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BACKGROUND: Although most children experience mild symptoms during acute SARS-CoV-2 infection, some develop the severe
post-COVID-19 complication, Multisystem Inflammatory Syndrome in Children (MIS-C). While acute presentations of COVID-19 and
MIS-C have been well immunophenotyped, little is known about the lasting immune profile in children after acute illness.
METHODS: Children 2 months–20 years of age presenting with either acute COVID-19 (n= 9) or MIS-C (n= 12) were enrolled in a
Pediatric COVID-19 Biorepository at a single medical center. We deeply profiled humoral immune responses and circulating
cytokines following pediatric COVID-19 and MIS-C.
RESULTS: Twenty-one children and young adults provided blood samples at both acute presentation and 6-month follow-up
(mean: 6.5 months; standard deviation: 1.77 months). Pro-inflammatory cytokine elevations resolved after both acute COVID-19 and
MIS-C. Humoral profiles continue to mature after acute COVID-19, displaying decreasing IgM and increasing IgG over time, as well
as stronger effector functions, including antibody-dependent monocyte activation. In contrast, MIS-C immune signatures, especially
anti-Spike IgG1, diminished over time.
CONCLUSIONS: Here, we show the mature immune signature after pediatric COVID-19 and MIS-C, displaying resolving
inflammation with recalibration of the humoral responses. These humoral profiles highlight immune activation and vulnerabilities
over time in these pediatric post-infectious cohorts.

Pediatric Research (2023) 94:1327–1334; https://doi.org/10.1038/s41390-023-02627-w

IMPACT:

● The pediatric immune profile matures after both COVID-19 and MIS-C, suggesting a diversified anti-SARS-CoV-2 antibody
response after resolution of acute illness.

● While pro-inflammatory cytokine responses resolve in the months following acute infection in both conditions, antibody-
activated responses remain relatively heightened in convalescent COVID-19.

● These data may inform long-term immunoprotection from reinfection in children with past SARS-CoV-2 infections or MIS-C.

INTRODUCTION
Over 15.3 million children have been infected with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) as of January 2023
(https://services.aap.org/en/pages/2019-novel-coronavirus-covid-19-
infections/children-and-covid-19-state-level-data-report/), and while
many children experience asymptomatic or paucisymptomatic
infection, more than 180,000 have been hospitalized for
acute coronavirus disease 2019 (COVID-19) (https://services.aap.org/
en/pages/2019-novel-coronavirus-covid-19-infections/children-and-
covid-19-state-level-data-report/; https://covid.cdc.gov/covid-data-
tracker/#datatracker-home) and over 9300 have developed the
severe, post-acute illness, Multisystem Inflammatory Syndrome in
Children (MIS-C) (https://www.cdc.gov/mis-c/hcp/).1 Additionally,

there is an increasing recognition that after COVID-19, many
individuals, including children, experience persistent symptoms.2–4

While significant advances have been made to define the
symptomatology and immunopathology associated with acute
COVID-19 and MIS-C,5–9 little is known about lasting humoral or
cytokine profiles following acute illness in children.
During acute infection, the induction of functional IgG is central

to containment of infection, and the acute pediatric humoral
response to SARS-CoV-2 is comparable to profiles observed in
mildly ill adults.7,10 However, in MIS-C, a profound, expansive
immunoglobulin response is seen.7,11,12 Defining lasting immune
signatures to assess whether differences in pediatric humoral
signatures following pediatric SARS-CoV-2 infection persist over
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time is important, not only to probe for signs of dysfunctional
inflammation, but also to ascertain immunoprotection against re-
infection with SARS-CoV-2, and to gain insight into the
immunologic impact of SARS-CoV-2 infection in children.
To define the evolution of immune profiles over time of

pediatric patients with acute COVID-19 or MIS-C, we utilized a
systems serology approach to deeply profile humoral responses at
acute presentation and 6 months post-infection, in addition to
circulating cytokine responses. While cytokine profiles resolved
following acute illness, humoral signatures displayed increased
antibody-activated functional capacity after COVID-19, suggesting
a recalibration of immune responses in recovery from acute illness.
The post-infection immune profile in MIS-C, however, showed
decreased anti-SARS-CoV-2 antibody activation and functional
response following acute illness. The resulting data define long-
lasting immunoprofiles following acute SARS-CoV-2 infection and
MIS-C in children.

