Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A novel genotype-phenotype between persistent-cloaca-related VACTERL and mutations of 8p23 and 12q23.1

Abstract

The mechanism underlying anorectal malformations (ARMs)-related VACTERL (vertebral defects, anal atresia, cardiac defects, tracheo–esophageal fistula, and renal and limb abnormalities) remains unclear. Copy number variation (CNV) contributed to VACTERL pathogenicity. Here, we report a novel CNV in 8p23 and 12q23.1 identified in a case of ARMs-related VACTERL association. This 12-year-old girl presented a cloaca (urethra, vagina, and rectum opening together and sharing a single tube length), an isolated kidney, and a perpetuation of the left superior vena cava at birth. Her intelligence, growth, and development were slightly lower than those of normal children of the same age. Array comparative genomic hybridization revealed a 9.6-Mb deletion in 8p23.1–23.3 and a 0.52-Mb duplication in 12q23.1 in her genome. Furthermore, we reviewed the cases involving CNVs in patients with VACTERL, 8p23 deletion, and 12q23.1 duplication, and our case was the first displaying ARMs-related VACTERL association with CNV in 8p23 and 12q23.1. These findings enriched our understanding between VACTERL association and the mutations of 8p23 deletion and 12q23.1 duplication.

Impact

  • This is a novel case of a Chinese girl with anorectal malformations (ARMs)-related VACTERL with an 8p23.1–23.3 deletion and 12q23.1 duplication. Cloaca malformation is presented with novel copy number variation in 8p23.1–23.3 deletion and 12q23.1 duplication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Images showing retrograde cloacal angiography.
Fig. 2: Image of abdomen CT showing right single kidney of the patient.
Fig. 3: UCSC Genome Browser view of genomic regions identified in this study.

Similar content being viewed by others

Data availability

All of the material is owned by the authors and/or no permissions are required.

References

  1. Tonni, G. et al. Clinical presentations and diagnostic imaging of vacterl association. Fetal Pediatr. Pathol. 42, 651–674 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Solomon, B. D. Vacterl/vater association. Orphanet J. Rare Dis. 6, 56 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Czeizel, A. & Ludányi, I. An aetiological study of the vacterl-association. Eur. J. Pediatr. 144, 331–337 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Lomas, F. E., Dahlstrom, J. E. & Ford, J. H. Vacterl with hydrocephalus: family with X-linked Vacterl-H. Am. J. Med. Genet. 76, 74–78 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Hilger, A. et al. Familial occurrence of the vater/vacterl association. Pediatr. Surg. Int 28, 725–729 (2012).

    Article  PubMed  Google Scholar 

  6. Reutter, H. & Ludwig, M. Vater/vacterl association: evidence for the role of genetic factors. Mol. Syndromol. 4, 16–19 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Jenkins, D. et al. Mutational analyses of Upiiia, Shh, Efnb2 and Hnf1beta in persistent Cloaca and associated kidney malformations. J. Pediatr. Urol. 3, 2–9 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kause, F. et al. Hspa6: a new autosomal recessive candidate gene for the vater/vacterl malformation spectrum. Birth Defects Res. 111, 591–597 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saisawat, P. et al. Whole-exome resequencing reveals recessive mutations in Trap1 in individuals with cakut and vacterl association. Kidney Int. 85, 1310–1317 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. van de Putte, R. et al. A genetics-first approach revealed monogenic disorders in patients with arm and vacterl anomalies. Front. Pediatr. 8, 310 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hilger, A. et al. De novo microduplications at 1q41, 2q37.3, and 8q24.3 in patients with vater/vacterl association. Eur. J. Hum. Genet. 21, 1377–1382 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. LaBranche, J. T. N., Argiropoulos, B. & Thomas, M. A. 8p23.2p22 deletion: a case report of a large deletion encompassing 8p23.1 with additional clinical features. Clin. Dysmorphol. 29, 207–209 (2020).

    Article  PubMed  Google Scholar 

  13. Oh, K. S., Febres-Aldana, C. A., Pelaez, L. & Alexis, J. 8p23.1 microdeletion syndrome and obstructing myxomatous heart valve nodules. Autops. Case Rep. 10, e2020168 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Catusi, I. et al. 8p23.2-Pter microdeletions: seven new cases narrowing the candidate region and review of the literature. Genes 12, 652 (2021).

