infects respiratory cells through binding
between the receptor binding domain (RBD) of the spike protein
and the receptor of angiotensin-converting enzyme 2 (ACE2)
expressed by the respiratory cell membrane.19 TMPRSS2, a
transmembrane serine protease, plays a key role in virus entry.20
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One of the first hypotheses to explain the difference in clinical
manifestations between children and adults is the possible
different expression of ACE2 receptors.21,22 Some authors have
suggested that ACE2 receptors in children may have a lower
affinity for SARS-CoV-2, thus reducing virus entry into the host
cell.23 Lower levels of TMPRSS2, have been observed in children
and infants.21,24

A recent work revealed that ACE2 protein expression in alveolar
type 2 cells of children compared with adults was lower, resulting
in higher angiotensin II levels, while TMPRSS2 protein expression
was not affected by age.25 On the other hand, several studies
showed that there is no clear difference in either viral load or ACE2
expression in the upper airways between children and adults.26–28

In conclusion, given the number of supporting studies, it is likely
that SARS-CoV-2 binding to respiratory cells is somewhat different
and lower in children, but how much this may affect the clinical
expression of infection remains controversial.
Recently has been supposed that Omicron (B.1.1.52), a SARS-CoV-

2 variant that emerged in late 2021, infects cells independently of
the ACE2/TMPRSS2 pathway. In particular, Omicron’s spike protein
requires the activity of endosomal cathepsins to be cleaved, while it
is unable to efficiently use the cellular protease TMPRSS2.29 This
switch of entry strategy increases the number of target cell types for
viral entry. Probably this could explain why the Omicron variant is
showing higher transmissibility30,31 even in children (Fig. 2).
Regardless of variant, important differences in the expression of

molecules involved in the “barrier” of innate immunity have been
demonstrated. Epithelial cells lining the upper airways appear to
play a crucial role. These cells express pattern recognition receptors,

like MDA5 and RIG-I, cytosolic proteins essential for antiviral host
immune responses, that can recognize SARS-CoV-2 antigens (Fig. 2).
These receptors once recognized double-stranded RNA, trigger
activation of TANK-binding kinase 1 (TBK1) through the key
mitochondrial antiviral signaling adaptor.32 TBK1 in turn activates
interferon regulatory factor 3, which induces the production of type
I interferon (IFN-I) and downstream interferon-stimulated genes.33,34

In children, significantly higher expression than in adults of genes
encoding MDA5 and RIG-I in upper airway epithelial cells,
macrophages, and dendritic cells was detected.35 This massive
presence of receptors could optimize the barrier response and
immediately trigger interferon production and inflammasome
complexing activation including NLR family pyrin domain contain-
ing 3. Higher cytokine (IFN-α2, IFN-γ, IP-10, IL-8, and IL-1β) levels
found in nasopharyngeal samples from children support this
theory.36

The crucial role of interferon
Anti-IFN-I antibodies: A key role in the antiviral response is
played by IFN-I through induction of IFN-inducible genes and
stimulation of apoptosis in infected cells.26 The activation of this
pathway is earlier and better in children due to the massive
presence of cytosolic receptors.35 Thus, the difference in the
severity of COVID-19 between children and adults could in part be
explained by the delay in interferon production in older
individuals and the resulting delayed immune response leading
to higher viral replication.37

Therefore, as might be expected, the presence of autoantibo-
dies directed against IFN is likely to delay the antiviral response.
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Fig. 1 Constitutional risk factors among children are mainly represented by inborn errors that alter innate response pathways.51,52,56