METHODS
Study design and sample collection
Pediatric patients ranging from 2 months to 20 years of age diagnosed
with COVID-19 or MIS-C were enrolled in the Massachusetts General
Hospital (MGH) Pediatric COVID-19 Biorepository (IRB #2020P000955).13

Informed consent, and where appropriate, assent, was verbally obtained
from participants and/or parents/guardians in accordance with IRB
guidelines for blood specimen collection and questionnaire administration.
Acute COVID-19 diagnosis was determined by a nasopharyngeal swab
positive for SARS-CoV-2 by clinical quantitative PCR testing, and MIS-C
diagnosis was confirmed by meeting 2020 CDC criteria (https://
www.cdc.gov/mis/mis-c.html). Demographic information was obtained
from medical records, and blood was collected by venipuncture. The
post-infection follow-up time point was determined by the number of
months passed between the date of initial COVID-19 or MIS-C evaluation or
diagnosis and post-infection blood specimen collection. All samples were
matched, meaning the participant provided a blood specimen during
acute illness, as well as at follow-up (6 months post-infection).

IgG1, IgM, and IgA1 titers and Fc binding measured by
Luminex
All participants provided matched blood specimens at acute illness and
follow-up. SARS-CoV-2-S-specific antibody isotypes were analyzed from
sera by Luminex multiplexing as described in Brown—immune methods.
The antigens were carboxy-coupled to Luminex microspheres provided by
Luminex Corp, Austin, TX and were then incubated with IgG1, IgM, and
IgA1 polyclonal plasma samples. A second antibody or FcgR tagged with
fluorophore was used to probe the SARS-CoV-2-specific isotypes. Relative
concentrations were analyzed by flow cytometry, given by mean
fluorescent intensity (MFI).

Antibody effector functions
For the functional assays, antigens were biotinylated and coupled to
fluorescent neutravidin beads (Thermo Fisher). Beads were incubated with
plasma samples to form immune complexes in 96-well plates for 2 h at
37 °C. Immune complexes were washed and incubated with guinea pig
complement factor for 20min at 37 °C (for antibody-dependent comple-
ment deposition (ADCD)), primary neutrophils from ACK lysed blood for 1 h
at 37 °C (for antibody-dependent neutrophil phagocytosis (ADNP)) or with
THP-1 monocytes for 16 h at 37 °C (for ADNP). ADCD was detected on
beads using a polyclonal anti-guinea pig C3-FITC antibody (ADCD) and
neutrophils stained for CD66 expression using a respective antibody
(Biolegend) after the respective incubation. All samples were fixed with 4%
para-formaldehyde prior to analysis on an Ique analyzer.

Statistical analyses
A paired non-parametric t test was used to test for statistical significance
between acute and follow-up time points of the same group. An unpaired
non-parametric t test was used to test for statistical difference between the
groups. Prism software (Prism 9, Graphpad Software, San Diego, CA) was
used to analyze and graph data. SystemseRology (v.1.0) and ropls (v.1.22.0)
packages in R (v.3.6) and R Studio (v.1.3) were used to perform and

visualize LASSO and PLS-DA and the network (v.1.1) package was used for
the network analysis.

RESULTS
In-depth humoral profiling, paired with cytokine analysis, was
performed on 21 children infected with SARS-CoV-2 during the
first wave of the pandemic (April 2020–January 2021), each of
whom provided matched blood samples from acute illness and
convalescence. All participants met CDC diagnostic criteria for
acute COVID-19 (https://www.cdc.gov/coronavirus/2019-ncov/
hcp/clinical-care/clinical-considerations-diagnosis.html) (n= 9,
100%) and MIS-C (https://www.cdc.gov/mis/mis-c.html) (n= 12,
100%). Children with a history of COVID-19 (n= 9) were an
average age of 16.4 years at acute illness, whereas children with
past MIS-C (n= 12) were on average 5.9 years old at acute
presentation (Table 1). Sex was equally distributed in both groups,
and 78% (n= 7) of children with COVID-19 and 58% (n= 7) with
MIS-C identified as Hispanic. Convalescent blood samples were
collected at a mean 7.3 months post-acute infection for children
with COVID-19 (SD 0.8) and 5.9 months post-onset of symptoms of
MIS-C (SD 2.1). Clinical characteristics, disease course, and
treatments for each participant are detailed in Supplemental
Table 1. Of note, none of the participants in this study received a
SARS-CoV-2 vaccine prior to sample collection.