  15. Schierz, I. A. M. et al. Clinical and genetic approach in the characterization of newborns with anorectal malformation. J. Matern. Fetal Neonatal Med. 35, 4513–4520 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, R. et al. Array-based molecular karyotyping in 115 vater/vacterl and vater/vacterl-like patients identifies disease-causing copy number variations. Birth Defects Res 109, 1063–1069 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Moreno, O. M. et al. Phenotypic characteristics and copy number variants in a cohort of colombian patients with vacterl association. Mol. Syndromol. 11, 271–283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brosens, E. et al. Vacterl association etiology: the impact of de novo and rare copy number variations. Mol. Syndromol. 4, 20–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Solomon, B. D. et al. Clinical geneticists’ views of vacterl/vater association. Am. J. Med. Genet. A 158a, 3087–3100 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Reddy, K. S. A paternally inherited terminal deletion, Del(8)(P23.1)Pat, detected prenatally in an amniotic fluid sample: a review of deletion 8p23.1 cases. Prenat. Diagn. 19, 868–872 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Baynam, G., Goldblatt, J. & Walpole, I. Deletion of 8p23.1 with features of cornelia de lange syndrome and congenital diaphragmatic hernia and a review of deletions of 8p23.1 to 8pter? A further locus for cornelia de lange syndrome. Am. J. Med. Genet. A 146a, 1565–1570 (2008).

    Article  PubMed  Google Scholar 

  22. Barber, J. C. et al. Inside the 8p23.1 duplication syndrome; eight microduplications of likely or uncertain clinical significance. Am. J. Med. Genet. A 167a, 2052–2064 (2015).

    Article  PubMed  Google Scholar 

  23. Ballarati, L. et al. Genotype-phenotype correlations in a new case of 8p23.1 deletion and review of the literature. Eur. J. Med. Genet. 54, 55–59 (2011).

    Article  PubMed  Google Scholar 

  24. & Cicenia, M. et al. 8p23.1 deletion: look out for left ventricular hypertrabeculation and not only congenital heart diseases. single-center experience and literature revision. Am. J. Med. Genet. A 188, 883–895 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Stoll, C., Alembik, Y., Dott, B. & Roth, M. P. Associated malformations in patients with anorectal anomalies. Eur. J. Med. Genet. 50, 281–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Thomas, D. F. M. The embryology of persistent cloaca and urogenital sinus malformations. Asian J. Androl. 22, 124–128 (2020).

    Article  PubMed  Google Scholar 

  27. Hendren, W. H. Cloaca, the most severe degree of imperforate anus: experience with 195 cases. Ann. Surg. 228, 331–346 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Southard, A. E., Edelmann, L. J. & Gelb, B. D. Role of copy number variants in structural birth defects. Pediatrics 129, 755–763 (2012).

    Article  PubMed  Google Scholar 

  29. Goldmuntz, E. et al. Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies. Congenit. Heart Dis. 6, 592–602 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dworschak, G. C. et al. Genome-wide mapping of copy number variations in patients with both anorectal malformations and central nervous system abnormalities. Birth Defects Res. A Clin. Mol. Teratol. 103, 235–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Brosens, E. et al. Copy number variations in 375 patients with oesophageal atresia and/or tracheoesophageal fistula. Eur. J. Hum. Genet. 24, 1715–1723 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harrison, S. M., Seideman, C. & Baker, L. A. DNA copy number variations in patients with persistent cloaca. J. Urol. 191, 1543–1546 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Ramos, F. J., McDonald-McGinn, D. M., Emanuel, B. S. & Zackai, E. H. Tricho-rhino-phalangeal syndrome type Ii (Langer-Giedion) with persistent cloaca and prune Belly sequence in a girl with 8q interstitial deletion. Am. J. Med. Genet. 44, 790–794 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Fagan, K., Wilkinson, I., Allen, M. & Brownlea, S. The coagulation factor Vii regulator is located on 8p23.1. Hum. Genet. 79, 365–367 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Kumar, V., Roy, S. & Kumar, G. An interesting and unique case of 8p23.3p23.1 deletion and 8p23.1p11.1 interstitial duplication syndrome. J. Pediatr. Genet. 7, 125–129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Molck, M. C., Monteiro, F. P., Simioni, M. & Gil-da-Silva-Lopes, V. L. 8p23.1 interstitial deletion in a patient with congenital cardiopathy, neurobehavioral disorders, and minor signs suggesting 22q11.2 deletion syndrome. J. Dev. Behav. Pediatr. 36, 544–548 (2015).

    Article  PubMed  Google Scholar 

  37. Páez, M. T. et al. Two patients with atypical interstitial deletions of 8p23.1: mapping of phenotypical traits. Am. J. Med. Genet. A 146a, 1158–1165 (2008).

    Article  PubMed  Google Scholar 

  38. Wu, B. L. et al. Distal 8p deletion (8)(P23.1): an easily missed chromosomal abnormality that may be associated with congenital heart defect and mental retardation. Am. J. Med. Genet. 62, 77–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Smith, S., Giriat, I., Schmitt, A. & de Lange, T. Tankyrase, a poly(adp-ribose) polymerase at human telomeres. Science 282, 1484–1487 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Khelifa, H. B. et al. Microarray analysis of 8p23.1 deletion in new patients with atypical phenotypical traits. J. Pediatr. Genet. 4, 187–193 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Trimborn, M. et al. Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am. J. Hum. Genet. 75, 261–266 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hemmat, M. et al. Cma analysis identifies homozygous deletion of Mcph1 in 2 brothers with primary microcephaly-1. Mol. Cytogenet. 10, 33 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tabarés-Seisdedos, R. & Rubenstein, J. L. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol. Psychiatry 14, 563–589 (2009).