Innate immunity: in healthy children, frequent exposure to viruses and vaccination in the early years of life could keep the immune system
ready in case of first exposure to SARS-CoV-2.165 Immediate production of type 1 IFN is decisive in preventing the spread of viral infection,
while SARS-CoV-2 escape strategies are frustrated by the intervention of specific lymphocytes that limit its inhibitory anti-IFN activity. In
adulthood, the type 1 IFN response is delayed and the increased presence of anti-IFN antibodies favors the spread of infection.46 Infiltration of
the lungs by monocytes/macrophages and neutrophil granulocytes, which show a higher presence of adhesion molecules than in children,
leads to pneumonia.69 Adaptative immunity: the higher number of naive and regulatory cells leads to a moderate cytokine response in
children, avoiding the risk of the cytokine storm typical of more severe COVID-19 cases in adults.75,82 Humoral response: the production of
neutralizing antibodies is associated with a better outcome of the SARS-CoV-2 infection. Among adults with severe disease, the mechanism of
antibody-dependent enhancement (ADE) has been described.76,77 This would be due to the presence of non-neutralizing antibodies that
favor viral propagation and the creation of circulating immune complexes. Created with BioRender.com.
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Indeed, patients with severe COVID-19 show a marked increase in
autoantibodies directed against immunomodulatory proteins,
including IFN and other cytokines, chemokines, complement,
and cell surface proteins. Furthermore, in mouse models of SARS-
CoV-2 infection, these autoantibodies have been shown to
increase disease severity by promoting higher viral load, altering
monocyte activity in the lungs, and reducing the frequency of
activated natural killer cells.38 These data confirm the key role of
the IFN pathway in the organism’s resistance to SARS-CoV-2.
Interestingly, the expression of anti-IFN-I antibodies has been

correlated with age. In a study of people who had not been
previously infected with SARS-CoV-2, the prevalence of these
antibodies was shown to increase with age.39 In childhood, the
increased presence of anti-interferon antibodies is limited to
unusual conditions. This is the case of patients with autoimmune
polyendocrinopathy syndrome type 1, who frequently express
neutralizing autoantibodies directed against IFNs-I, and should be
considered at high risk for life-threatening COVID-19
pneumonia.40,41

Other childhood-onset genetic conditions involving a cellular
defect and higher levels of these autoantibodies are X-linked
immune dysregulation polyendocrinopathy enteropathy,42 and
combined T/B cell immunodeficiency due to hypomorphic
mutations in RAG1/RAG2.43 However, there are not many reports
of severe COVID-19 in these patients, and the most relevant
articles on COVID-19 in children with inborn errors of immunity
(IEI) do not describe any correlation between the type of IEI and
disease severity.41,44,45 To try to understand the discrepancy
between the expected severity and what appears to be the actual
severity, we need to analyze in deeper detail the subtypes of anti-
IFN type 1 autoantibodies.
Bastard et al. found that autoantibodies against IFN-I in patients

with severe COVID-19 were directed against all 13 subtypes of IFN-
α, while autoantibodies against other IFN-Is (IFN-β, IFN- ω) were
rarely present showing a neutralizing capacity in only a small
percentage of cases.46 It could be speculated that non-α IFN-I,
spared by autoimmunity, may provide adequate compensatory
antiviral activity. This might be the reason why not all patients

with these genetic conditions are susceptible to severe viral
infections, including COVID-19,47,48 but further studies are needed.
In any case, these patients may benefit significantly from
treatment with neutralizing monoclonal antibodies49 and, in cases
of severe evolution, with IFN-beta or plasma exchange.40,50

Predisposing genetic defects: Given the key role of IFN-I in the
antiviral response, the presence of pathogenic variants in type I
IFN pathway genes could lead to a significant risk of severe
COVID-19 in affected children.51,52 Patients with defects in the
MDA5-, IRF7- or Toll-like receptors (TLR)-dependent pathways
showed altered production of IFN-I, resulting in the risk of severe
viral infections.
Plasmacytoid dendritic cells (pDCs) are the most effective

producers of IFN-I and play a central role in innate immunity. The
pDCs express TLR7 and TLR9 and can sense viral nucleic acids by
promoting an antiviral environment. Even in the pre-pandemic
era, human X-linked TLR7 deficiency has been described as a
determinant of life-threatening influenza in otherwise healthy
children.53 Confirming this predisposition, a recent study
described a cohort of male patients with COVID-19 pneumonia
who have X-linked TLR7 deficiency. In these patients, pDCs show
altered IFN-I production after SARS-CoV-2 antigen stimulation.54

Other fragile subjects include individuals with loss-of-function
defects in STAT1-, STAT2-, IFNAR1-, IFNAR2-dependent pathways
who show altered cellular response to IFN-I and are similarly at risk
for severe COVID-19.51,55–58 Taken together, these results confirm
the key role of IFN in response to SARS-CoV-2 and identify a group
of patients at high risk of severe SARS-CoV-2 infection.