Cytokine profiles of pediatric COVID-19 and MIS-C normalize
following acute illness
Distinct plasma diagnostic markers and cytokine profiles are
associated with severity in acute phases of both pediatric COVID-
19 and MIS-C.12,14 IP-10, IL-8, and D-Dimer plasma concentrations
are notably elevated in acute pediatric COVID-19 in comparison to
convalescence, while IL-6, TNFα, and MIP-1b are the most elevated
in acute MIS-C and completely resolve post-illness (Fig. 1a). Using
all cytokine data in a principal component analysis (PCA), a clear
separation was seen between acute and convalescent COVID-19
and MIS-C (Fig. 1b), driven largely by the distinct cytokine storm11

that takes place during acute MIS-C. Even in those who
experienced pediatric COVID-19, the cytokine profile during acute
illness also separated from its respective follow-up samples
(Fig. 1b). IP-10, one of the most elevated cytokines in MIS-C,
demonstrates a steady cytokine decline at follow-up in both
children with COVID-19 and MIS-C (Fig. 1d), and there is not a clear
separation of the two groups in the PCA (Fig. 1b). IL-6, the highest
cytokine seen in acute COVID-19, shows a similar trend, where a
significant decline is seen in both groups of children during
recovery (Fig. 1c). At the acute time point, we found IL-8, IL-18,

Table 1. Demographics of pediatric participants with a history of
COVID-19 or MIS-C.

Patient characteristics
(N= 21)

COVID-19
(n= 9)

MIS-C
(n= 12)

Age at acute illness, average
(min, max)

16.4 (10.6, 20.4) 5.9 (0.2, 15.4)

Male sex, number (%) 6 (67) 7 (58)

Hispanic, number (%) 7 (78) 7 (58)

Race, number (%)

Asian 0 (0) 2 (17)

Black 2 (22) 1 (8)

Other 6 (67) 5 (42)

White 1 (11) 4 (33)

Time since symptom onset of
acute illness, average months
(SD)

7.3 (0.8) 5.9 (2.1)
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IL-10 and TNFα to be elevated in MIS-C, albeit not significantly for
the latter two, in our MIS-C cohort. No difference was observed for
other tested cytokines or chemokines including IL-1b, MIP-1b, GM-
CSF, RANTES, as well as for D-Dimer, and myeloperoxidase (MPO)
(Supplemental Fig. 1). While innate activation and cytokine
activation contribute to acute presentation of pediatric COVID-
19 and MIS-C, the resolution of most cytokines at convalescence
indicates a restructuring and restabilization of immune responses.

Maturing humoral profiles display ongoing effector activation
following COVID-19
SARS-CoV-2-specific antibodies seen in pediatric COVID-19 can
mediate protection from severe disease and may prevent re-
infection. Beyond binding or neutralization, antibodies can
mediate additional Fc effector functions including the ability to
fix complement (ADCD) or recruit neutrophil (ADNP) or monocyte
(antibody-dependent cellular (monocyte) phagocytosis (ADCP))
phagocytosis, which might be critical in the protection from
disease or re-infection. To begin to understand the longevity of
antibodies in pediatric COVID-19 as compared to antibodies in
MIS-C, we deeply profiled the SARS-CoV-2-Spike (S)-specific titer,
Fc receptor profiling, and Fc-mediated antibody function at acute
disease and convalescence. While the days to symptom onset at
sample collection for acute disease were comparable between
COVID-19 and MIS-C, the former developed immune responses
rather quickly after infection, while the initial viral exposure for
MIS-C happened presumably weeks before disease onset. IgM
followed expected trajectories (Fig. 2a); at the acute time point, a

