Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of point-of-care ultrasound in the management of neonates with congenital diaphragmatic hernia

Abstract

In the last few years, current evidence has supported the use of point-of-care ultrasound (POCUS) for a number of diagnostic and procedural applications. Considering the valuable information that POCUS can give, we propose a standardized protocol for the management of neonates with a congenital diaphragmatic hernia (CDH-POCUS protocol) in the neonatal intensive care unit. Indeed, POCUS could be a valid tool for the neonatologist through the evaluation of 1) cardiac function and pulmonary hypertension; 2) lung volumes, postoperative pleural effusion or pneumothorax; 3) splanchnic and renal perfusion, malrotations, and/or signs of necrotizing enterocolitis; 4) cerebral perfusion and eventual brain lesions that could contribute to neurodevelopmental impairment. In this article, we discuss the state-of-the-art in neonatal POCUS for which concerns congenital diaphragmatic hernia (CDH), and we provide suggestions to improve its use.

Impact

  • This review shows how point-of-care ultrasound (POCUS) could be a valid tool for managing neonates with congenital diaphragmatic hernia (CDH) after birth.

  • Our manuscript underscores the importance of standardized protocols in neonates with CDH. Beyond the well-known role of echocardiography, ultrasound of lungs, splanchnic organs, and brain can be useful.

  • The use of POCUS should be encouraged to improve ventilation strategies, systemic perfusion, and enteral feeding, and to intercept any early signs related to future neurodevelopmental impairment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morini, F., Lally, P. A., Lally, K. P. & Bagolan, P. The Congenital Diaphragmatic Hernia Study Group Registry. Eur. J. Pediatr. Surg. 25, 488–496 (2015).

    PubMed  Google Scholar 

  2. Gupta, V. S. & Harting, M. T. Congenital diaphragmatic hernia-associated pulmonary hypertension. Semin. Perinatol. 44, 151167 (2020).

    PubMed  Google Scholar 

  3. Singh, Y. et al. International evidence-based guidelines on Point of Care Ultrasound (POCUS) for critically ill neonates and children issued by the POCUS Working Group of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Crit. Care. 24, 1–16 (2020).

    Google Scholar 

  4. Montalva, L., Lauriti, G. & Zani, A. Congenital heart disease associated with congenital diaphragmatic hernia: a systematic review on incidence, prenatal diagnosis, management, and outcomes. J. Pediatr. Surg. 54, 909–919 (2019).

    PubMed  Google Scholar 

  5. Patel, N. et al. Ventricular Dysfunction Is a Critical Determinant of Mortality in Congenital Diaphragmatic Hernia. Am. J. Respir. Crit. Care. Med. 200, 1522–1530 (2019).

    PubMed  Google Scholar 

  6. Patel, N. & Kipfmueller, F. Cardiac dysfunction in congenital diaphragmatic hernia: Pathophysiology, clinical assessment, and management. Semin. Pediatr. Surg. 26, 154–158 (2017).

    PubMed  Google Scholar 

  7. Lai, W. W. et al. Guidelines and standards for performance of a pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 19, 1413–1430 (2006).

    PubMed  Google Scholar 

  8. Mertens, L. et al. Targeted neonatal echocardiography in the neonatal intensive care unit: practice guidelines and recommendations for training. Eur. J. Echocardiogr. 12, 715–736 (2011).

    PubMed  Google Scholar 

  9. Abman, S. H. et al. Pediatric Pulmonary Hypertension: Guidelines From the American Heart Association and American Thoracic Society. Circulation 132, 2037–2099 (2015).

    PubMed  Google Scholar 

  10. Lakshminrusimha, S. et al. Milrinone in congenital diaphragmatic hernia - a randomized pilot trial: study protocol, review of literature and survey of current practices. Matern. Health, Neonatol. Perinatol. 3, 27 (2017).

    PubMed  Google Scholar 

  11. Bialkowski, A., Moenkemeyer, F. & Patel, N. Intravenous sildenafil in the management of pulmonary hypertension associated with congenital diaphragmatic hernia. Eur. J. Pediatr. Surg. 25, 171–176 (2015).

    PubMed  Google Scholar 

  12. Lawrence, K. M. et al. Use of prostaglandin E1 to treat pulmonary hypertension in congenital diaphragmatic hernia. J. Pediatr. Surg. 54, 55–59 (2019).

    PubMed  Google Scholar 

  13. Capolupo, I. et al. Early vasopressin infusion improves oxygenation in infants with congenital diaphragmatic hernia. Front. Pediatr. 11, 1104728 (2023).