SARS-CoV-2 mediated IFN-I inhibition: SARS-CoV-2 can counter-
act and delay the IFN-mediated immune response by approxi-
mately 48 h, allowing the virus to replicate and propagate
infection.59 Several mechanisms have been proposed to explain
this SARS-CoV-2 ability, which involve the degradation of MDA5,
RIG-I or TBK1 proteins and the consequently reduced production
of IFN-I by cells of the respiratory epithelium and innate
immunity.60–62 As we will see later, CD4+ T lymphocytes capable
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of counteracting this viral strategy have been demonstrated in
children with SARS-CoV-2 infection.63

The innate lymphoid cells. A particular type of lymphocyte, the
innate lymphoid cells (ILCs), may contribute to host resistance
toward SARS-CoV-2 infection and promote restoration of tissue
damage by producing amphiregulin, a type-II cytokine.64 These
cells are known in animal models to ensure tissue integrity and
regulate the innate and adaptive immune response with the effect
of decreasing disease severity.65 In a recent study, Silverstein et al.
showed that the number of ILCs in the blood of patients with
SARS-CoV-2 infection was inversely correlated with age and was
lower in men, reflecting a higher risk associated with male sex and
older age. Interestingly, ILCs were lower in symptomatic children
and children with MIS-C compared to healthy controls.66

Neutrophils. During the acute phase of COVID-19, the circulating
neutrophils of children are characterized by an activation
phenotype due to the presence of specific markers (HLA-DR,
CD64, PECAM-1)67 and CD63,68 and an increase in inhibitory
receptors (LAIR-1, PDL1). However, the same cells express fewer
adhesion molecules.67 For these reasons, it could be assumed that
the lung tissue infiltration, which is the basis of lung damage in
adults,69 does not occur in the same proportions in children due
to a reduced ability of the activated cells to reach deep tissues.
A particular population of neutrophil granulocytes is repre-

sented by lower-density granulocytes (LDG). Recent studies show
that there is significant recruitment and activation of LDGs in
patients with COVID-19. LDGs also appear to have immunosup-
pressive capacity, which may play a role in the altered lymphocyte
response to prolonged infection.70

Adaptative immunity
Significant differences in humoral and cellular immunity have
been demonstrated between children and adults, which could
contribute to the clinical differences.

Humoral immunity. In the months immediately following the
onset of the pandemic, it has been shown that the humoral
response against several viral proteins is rapid and occurs in most
infected individuals. Some authors pointed to antibodies to
common coronaviruses as a possible cause of the better prognosis
of COVID-19 in children. Nevertheless, it was observed that the
level of antibodies to common coronaviruses and SARS-CoV-2
were similar between children and adults.26,36,71 Moreover,
although the level of antibodies to common coronaviruses is
amplified in response to SARS-CoV-2, this does not result in any
protection from the infection itself.72

The specific response against SARS-CoV-2 is characterized by
the almost concomitant appearance of virus-specific IgG, IgA, and
IgM neutralizing antibodies (nAbs) directed against several
epitopes of the Spike glycoprotein. In particular, antibodies
directed against the RBD, i.e., the part of the Spike protein that
interacts with the cellular ACE2 receptor,19 can block virus entry
and thus the ability to infect cells.
Several studies have investigated the production and neutraliz-

ing capacity of anti-SARS-CoV-2 immunoglobulins.73–75 However, a
distinction must be made between nAbs, which are essential in
the response against SARS-CoV-2, and non-specific antibodies. The
latter, according to some authors, may even be detrimental since
they can mediate antibody-dependent enhancement (ADE), a key
mechanism in the pathogenesis of COVID-1976,77 (Fig. 1).
In early 2021, a work published by Yang et al. showed that

SARS-CoV-2-specific antibody response profiles are distinct in
different age groups, with children showing higher median levels
of IgG.78 Further works strengthened these data79,80 observing
that the nAbs titer was inversely correlated with age, with children
under 6 years of age showing the highest titers at onset and

subsequent determinations. Also, nAbs against SARS-CoV-2
persisted for a period of 2–8 months after infection.79

