Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Study Protocol
  • Published:

Lung ultrasound-guided best positive end-expiratory pressure in neonatal anesthesia: a proposed randomized, controlled study

Abstract

Background

Atelectasis is a common complication in neonatal anesthesia. Lung ultrasound (LUS) can be used intraoperatively to evaluate and recognize atelectatic lung areas. Hypotheses for the study are: (1) The use of LUS to guide choice of best positive end-expiratory pressure (PEEP) can lead to reduction of FiO2 to achieve same saturations of oxygen (SpO2). (2) In a less de-recruited lung, there will be less postoperative pulmonary complications. (3) Static respiratory system compliance could be different. (4) Hemodynamic parameters and amount of fluids infused or need for vasopressors intraoperatively could be different.

Methods

We propose a randomized controlled trial that compares standard PEEP settings with LUS-guided PEEP choice in patients under 2 months of age undergoing general anesthesia.

Results

The primary aim is to determine whether LUS-guided PEEP choice in neonatal anesthesia, compared to standard PEEP choice, can lead to reduction of FiO2 applied to the ventilatory setting in order to maintain same SpO2s. Secondary aims are to determine whether patients treated with LUS-guided PEEP will develop less postoperative pulmonary complications, will have a significant difference in hemodynamic parameters and amount of fluids or vasopressors infused, and in static respiratory system compliance.

Conclusions

We expect a significant reduction of FiO2 in LUS-guided ventilation.

Impact

  • Lung atelectasis is extremely common in neonatal anesthesia, because of the physiology of the neonatal lung and chest wall and leads to hypoxemia, being a lung area with a perfusion/ventilation mismatch.

  • Raising inspired fraction of oxygen can overcome temporarily hypoxemia but oxygen is a toxic compound for newborns. Lung ultrasound (LUS) can detect atelectasis at bedside and be used to optimize ventilator settings including choice of positive end-expiratory pressure (PEEP).

  • This randomized controlled trial (RCT) aims at demonstrating that LUS-guided choice of best PEEP during neonatal anesthesia can lead to reduction of inspired fractions of oxygen to keep same peripheral saturations SpO2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

Data availability

After study completion, data will be available upon reasonable request.

References

  1. Bruins, S., Sommerfield, D., Powers, N. & von Ungern‐Sternberg, B. S. Atelectasis and lung recruitment in pediatric anesthesia: an educational review. Pediatr. Anesth. 32, 321–329 (2022).

    Article  Google Scholar 

  2. Zeng, C., Lagier, D., Lee, J. W. & Vidal Melo, M. F. Perioperative pulmonary atelectasis: Part I. Biology and mechanisms. Anesthesiology 136, 181–205 (2022).

    Article  PubMed  Google Scholar 

  3. de Graaff, J. C. et al. Incidence of intraoperative hypoxemia in children in relation to age. Anesth. Analg. 117, 169–175 (2013).

    Article  PubMed  Google Scholar 

  4. Lai-Fook, S. J. & Rodarte, J. R. Pleural pressure distribution and its relationship to lung volume and interstitial pressure. J. Appl. Physiol. 70, 967–978 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Warner, D. O., Warner, M. A. & Ritman, E. L. Atelectasis and chest wall shape during halothane anesthesia. Anesthesiology 85, 49–59 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Joyce, C. J. & Williams, A. B. Kinetics of absorption atelectasis during anesthesia: a mathematical model. J. Appl. Physiol. 86, 1116–1125 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Hedenstierna, G. & Rothen, H. U. in Comprehensive Physiology 1st edn (ed. Terjung, R.) 69–96 (Wiley, 2012).

  8. Edmark, L., Auner, U., Enlund, M., Östberg, E. & Hedenstierna, G. Oxygen concentration and characteristics of progressive atelectasis formation during anaesthesia: oxygen and dynamics of atelectasis formation during anaesthesia. Acta Anaesthesiol. Scand. 55, 75–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Magnusson, L. & Spahn, D. R. New concepts of atelectasis during general anaesthesia. Br. J. Anaesth. 91, 61–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Lutterbey, G. et al. Atelectasis in children undergoing either propofol infusion or positive pressure ventilation anesthesia for magnetic resonance imaging. Pediatr. Anesth. 17, 121–125 (2007).

    Article  Google Scholar 

  11. Schumann, S., Feth, A., Borgmann, S. & Wirth, S. Dependency of respiratory system mechanics on positive end‐expiratory pressure and recruitment maneuvers in lung healthy pediatric patients—a randomized crossover study. Pediatr. Anaesth. 30, 905–911 (2020).

    Article  Google Scholar 

  12. Laver, M. B., Morgan, J., Bendixen, H. H. & Radford, E. P. Lung volume, compliance, and arterial oxygen tensions during controlled ventilation. J. Appl. Physiol. 19, 725–733 (1964).