    PubMed  PubMed Central  Google Scholar 

  14. Acker, S. N., Kinsella, J. P., Abman, S. H. & Gien, J. Vasopressin improves hemodynamic status in infants with congenital diaphragmatic hernia. J. Pediatr. 165, 53–58.e1 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh, Y. Echocardiographic Evaluation of Hemodynamics in Neonates and Children. Front. Pediatr. 5, 201 (2017).

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tissot, C., Singh, Y. & Sekarski, N. Echocardiographic Evaluation of Ventricular Function-For the Neonatologist and Pediatric Intensivist. Front. Pediatr. 6, 79 (2018).

    PubMed  PubMed Central  Google Scholar 

  17. Evans, N. & Kluckow, M. Early determinants of right and left ventricular output in ventilated preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 74, F88–F94 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rudski, L. G. et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 23, 685–688 (2010).

    PubMed  Google Scholar 

  19. Koestenberger, M. et al. Systolic right ventricular function in preterm and term neonates: reference values of the tricuspid annular plane systolic excursion (TAPSE) in 258 patients and calculation of Z-score values. Neonatology 100, 85–92 (2011).

    PubMed  Google Scholar 

  20. Levy, P. T. et al. Right ventricular function in preterm and term neonates: reference values for right ventricle areas and fractional area of change. J. Am. Soc. Echocardiogr. 28, 559–569 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Patel, N., Mills, J. F. & Cheung, M. M. H. Use of the myocardial performance index to assess right ventricular function in infants with pulmonary hypertension. Pediatr. Cardiol. 30, 133–137 (2009).

    PubMed  Google Scholar 

  22. More, K., Soni, R. & Gupta, S. The role of bedside functional echocardiography in the assessment and management of pulmonary hypertension. Semin. Fetal Neonatal Med. 27, 101366 (2022).

    PubMed  Google Scholar 

  23. Bo, B. et al. Ductus arteriosus flow predicts outcome in neonates with congenital diaphragmatic hernia. Pediatr. Pulmonol. 58, 1711–1718 (2023).

    PubMed  Google Scholar 

  24. van Laere, D. et al. Application of NPE in the assessment of a patent ductus arteriosus. Pediatr. Res. 84, 46–56 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Musewe, N. N. et al. Validation of Doppler-derived pulmonary arterial pressure in patients with ductus arteriosus under different hemodynamic states. Circulation. 76, 1081–1091 (1987).

    CAS  PubMed  Google Scholar 

  26. Revanna, G. K., Kunjunju, A. & Sehgal, A. Bronchopulmonary dysplasia associated pulmonary hypertension: Making the best use of bedside echocardiography. Prog Pediatr. Cardiol. 46, 39–43 (2017).

    Google Scholar 

  27. Kipfmueller, F. et al. Echocardiographic Assessment of Pulmonary Hypertension in Neonates with Congenital Diaphragmatic Hernia Using Pulmonary Artery Flow Characteristics. J. Clin. Med. 11, 3038 (2022).

    PubMed  PubMed Central  Google Scholar 

  28. Keller, R. L. et al. Congenital diaphragmatic hernia: endothelin-1, pulmonary hypertension, and disease severity. Am. J. Respir. Crit. Care Med. 182, 555–561 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Raimondi, F. et al. Point-of-care lung ultrasound in neonatology: classification into descriptive and functional applications. Pediatr. Res. 90, 524–531 (2021).

    PubMed  Google Scholar 

  30. Musolino, A. M. et al. Ten Years of Pediatric Lung Ultrasound: A Narrative Review. Front. Physiol. 6, 721951 (2022).

    Google Scholar 

  31. Mehollin-Ray, A. R. Prenatal lung volumes in congenital diaphragmatic hernia and their effect on postnatal outcomes. Pediatr. Radiol. 52, 637–642 (2022).

    PubMed  Google Scholar 

  32. Gomond-Le Goff, C. et al. Effect of Different Probes and Expertise on the Interpretation Reliability of Point-of-Care Lung Ultrasound. Chest 157, 924–931 (2020).

    PubMed  Google Scholar 

  33. Ruoss, J. L., Bazacliu, C., Cacho, N. & De Luca, D. Lung Ultrasound in the Neonatal Intensive Care Unit: Does It Impact Clinical Care? Children (Basel) 8, 1098 (2021).