Increased levels of cross-reactive but non-neutralizing IgG
against SARS-CoV-2 were detected in pre-pandemic samples of
healthy elderly people. In the same study, healthy children
showed elevated coronaviruses-specific IgM. This suggests that
children have less exposure to human coronaviruses, resulting in a
less experienced but more polyreactive humoral immunity.80

Remarkably, children with higher levels of anti-SARS-CoV-2 IgG
and higher concentrations of nAbs show lower viral load and
faster virus clearance.12 This information further confirms that
pediatric patients can mount a humoral response reasonably soon
after the onset of symptoms.81

A proteomic analysis revealed that some molecules involved in
the lymphocyte activation pathway (SLAMF1 and CD244), in
response to antigens processed by the MHC, were significantly
higher in children who produced nAbs than those with antibodies
without neutralizing activity.82 These findings could link to the
concept of trained immunity, i.e., an increased basal tone of innate
immunity in response to certain vaccines and microbial compo-
nents, which could contribute to resistance against infection.83,84

The higher frequency of infections and vaccinations in childhood
could thus “train” the immune system and partly explain the
readiness in response to SARS-CoV-2.85 Indeed, some authors have
proposed that measles, mumps and rubella vaccines as well as
Bacillus Calmette–Guerin may provide protection from severe
COVID-19 and various clinical trials are still ongoing.86–89 The
presence of a homologous sequence between measles, rubella
and SARS-CoV-2 spike protein could strengthen this theory.90,91

Thus, innate immunity would play an important role in the
stimulation of anti-SARS-CoV-2 nAbs response.
On the other hand, the level of specific response against SARS-

CoV-2 does not seem to be related to the severity of the clinical
picture. Both asymptomatic and symptomatic children can
develop SARS-CoV-2-specific adaptive immunity at a similar level
in terms of total Ab for SARS-CoV-2, Ab-mediated neutralization,
and Ag-specific B cells and CD8 T cells.92

In conclusion, the neutralizing humoral response is more ready
and effective in children, whereas in older individuals, a
propensity to trigger the counterproductive mechanism of ADE
has been demonstrated.77

Cellular immunity. The high invasiveness of SARS-CoV-2 chal-
lenges adaptive cellular immunity. Continued infection forces the
host to deplete its natural killer and T cells, resulting in
lymphopenia.93 The inability to eradicate the infection causes
the abnormal release of excessive inflammatory cytokines to
compensate for lymphocyte depletion; this pathway leads to
cytokine storm syndrome.
Indeed, lymphopenia is recognized as a marker of severity of

the clinical picture,26,94 but in childhood is rarely observed.95 It
was found that children hospitalized for COVID-19 had a higher
value of lymphocytes than adults36,95 who, however, show higher
levels of specific T lymphocytes.96,97 Recently, it has been shown
that low frequencies in naive CD8+ and CD4+ T cells correlate
with age, and COVID-19 disease severity.98

On the other hand, the immunological memory of T cells, could
play a role in the pathophysiology and subsequent collateral
tissue damage in patients with COVID-19.99 It has long been
known that the T-cell response changes with age. The expression
of CD45RA, a typical marker of naïve cells, decreases linearly with
age, and circulating memory cells outnumber naïve cells at
approximately 35 years of age.100 Interestingly, in vitro-induced
toxic shock syndrome has been demonstrated to be less severe
among children because of a difference in T-cell response101 with
the higher number of CD45RA proposed as a protective factor.
Memory T cells in patients recovered from COVID-19 showed
significantly higher amplitude and magnitude responses in severe
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cases compared with mild cases, using IFN-γ-based assays.
Cellular B memory also shows the same trend with respect to

the severity of infection and age. Low levels of memory B cells
(IgD-CD27+) correlate with an asymptomatic or mild infection in
children.102