few days after infection, the COVID-19 group was split with some
individuals already seroconverted for IgG and IgA, whereas others
did not yet seroconvert, marked by the absence of antibodies of
all subclasses (Fig. 2b, c). In contrast, all MIS-C patients had
detectable S-specific antibodies during the acute presentation
pointing to the temporal differences between MIS-C and COVID-
19. However, no difference between S-specific IgM and IgA
antibodies was noted at the acute time point. We did observe
higher ADCD and ADCP activity to SARS-CoV-2-S, which was likely
driven by IgG1 antibodies in acute MIS-C (Fig. 2d, f).
While the temporal difference was obvious at the acute time

point, we expected the follow-up time points to be more
comparable between the groups, and indeed, no significant
difference between SARS-CoV-2-S-specific responses was
observed between the groups (Fig. 2a–f). However, children with
MIS-C tended to have lower titers, Fc receptor-binding profiles,
and mediated functions. IgG wanes over time in MIS-C but
remains relatively elevated at convalescence in COVID-19 (Fig. 2c).
Next, we aimed to compare temporal SARS-CoV-2 responses

more comprehensively, including responses to Nucelocapsid (N)
and receptor-binding domain (RBD) across the groups. Overall, the
anti-S response dampens in MIS-C for most IgG subgroups, with
the exception of IgG4, where an expansion in response is seen
post-infection (Fig. 3a). The resolution of anti-SARS-CoV-2 anti-
body responses seen in convalescent MIS-C contrasted with those
of children with past COVID-19, where rising levels of anti-S IgG
are seen at follow-up (Fig. 3a). A paralleled decline in anti-N Ig is
seen in both COVID-19 and MIS-C (Fig. 3a). Interestingly, IgA
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to Nucleocapsid (N) antigen was elevated in acute pediatric
COVID-19 (Fig. 3a), and consequently, so were the N-specific
antibody-activated neutrophils, which express the IgA binding
Fcα-receptor (FcαR) (Fig. 3b). However, this nucleocapsid,
neutrophil-activating mucosal immune response declined in
follow-up and was not observed in MIS-C (Fig. 3b). Anti-S Fc
effector functions such as monocyte phagocytosis (ADCP) and the
ability to fix complement (ADCD) diversified in convalescence in
COVID-19 (Fig. 3c). Interestingly, the MIS-C immune profile,
particularly Fc effector responses, diminish at follow-up, likely
due to the delayed onset of symptoms in acute illness, a
compensation for dramatic acute responses as well as anti-
inflammatory treatments during illness15,16 (Fig. 3c). However,
S-specific monocyte and complement activation remain relatively
prominent in comparison to acute illness (Fig. 3c). Using a simple
linear regression model, we were unable to detect any impact of
age or sex on changes in humoral profiles over time for either
pediatric COVID-19 or MIS-C.

Pediatric COVID-19 and MIS-C display distinct humoral
profiles over time
We next used multivariate machine learning tools to investigate
whether distinct humoral antibody features can distinguish
between MIS-C and COVID-19 in children. We built a partial
least-squares discriminant analysis (PLS-DA) model with a minimal
set of least absolute shrinkage and selection operator (LASSO)
selected features (Fig. 4a, b). LASSO selects features that are highly
correlated to non-selected features and these features explain the
highest variability in the data set. Of the immune features
explored that comprise the responses in acute pediatric COVID-19
and MIS-C, only five were necessary to reveal distinct immunologic
compositions. Of the selected features, monocyte phagocytosis
and Fc receptor binding, involved in the activation of

macrophages, were enriched in MIS-C (Fig. 4a) and might play a
significant role in the systemic inflammatory overreaction seen in
acute illness. In contrast, IgM and FcαR binding were enriched in
pediatric COVID-19 (Fig. 4a), pointing to the early time point in the
disease course. LASSO only selects non-correlated features;
therefore, to gain a deeper understanding of the associations of
the selected immune features to the overall humoral response, a
co-correlation network was built. For the acute time point, two
clusters of IgA and IgM features both enriched in COVID-19
appeared (Fig. 4a), highlighting the acute phase of the response.
In contrast, a large cluster of FcγR-binding titer and antibody
functions to different antigens and all enriched in MIS-C was
formed (Fig. 4a), reflecting the hyperinflammatory response of
MIS-C. Monocytes have been associated with disease pathology in
MIS-C, and interestingly, ADCP to Spike and Nucleocapsid, both of
which are enriched in MIS-C, created a separate cluster (Fig. 4a).
In follow-up, the immune responses appear less coordinated,