    PubMed  Google Scholar 

  34. Brat, R. et al. Lung Ultrasonography Score to Evaluate Oxygenation and Surfactant Need in Neonates Treated with Continuous Positive Airway Pressure. JAMA Pediatr 169, e151797 (2015).

    PubMed  Google Scholar 

  35. Corsini, I. et al. Lung ultrasound findings in congenital diaphragmatic hernia. Eur. J. Pediatr. 178, 491–495 (2019).

    PubMed  Google Scholar 

  36. Maddaloni, C. et al. Lung Ultrasound Score in Neonates with Congenital Diaphragmatic Hernia (CDH-LUS): A Cross-Sectional Study. Diagnostics (Basel) 13, 898 (2023).

    PubMed  Google Scholar 

  37. Patel, N., Massolo, A. C., Kraemer, U. S. & Kipfmueller, F. The heart in congenital diaphragmatic hernia: Knowns, unknowns, and future priorities. Front. Pediatr. 10, 890422 (2022).

    PubMed  PubMed Central  Google Scholar 

  38. Usui, N. et al. Pneumothoraces as a fatal complication of congenital diaphragmatic hernia in the era of gentle ventilation. Eur. J. Pediatr. Surg. 24, 31–38 (2014).

    PubMed  Google Scholar 

  39. Rubalcava, N. et al. Neonatal pneumothorax in congenital diaphragmatic hernia: Be wary of high ventilatory pressures. World J. Pediatr. Surg 5, e000341 (2022).

    PubMed  PubMed Central  Google Scholar 

  40. Cattarossi, L., Copetti, R., Brusa, G. & Pintaldi, S. Lung Ultrasound Diagnostic Accuracy in Neonatal Pneumothorax. Can. Respir. J 2016, 6515069 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Kurepa, D., Zaghloul, N., Watkins, L. & Liu, J. Neonatal lung ultrasound exam guidelines. J. Perinatol 38, 11–22 (2018).

    CAS  PubMed  Google Scholar 

  42. Liu, J. et al. Lung ultrasonography to diagnose pneumothorax of the newborn. Am J Emerg Med. 35, 1298–1302 (2017).

    PubMed  Google Scholar 

  43. Shojaee, S. & Argento, A. C. Ultrasound-guided pleural access. Semin. Respir. Crit. Care Med. 35, 693–705 (2014).

    PubMed  Google Scholar 

  44. Raimondi, F. et al. Lung Ultrasound for Diagnosing Pneumothorax in the Critically Ill Neonate. J Pediatr 175, 74–78.e1 (2016).

    PubMed  Google Scholar 

  45. Casaccia, G. et al. Pleural effusion requiring drainage in congenital diaphragmatic hernia: incidence, aetiology and treatment. Pediatr. Surg. Int. 22, 585–588 (2006).

    CAS  PubMed  Google Scholar 

  46. Hansell, L. et al. Lung ultrasound has greater accuracy than conventional respiratory assessment tools for the diagnosis of pleural effusion, lung consolidation and collapse: a systematic review. J Physiother 67, 41–48 (2021).

    PubMed  Google Scholar 

  47. Schlager, A., Arps, K., Siddharthan, R. & Clifton, M. S. Tube Thoracostomy at the Time of Congenital Diaphragmatic Hernia Repair: Reassessing the Risks and Benefits. J. Laparoendosc. Adv. Surg. Tech. A. 27, 311–317 (2017).

    PubMed  Google Scholar 

  48. Volpicelli, G. et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 38, 77–91 (2012).

    Google Scholar 

  49. Papacci, P. et al. Neonatal colour Doppler ultrasound study: Normal values of abdominal blood flow velocities in the neonate during the first month of life. Pediatr. Radiol. 39, 328–335 (2009).

    PubMed  Google Scholar 

  50. Pracros, J. P. et al. Ultrasound diagnosis of midgut volvulus: the “whirlpool” sign. Pediatr. Radiol. 22, 18–20 (1992).

    CAS  PubMed  Google Scholar 

  51. Guang, Y. et al. Early Doppler Ultrasound in the Superior Mesenteric Artery and the Prediction of Necrotizing Enterocolitis in Preterm Neonates. J Ultrasound Med. 38, 3283–3289 (2019).

    PubMed  Google Scholar 

  52. Murphy, C., Baskind, S., Aladangady, N. & Banerjee, J. Measuring gut perfusion and blood flow in neonates using Ultrasound Doppler of the Superior Mesenteric Artery - a narrative review. Front. Pediatr. 11, 1154611 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Elsayed, Y. & Seshia, M. A new intestinal ultrasound integrated approach for the management of neonatal gut injury. Eur. J. Pediatr. 181, 1739–1749 (2022).