Remarkably, the TCR specificities of CD4+ T cells vary between
children and adults. In contrast to adult T cells specific mainly for
structural proteins of SARS-CoV-2, a recent study shows that CD4+
T cells from children with COVID-19 were more specific for open
reading frame 1ab (Orf1ab), which encodes for non-structural
proteins that are responsible for inhibition of IFN production by
the host.63,103 These findings seem to confirm, once again, the key
role of the age-associated IFN response.
Regulatory cells represent another factor that could explain the

more effective containment of the virus by children. Indeed, both
Tregs and Bregs cells were found in higher amounts in children
with COVID-19 than in adults and also correlated positively with
the level of nAbs.104 FoxP3+/CD25high Tregs cells are also
increased in pediatric cases with moderate-to-severe clinical
course compared to infected adults.102

In children, the lymphocyte response to SARS-CoV-2 is
characterized by a lower amount of pro-inflammatory cytokines
than in adults, being more skewed toward a Th2 response.36,105

This could partly explain the higher inflammatory cascade in the
adult population and the consequent higher severity of the
disease. In severe and fatal cases of COVID-19, elevated innate
immune cytokines were detected in peripheral blood, including IL-
1, IL-6, IL-8, or C-X-C Motif Chemokine Ligand 10.37,106,107 Pierce
et al. described significant differences in cytokines of 65 children
and youth (<24 years) compared with adults with SARS-CoV-2
regardless of the severity of symptoms. Specifically, serum
concentrations of interleukin-17A (IL-17A) and IFN-γ were
inversely correlated with age.36 The authors suggest that the
early immune response, evidenced by increased IL-17A and IFN- γ,
leads in children to a more rapid resolution of viral infection.
However, when the triggered inflammatory response is critical,

as in children with severe COVID-19 or MIS-C, an increase in IL-1,
IL-2, IL-6, IL-10, IL-13, and IL-17 has been described compared to
children with mild/moderate disease.12,108–110

Post-COVID-19 conditions
Compared to other common respiratory infections, SARS-CoV-2
induces a greater and longer-lasting cellular response that persists
for months, even in mild or asymptomatic forms. In a recent work,
polyclonal stimulation resulted in significantly greater activation of
T cells in individuals who had recently experienced mild SARS-
CoV-2 infection, compared with individuals with other recent
respiratory infections.111 This peculiar characteristic could partially
explain the high frequency of inflammatory conditions weeks after
the SARS-CoV-2 infection, such as MIS-C and MIS-A. In recent
months, anti-SARS-CoV-2 post-vaccine reactions, including MIS-C-
like forms,112–114 myocarditis,115–117 or autoimmune disorders
have been described.118 However, the incidence of adverse events
following immunization is rare and not comparable with post-
infection complications even in children.119

MIS-C/A. MIS-C, also known as pediatric multisystemic inflamma-
tory syndrome, occurs 2–5 weeks after SARS-CoV-2 infection and
presents as a spectrum of inflammatory diseases with persistent
fever, elevated inflammatory markers, rash, conjunctival injection,
and progressing in severe cases to shock, with impairment of
myocardial function and multi-organ involvement. MIS-C, which
meets the WHO definition of the disorder, is probably the “tip of the
iceberg” of a broader spectrum of inflammatory diseases that occur
after SARS-CoV-2 infection. MIS-C is a common cause of admission
to hospitals around the world and the estimated incidence
surpasses the frequency of severe COVID-19 in children.120–123

The disorder presents considerable diagnostic difficulties, as the

clinical features overlap with those of bacterial sepsis, Kawasaki
disease (KD), and other inflammatory diseases.9,124 Interestingly,
early data on the comparison of MIS-C cases between the first three
pandemic waves showed overall improvement in outcomes
including the severity of cardiovascular complications.125