but still display a separate distribution in the PLS-DA (Fig. 4b).
Interestingly, neutrophil phagocytosis and neutrophil-recruiting
IgA specific to Nucleocapsid were selected by the LASSO and
enriched in COVID-19, whereas no features were selected in MIS-C
at the follow-up time point (Fig. 4b). This highlights a diverging
post-acute response in COVID-19 and MIS-C.
Next, to further explore the coordination of the humoral

immune response in COVID-19 and MIS-C at both the acute and
follow-up time points, we analyzed correlations of antibody titer
and FcγR recruitment. During acute illness for both groups, titers
to the three analyzed SARS-CoV-2 antigens were highly correlated
to the ability to recruit and bind to FcγR (Fig. 5a, b). In acute
pediatric COVID-19, these associations were SARS-CoV-2 specific,
as there were no strong associations seen for other respiratory
pathogens (Fig. 5a). In the MIS-C group, however, we observed an
increased inflammatory potential marked by strong FcγR binding
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to a variety of pathogens during acuity (Fig. 5b). This may indicate
a nonspecific humoral immune response that contributes to
disease pathology.7 At follow-up, antibody associations decline in
MIS-C as expected with subsiding inflammation both from natural
resolution of illness as well as from the use of anti-inflammatory
treatments (Fig. 5b), indicating resolution of disease and the
predominance of less inflammatory antibodies.

DISCUSSION
As cases of SARS-CoV-2 infection in children continue to rise,
efforts are needed to define the lasting immunologic impact of
SARS-CoV-2 infection on children. This study presents detailed
findings from a long-term follow-up pediatric COVID-19 biospeci-
men repository, describing in-depth humoral responses of
children and adolescents with prior acute COVID-19 and MIS-C.
While children with acute COVID-19 display humoral activation
distinct from the highly inflamed profile seen in MIS-C,
immunoglobulin levels followed expected trajectories and con-
valescent stages of both COVID-19 and MIS-C display resolving
inflammation with recalibration of the humoral responses. These
findings provide insight into longevity and lasting functionality of
anti-SARS-CoV-2 antibody responses in children and offer insight
into distinct immune profiles following pediatric COVID-19 and
MIS-C.
Following infection with SARS-CoV-2, antibody levels increase in

a predictable fashion in an immunocompetent individuals.10,17 In
the acute illness of MIS-C, however, excessive humoral responses
are seen,7,11 driven by trafficking of SARS-CoV-2 Spike/
S1 superantigen18 across a permeable gastrointestinal mucosal
barrier.14 Interestingly, an augmented contraction of anti-SARS-
CoV-2 immunoglobulins, along with a reduction in antibody-

mediated functional and effector responses, is seen in MIS-C,
differing from humoral trajectories following acute COVID-19 in
children. This contracture of antibody responses in MIS-C may
result from the high dose steroids, intravenous immunoglobulin or
other immunosuppressive therapy used during the acute MIS-C
illness or immune exhaustion following superantigen exposure.
Several studies have shown that SARS-CoV-2 can be shed in the

stool for months after the acute illness in both children and
adults,14,19 suggesting that persistent antigen exposure in the
gastrointestinal tract could remain present even months after
resolution of disease. While we did not study mucosal immune
responses, we did not detect elevated circulating levels of IgA in
the follow-up period for either acute COVID-19 or MIS-C. However,
persistent respiratory and gastrointestinal symptoms have been
commonly reported by both children with prior COVID-19 and
MIS-C20,21 warranting further investigation of changes in mucosal
immunity post infection.
Interestingly, while antibody levels and Fc-binding, for the