    PubMed  Google Scholar 

  54. Faingold, R. et al. Necrotizing enterocolitis: Assessment of bowel viability with color doppler US. Radiology 235, 587–594 (2005).

    PubMed  Google Scholar 

  55. Barczuk-Falęcka, M. et al. Hepatic Portal Venous Gas in Children Younger Than 2 Years Old - Radiological and Clinical Characteristics in Diseases Other Than Necrotizing Enterocolitis. Pol. J. Radiol. 82, 275–278 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Engel, C., Silva, C., Baker, K. & Goodman, T. R. Underutilized ultrasound applications in the neonatal intensive care unit. Ultrasound Q 28, 299–304 (2012).

    PubMed  Google Scholar 

  57. Kiblawi, R. et al. Vena Cava Thrombosis after Congenital Diaphragmatic Hernia Repair: Multivariate Analysis of Potential Risk Factors. Eur. J. Pediatr. Surg. 32, 91–97 (2022).

    PubMed  Google Scholar 

  58. Scott, J. E., Hunter, E. W., Lee, R. E. & Matthews, J. N. S. Ultrasound measurement of renal size in newborn infants. Arch. Dis. Child. 65, 361–364 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rumack, C. & Levine, D. Diagnostic Ultrasound. 5th ed. (2018).

  60. Karaoglanoglu, N., Turkyilmaz, A., Eroglu, A. & Alici, H. A. Right-sided Bochdalek hernia with intrathoracic kidney. Pediatr. Surg. Int. 22, 1029–1031 (2006).

    PubMed  Google Scholar 

  61. Slovis, T. L., Bernstein, J. & Gruskin, A. Practical pediatric nephrology - Hyperechoic kidneys in the newborn and young infant. Pediatr. Nephrol. 43, 294–302 (1993).

    Google Scholar 

  62. Murat, A. et al. Renal resistive index in healthy children. Eur. J. Radiol. 53, 67–71 (2005).

    PubMed  Google Scholar 

  63. Husain-Syed, F. et al. Doppler-Derived Renal Venous Stasis Index in the Prognosis of Right Heart Failure. J. Am. Heart Assoc. 8, e013584 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Qian, X., Zhen, J., Meng, Q., Li, L. & Yan, J. Intrarenal Doppler approaches in hemodynamics: A major application in critical care. Front. Physiol. 13, 1–9 (2022).

    Google Scholar 

  65. Miller, L. E., Stoller, J. Z. & Fraga, M. V. Point-of-care ultrasound in the neonatal ICU. Curr. Opin. Pediatr. 32, 216–227 (2020).

    PubMed  Google Scholar 

  66. Dudink, J., Jeanne Steggerda, S., Horsch, S. & eurUS.brain group. State-of-the-art neonatal cerebral ultrasound: technique and reporting. Pediatr. Res 87, 3–12 (2020).

    PubMed  PubMed Central  Google Scholar 

  67. Danzer, E. & Hedrick, H. L. Neurodevelopmental and neurofunctional outcomes in children with congenital diaphragmatic hernia. Early Hum. Dev. 87, 625–632 (2011).

    PubMed  Google Scholar 

  68. Danzer, E. & Kim, S. S. Neurodevelopmental outcome in congenital diaphragmatic hernia: Evaluation, predictors and outcome. World J. Clin. Pediatr 3, 30–36 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. Danzer, E. et al. Longitudinal neurodevelopmental and neuromotor outcome in congenital diaphragmatic hernia patients in the first 3 years of life. J. Perinatol. 33, 893–898 (2013).

    CAS  PubMed  Google Scholar 

  70. Peetsold, M. G. et al. The long-term follow-up of patients with a congenital diaphragmatic hernia: a broad spectrum of morbidity. Pediatr. Surg. Int. 25, 1–17 (2009).

    CAS  PubMed  Google Scholar 

  71. Van der Veeken, L. et al. Prenatal cerebellar growth is altered in congenital diaphragmatic hernia on ultrasound. Prenat. Diagn. 42, 330–337 (2022).

    PubMed  Google Scholar 

  72. Steggerda, S. J. & van Wezel-Meijler, G. Cranial ultrasonography of the immature cerebellum: Role and limitations. Semin. Fetal Neonatal Med. 21, 295–304 (2016).