MIS-C shows remarkable clinical similarities with KD shock
syndrome rather than classic or atypical KD. Patients with MIS-C
show higher values of inflammation, and a tendency to lympho-
penia and thrombocytopenia rather than the thrombocytosis
observed in classic KD.8 Also, age seems to play a role since MIS-C
cases have a higher mean age than KD (8–9 vs 3 years).126 The
results of an international survey revealed that patients with a KD-
like phenotype show a lower mean age127 without shock signs and
fewer gastrointestinal, cardiorespiratory, and neurologic symptoms.
However, no clear differences in clinical severity between age
groups are described in patients with MIS-C.128 Another distinguish-
ing feature is cardiac involvement more often represented by
reduced ventricular function rather than coronary artery vasculitis,
which usually occurs in KD. Coronary involvement is also frequent in
MIS-C but at a very early stage.9 The timing of the disorder,
occurring weeks after SARS-CoV-2 infection in individuals who have
generally recovered from a mild or asymptomatic primary infection,
suggests that MIS-C is mediated by an abnormal acquired immune
response. The growing literature on MIS-C indicates that the
disorder is associated with high levels of antibodies to SARS-
CoV-2, augmented levels of Th17 and Th1 cells, and an intense
cytokine response involving INFγ, IL-17, with neutrophil
activation.10,12,109,129–131

Interestingly, the correlation between CD8+ T-cell activation and
cardiac dysfunction parameters such as BNP and troponin has
recently been described.132 Genetically based alterations in Treg
cells have also been proposed for the pathogenesis of MIS-C.
Indeed, a recent study showed in patients with MIS-C deleterious
variants that lead to upregulation of Notch1 in Treg cells.133 This
mechanism could underlie the Th1-skewed systemic inflammation.
Since MIS-C has a peculiar geographical distribution with few

cases described among East Asian populations,134 a predisposing
genetic substrate can be assumed. Like the monogenic defects
involving innate immunity and IFN1-mediated response that can
lead to the risk of severe COVID-19 pneumonia,46,51,52 constitutional
disorders involving the adaptive immune response can also be
thought for MIS-C. Several genetic defects have already been
proposed as risk factors for severe forms of MIS-C,131,135–137 but
further studies on large case series could lead to a clearer
understanding of the pathogenesis of this condition.
Finally, the superantigen theory has been proposed. This is based

on the presence of a superantigen-like motif within the S protein of
SARS-CoV-2.138 It has been suggested that the inflammatory
cascade of MIS-C is due in part to the ability of this domain to
bind with high affinity to the α chain and β chain variable region of
the TCR. Interestingly, this domain has a remarkable structural
similarity to the staphylococcal enterotoxin B (SEB) superantigen. It
has been proposed that some children may be less susceptible to
the development of MIS-C due to the prior development of
antibodies directed against SEB.138 Because first-line therapy of MIS-
C includes treatment with immunoglobulins, it is possible that its
efficacy is in part due to anti-SEB antibodies present in IVIG
preparations.139

A post-SARS-CoV-2 condition very similar to MIS-C has been
observed in adults. MIS-A is defined as an inflammatory syndrome
with severe extrapulmonary organ dysfunction, usually affecting
persons over 21 years of age with laboratory evidence of previous
SARS-CoV-2 infection (within 12 weeks), and absence of severe
respiratory disease.140–142 Impaired production of IFN-I and IFN-III
has also been described in this illness.143

MIS-V. Recently, a multisystem inflammatory syndrome tempo-
rally associated with SARS-CoV-2 vaccination (MIS-V) has been
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described.112–114 As for MIS-C, MIS-V is also an almost exclusively
pediatric form, as cases reported in the literature among adults are
anecdotal.144 Early reports have proposed that individuals with
MIS-V manifest immune system hyperresponsiveness due to
recent asymptomatic or symptomatic SARS-CoV-2 infection often
suggested by a familial cluster or ascertained by nasopharyngeal
swab.145,146 Hence, the vaccination could be a trigger of
inflammation in individuals who were recently infected.
More recently, Ouldali et al. described in a cohort of 4,079,234

children (aged 12–17 years) the occurrence of MIS-V within days of
the vaccine in 12 children, confirming its rarity. Interestingly, 10/12
were male. In 8 of these, recent infection was ruled out by anti-N
antibody negativity advancing the idea that the condition is solely
induced by vaccination.119 However, comparing the rate of MIS-C
and MIS-V in the same age group and population (113 vs. 2.9 per
1,000,000, respectively119), it remains recommended to still use
vaccine prophylaxis if the virus is widely spread. In addition, recent
studies confirm that the SARS-CoV-2 mRNA vaccine can signifi-
cantly reduce the incidence of MIS-C.147,148