most part, decrease in convalescence, antibody-mediated com-
plement activation plus antibody-mediated monocyte and
neutrophil phagocytosis are increased after COVID-19. During
acute COVID-19, there is a robust anti-nucleocapsid IgA-mediated
neutrophil activation. Following acute COVID-19, however, anti-
Spike-mediated cellular activation predominates, which is inter-
esting especially as many patients with long COVID-19 have
detectable Spike antigen in their blood.22 It is possible that
following COVID-19, circulating Spike-immune complexes, if
present, may result in cellular responses that could contribute
to lasting symptomatology.
Although serologic responses after COVID-19 are sustained in

recovery, as seen by increased SARS-CoV-2-specific IgG in
convalescence, the degree and durability of pediatric humoral
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responses after natural SARS-CoV-2 infection are lower when
compared to those induced by SARS-CoV-2 mRNA vaccination.23

Further, it has been shown that vaccination confers better cross-
reactivity against variants of concern than natural infection, and
re-infection following natural infection is not uncommon. This
suggests that children carry incomplete and waning immunopro-
tection after natural infection with SARS-CoV-2. In MIS-C, we show
a notable dampening in the immune response, potentially due to
immune-suppressive treatments such as steroids used to address
complications during acute illness, that further highlights this
vulnerability in the pediatric population to reinfection after COVID-
19 and MIS-C. SARS-CoV-2 vaccines are now recommended for
children ages 6 months and older, and completion of a mRNA
vaccine series is highly effective in preventing COVID-19 and MIS-
C, as well as progression to severe disease and post-acute
sequelae of COVID-19 in children.24–26 Vaccination will continue to
be a strong public health strategy targeted to protect adult and
pediatric populations from infection, transmission, and the long-
term complications from COVID-19.
Our study has several limitations: samples reflect immune

responses at the acute phase of illness, where the pediatric
profiles are still maturing, and 6–7 months following initial disease.
While we show durability of humoral responses, we likely have
missed the true peak of humoral response and are under-
estimating the decline in antibodies over time. Additionally, this

study consists of a modest sample size, as all samples were
collected during the first 6 months of the COVID-19 pandemic,
making collecting matched samples challenging. Furthermore,
SARS-CoV-2 viral sequences were not analyzed, therefore variant-
specific immunogenicity was not considered in our discussion of
long-term humoral effects of SARS-CoV-2 infection and MIS-C. T
and memory B cell responses were not measured in this analysis,
nor were direct associations between humoral responses and
persistent symptoms after COVID-19 and MIS-C. Further, protec-
tive and pathogenic autoantibody patterns have been reported to
impact the development of post-COVID-19 conditions such as
Long COVID.27–29 We did not assess for the development of
autoantibodies in our cohort, but this would be an important area
of future study, particularly in children who develop post-COVID-
19 conditions. Additional studies analyzing the changes in
immune responses after SARS-CoV-2 infections of different
variants, the characteristics of autoimmunity after SARS-CoV-2
infection, the correlations with ongoing symptomatology, as well
as the long-term cellular immune responses after COVID-19 and
MIS-C are needed.
Although this is a small study from a single medical center,

matched pediatric samples provide early and critical insights into
long-term impact of natural SARS-CoV-2 infection, which is crucial
to understand as pediatric COVID-19 cases are rising amidst
another surge. Additionally, samples were collected following the
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first wave of the COVID-19 pandemic, prior to the availability of
mRNA vaccines, which may impact immunologic responses over
time. Subsequent waves of the pandemic, including those caused
by SARS-CoV-2 variants Delta and Omicron, may produce distinct
immune signatures that need to be studied over time, and the
impact of vaccination on these infected immunoprofiles, as well as
post-infectious symptoms, needs to be characterized.

CONCLUSION
Our findings provide key insights into the immunological disease
course and clinical characteristics of children with prior COVID-19
and MIS-C. Immune recovery suggests resolution of acute illness,
but possible antibody-mediated cellular activation, especially
following COVID-19, which warrants further investigation to
determine if there is any association with long COVID-19
symptomatology. The underlying humoral immune responses at
follow-up in children with past-SARS-CoV-2 infection and MIS-C
ultimately wane over time and vaccination will be needed to
bolster immune responses.
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