    CAS  PubMed  Google Scholar 

  73. Steggerda, S. J. et al. Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology. 252, 190–199 (2009).

    PubMed  Google Scholar 

  74. Limperopoulos, C. et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation. 121, 26–33 (2010).

    CAS  PubMed  Google Scholar 

  75. Masoller, N. et al. Severity of Fetal Brain Abnormalities in Congenital Heart Disease in Relation to the Main Expected Pattern of in utero Brain Blood Supply. Fetal Diagn. Ther. 39, 269–278 (2016).

    PubMed  Google Scholar 

  76. Kosiv, K. A. et al. Fetal cerebrovascular impedance is reduced in left congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 57, 386–391 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Larson, A. C. et al. The fetal lamb model of congenital diaphragmatic hernia shows altered cerebral perfusion using contrast enhanced ultrasound. J. Pediatr. Surg 57, 991–998 (2022).

    PubMed  Google Scholar 

  78. Radhakrishnan, R. et al. Fetal brain morphometry on prenatal magnetic resonance imaging in congenital diaphragmatic hernia. Pediatr. Radiol. 49, 217–223 (2019).

    PubMed  Google Scholar 

  79. Van Mieghem, T. et al. Fetal cerebral blood flow velocities in congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 36, 452–457 (2010).

    PubMed  Google Scholar 

  80. Elmfors, A. F. et al. Normal values of the resistivity index of the pericallosal artery with and without compression of the anterior fontanelle. Pediatr. Radiol. 49, 646–651 (2019).

    PubMed  Google Scholar 

  81. Lucignani, M. et al. Morphometric analysis of brain in newborn with congenital diaphragmatic hernia. Brain Sci 11, 455 (2021).

    PubMed  PubMed Central  Google Scholar 

  82. Grover, T. R. et al. Central Line Utilization and Complications in Infants with Congenital Diaphragmatic Hernia. Am. J. Perinatol. 29, 1524–1532 (2022).

    PubMed  Google Scholar 

  83. Dassios, T., Hickey, A., Krokidis, M. & Greenough, A. Congenital diaphragmatic hernia in newborn infants: Variable endotracheal tube and umbilical venous catheter positions. Early Hum. Dev. 128, 12–14 (2019).

    PubMed  Google Scholar 

  84. D’Andrea, V. et al. Umbilical Venous Catheter Update: A Narrative Review Including Ultrasound and Training. Front. Pediatr. 9, 774705 (2021).

    PubMed  Google Scholar 

  85. Fleming, S. E. & Kim, J. H. Ultrasound-guided umbilical catheter insertion in neonates. J. Perinatol. 31, 344–349 (2011).

    CAS  PubMed  Google Scholar 

  86. Barone, G., D’Andrea, V., Vento, G. & Pittiruti, M. A Systematic Ultrasound Evaluation of the Diameter of Deep Veins in the Newborn: Results and Implications for Clinical Practice. Neonatology 115, 335–340 (2019).

    PubMed  Google Scholar 

  87. Barone, G., Pittiruti, M. & D’Andrea, V. Ultrasound-guided catheter tip location in neonatal central venous access. Focus on well-defined protocols and proper ultrasound training. J. Pediatr. 247, 181 (2022).

    PubMed  Google Scholar 

  88. Barone, G. et al. Neo-ECHOTIP: A structured protocol for ultrasound-based tip navigation and tip location during placement of central venous access devices in neonates. J. Vasc. Access. 23, 679–688 (2022).

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the Italian Ministry of Health with “Current Research” funds.

Author information

Authors and Affiliations

Authors

Contributions

C.M., D.U.D.R., and F.Cal. conceptualized and designed the study, collected and interpreted data, carried out the initial analyses, and wrote the first and final drafts of the manuscript. S.R., F.P., L.M., S.C. and I.B. collected data from literature and provided significant edits to the manuscript. R.L. supervised ultrasound images acquisition and provided significant edits to the manuscript. A.C., F.Cam., P.T., I.C. and A.D. supervised data collection, critically reviewed the manuscript for important intellectual content. All authors participated to the writing of this paper, approved the final manuscript as submitted, and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Domenico Umberto De Rose.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddaloni, C., De Rose, D.U., Ronci, S. et al. The role of point-of-care ultrasound in the management of neonates with congenital diaphragmatic hernia. Pediatr Res 95, 901–911 (2024). https://doi.org/10.1038/s41390-023-02889-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02889-4

Search

Quick links