Long COVID or PASC. The term “long COVID” or “post-acute severe
SARS-CoV-2 sequelae” (PASC) refers to the persistence of symptoms,
such as fatigue, dyspnea, sleep disturbances, and depression, for
more than 3 months after acute infection.149 It has been observed
mainly in young people aged 12 years or older. The pediatric age
group is also affected by long COVID but the persistence of
symptoms in children rarely continues beyond 8 weeks.150

A recent article demonstrates elevated levels of IFN-I and IFN-III
and other cytokines 4 months after infection in patients with
previous COVID-19 compared to patients with common coronavirus
infection.151 In addition, some studies have compared adult patients
with long COVID with infected individuals without long COVID,
showing reduced cortisol levels, reduced numbers of dendritic cells
and exhausted T lymphocytes,152 and increased levels of activated
cells, IL-17 and IL-2.153 These data suggest that a persistent
immune-mediated inflammatory response underlies the long
COVID syndrome. The reasons for this persistent immune activation
remain to be elucidated.
Interestingly, some authors have proposed a role for autoimmu-

nity in the pathogenesis of PASC.154 It has been described that
about 44% of patients after 1 year from the onset of COVID-19
symptoms developed antinuclear antibody (ANA) titers ≥1:160. In
this group, the frequency of neurocognitive symptoms was
significantly higher than in ANA-negative subjects.155 However,
the most significant studies in PASC concern adult patients.156

Further studies are needed in this regard, especially in adolescent
age. Recently, Brodin et al. studied patients with long COVID
suggesting various mechanisms that could result in long COVID
occurring, including viral persistence, SARS-CoV-2 superantigen-
mediated activation of the immune system, and autoimmunity.157

Diabetes. Recently, there has been a growing concern after the
observation of a significant increase in new diagnoses of diabetes
mellitus after SARS-CoV-2 infection in children (<18 years).18 This
increased incidence was significant in patients newly infected with
SARS-CoV-2, compared to those not exposed to the virus and
those with other respiratory infections. Although enhanced
expression of ACE2 has been demonstrated in pancreatic beta
cells compared to the lung, it is still unclear whether there is direct
damage caused by SARS-COV-2 on Langerhans’ Islets.158,159

Various factors are likely to play a role. These include hypergly-
cemia induced during lockdown by sedentariness and dietary
changes and the pro-inflammatory state that may involve the
pancreas at the end of the cytokine cascade.158

Severe acute hepatitis of unknown etiology. In the early months of
2022, considerable concern has arisen over several cases of severe
acute hepatitis of unknown etiology in children. As of May 13,

2022, the reported cases in children aged 16 years or below were
232.160 Adenovirus 41F has been proposed as an agent for these
forms since it has been found in more than 70% of cases reported
in the UK.161 A clear link to SARS-CoV-2 has not yet been found,
but in some cases, children tested positive for SARS-CoV-2 on
admission, and 11/12 patients in the cohort described in Israel had
COVID-19 in the previous months.162 A recent letter from Brodin
and Arditi suggests that the SARS-CoV-2 persistence in the
gastrointestinal tract due to the barrier abnormalities already
described in MIS-C patients163 may represent a predisposing
substrate. Adenovirus 41F could thus be a second trigger for the
development of acute hepatitis, probably through a superantigen-
mediated immune response.164 Interestingly, the average age of
children with this hepatitis appears to be very low, thus being an
unvaccinated SARS-CoV-2 population.

CONCLUSIONS
A remarkable feature of the COVID-19 pandemic is the wide range
of outcomes following SARS-CoV-2 infection and the different
outcomes in children and adults. While a large proportion of the
population has an asymptomatic and mild illness, others suffer
severe or fatal disease and post-infectious complications including
post-COVID-19 sequalae and multisystem inflammatory syn-
dromes. Answers to the key questions posed by the widely
differing responses to SARS-CoV-2 infection need to be searched
in the uniqueness of children’s immune system. Future studies
based on the comparison of the host response to SARS-CoV-2 in
children and adults of increasing age through system biology
approach could provide an important opportunity to understand
how the “successful immune response” differs from the “unsuc-
cessful or disease enhancing response” seen in the elderly as well
as in pediatric post-infection conditions.
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