    Article  CAS  PubMed  Google Scholar 

  13. Nunn, J. F., Bergman, N. A. & Coleman, A. J. Factors influencing the arterial oxygen tension during anaesthesia with artificial ventilation. Br. J. Anaesth. 37, 898–914 (1965).

    Article  CAS  PubMed  Google Scholar 

  14. Frank, L., Bucher, J. R. & Roberts R. J. Oxygen toxicity in neonatal and adult animals of various species. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 45, 699–704 (1978).

  15. Kulkarni, A. C., Kuppusamy, P. & Parinandi, N. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid. Redox Signal. 9, 1717–1730 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Saugstad, O. D. Bronchopulmonary dysplasia—oxidative stress and antioxidants. Semin. Neonatol. 8, 39–49 (2003).

    Article  PubMed  Google Scholar 

  17. Tipple, T. E. & Ambalavanan, N. Oxygen toxicity in the neonate. Clin. Perinatol. 46, 435–447 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Maltepe, E. & Saugstad, O. D. Oxygen in health and disease: regulation of oxygen homeostasis-clinical implications. Pediatr. Res. 65, 261–268 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Saugstad, O. D., Sejersted, Y., Solberg, R., Wollen, E. J. & Bjørås, M. Oxygenation of the newborn: a molecular approach. Neonatology 101, 315–325 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Short, J. A. & Van Der Walt, J. H. Oxygen in neonatal and infant anesthesia – current practice in the UK. Pediatr. Anesth. 18, 378–387 (2008).

    Article  Google Scholar 

  21. Cereda, M. et al. Positive end-expiratory pressure increments during anesthesia in normal lung result in hysteresis and greater numbers of smaller aerated airspaces. Anesthesiology 119, 1402–1409 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Biasucci, D. G. et al. Ultrasound-assessed lung aeration correlates with respiratory system compliance in adults and neonates with acute hypoxemic restrictive respiratory failure: an observational prospective study. Respir. Res. 23, 360 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lichtenstein, D. A. & Mezière, G. A. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest 134, 117–125 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Acosta, C. M. et al. Accuracy of transthoracic lung ultrasound for diagnosing anesthesia-induced atelectasis in children. Anesthesiology 120, 1370–1379 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Singh, Y. et al. International evidence-based guidelines on Point of Care Ultrasound (POCUS) for critically ill neonates and children issued by the POCUS Working Group of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Crit. Care 24, 65 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Buonsenso, D. et al. Lung ultrasound pattern in healthy infants during the first 6 months of life. J. Ultrasound Med. 39, 2379–2388 (2020).

    Article  PubMed  Google Scholar 

  27. International Liaison Committee on Lung Ultrasound (ILC-LUS) for the International Consensus Conference on Lung Ultrasound (ICC-LUS), Volpicelli, G. & Elbarbary, M. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 38, 577–591 (2012).

    Article  PubMed  Google Scholar 

  28. Herring, M. J., Putney, L. F., Wyatt, G., Finkbeiner, W. E. & Hyde, D. M. Growth of alveoli during postnatal development in humans based on stereological estimation. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L338–L344 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rice, T. W. et al. Comparison of the SpO2/FiO2 ratio and the PaO2/FiO2 ratio in patients with acute lung injury or ARDS. Chest 132, 410–417 (2007).

    Article  PubMed  Google Scholar 

  30. Haines, K. L. & Agarwal, S. Postoperative pulmonary complications—a multifactorial outcome. JAMA Surg. 152, 166 (2017).

    Article  PubMed  Google Scholar 

  31. Ray, S. et al. PaO2/FiO2 ratio derived from the SpO2/FiO2 ratio to improve mortality prediction using the Pediatric Index of Mortality-3 Score in transported intensive care admissions. Pediatr. Crit. Care Med. 18, e131–e136 (2017).

    Article  PubMed  Google Scholar 

  32. Li, L. W. et al. Influence of laparoscopic carbon dioxide pneumoperitoneum on neonate circulation and respiration. J. Int. Med. Res. 41, 889–894 (2013).

    Article  PubMed  Google Scholar 

Download references

Funding

This study is unfunded.

Author information

Authors and Affiliations

Authors

Contributions

A.C. and U.M.P. designed the study; A.C. and A.G. designed the statistical plan and the power analysis for the study; D.B. coordinated and supervised all aspects of the study, helped to draft the initial manuscript, and reviewed and revised the manuscript. A.C., U.M.P. G. Paladini, D.B., and G. Pelizzo reviewed and revised the protocol and critically reviewed the manuscript for important intellectual content. All authors reviewed the final manuscript as submitted and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Anna Camporesi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camporesi, A., Pierucci, U.M., Paladini, G. et al. Lung ultrasound-guided best positive end-expiratory pressure in neonatal anesthesia: a proposed randomized, controlled study. Pediatr Res 95, 393–396 (2024). https://doi.org/10.1038/s41390-023-02730-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02730-y

Search

Quick links