    Article  PubMed  Google Scholar 

  44. Geckinli, B. B. et al. Clinical report of a patient with de novo trisomy 12q23.1q24.33. Genet. Couns. 26, 393–400 (2015).

    CAS  PubMed  Google Scholar 

  45. Cheung, A. H., Stewart, R. J. & Marsden, P. A. Endothelial Tie2/Tek ligands angiopoietin-1 (Angpt1) and angiopoietin-2 (Angpt2): regional localization of the human genes to 8q22.3-Q23 and 8p23. Genomics 48, 389–391 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Garg, V. et al. Gata4 mutations cause human congenital heart defects and reveal an interaction with Tbx5. Nature 424, 443–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Verhoeven, K. et al. Slowed conduction and thin myelination of peripheral nerves associated with mutant rho guanine-nucleotide exchange factor 10. Am. J. Hum. Genet. 73, 926–932 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shimizu, A. et al. A novel giant gene Csmd3 encoding a protein with Cub and Sushi multiple domains: a candidate gene for benign adult familial myoclonic epilepsy on human chromosome 8q23.3-Q24.1. Biochem. Biophys. Res. Commun. 309, 143–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Myung, J. K. et al. Well-differentiated liposarcoma of the oesophagus: clinicopathological, immunohistochemical and array Cgh analysis. Pathol. Oncol. Res. 17, 415–420 (2011).

    Article  PubMed  Google Scholar 

  50. Poniah, P. et al. Genome-wide copy number analysis reveals candidate gene loci that confer susceptibility to high-grade prostate cancer. Urol. Oncol. 35, 545.e541–545.e511 (2017).

    Article  Google Scholar 

  51. Rutherford, S., Hampton, G. M., Frierson, H. F. & Moskaluk, C. A. Mapping of candidate tumor suppressor genes on chromosome 12 in adenoid cystic carcinoma. Lab. Investig. 85, 1076–1085 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Dong, J. et al. Genome-wide association study identifies a novel susceptibility locus at 12q23.1 for lung squamous cell carcinoma in Han Chinese. PLoS Genet. 9, e1003190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vijayakrishnan, J. et al. A genome-wide association study identifies risk loci for childhood acute lymphoblastic leukemia at 10q26.13 and 12q23.1. Leukemia 31, 573–579 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Veluchamy, A. et al. Association of genetic variant at chromosome 12q23.1 with neuropathic pain susceptibility. JAMA Netw. Open 4, e2136560 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dong, Y. et al. Genome-wide scan for hypertension linkage to chromosome 12q23.1 - Q23.3 in a Chinese family. Indian J. Med. Res. 137, 935–941 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Borg, K. et al. Molecular analysis of a constitutional complex genome rearrangement with 11 breakpoints involving chromosomes 3, 11, 12, and 21 and a approximately 0.5-Mb submicroscopic deletion in a patient with mild mental retardation. Hum. Genet. 118, 267–275 (2005).

    Article  PubMed  Google Scholar 

  57. Garcia-Barceló, M. M. et al. Identification of a Hoxd13 mutation in a vacterl patient. Am. J. Med. Genet. A 146a, 3181–3185 (2008).

    Article  PubMed  Google Scholar 

  58. Aguinaga, M., Zenteno, J. C., Pérez-Cano, H. & Morán, V. Sonic hedgehog mutation analysis in patients with vacterl association. Am. J. Med. Genet. A 152a, 781–783 (2010).

    Article  PubMed  Google Scholar 

  59. Agochukwu, N. B. et al. Analysis of Foxf1 and the Fox gene cluster in patients with vacterl association. Eur. J. Med. Genet. 54, 323–328 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hernández-García, A. et al. Contribution of Lpp copy number and sequence changes to Esophageal Atresia, Tracheoesophageal Fistula, and Vacterl Association. Am. J. Med. Genet. A 158a, 1785–1787 (2012).

    Article  PubMed  Google Scholar 

  61. Kelley, R. I. & Hennekam, R. C. The Smith-Lemli-Opitz syndrome. J. Med. Genet. 37, 321–335 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jenkins, D. et al. De novo Uroplakin Iiia heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J. Am. Soc. Nephrol. 16, 2141–2149 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Dworschak, G. C. et al. De novo 13q deletions in two patients with mild anorectal malformations as part of vater/vacterl and vater/vacterl-like association and analysis of Efnb2 in patients with anorectal malformations. Am. J. Med. Genet. A 161a, 3035–3041 (2013).

    Article  PubMed  Google Scholar 

  64. Ronzoni, L. et al. 2q33.1q34 deletion in a girl with brain anomalies and anorectal malformation. Cytogenet. Genome Res. 150, 23–28 (2016).

    Article  PubMed  Google Scholar 

  65. Smigiel, R. et al. Oesophageal atresia with tracheoesophageal fistula and anal atresia in a patient with a de novo microduplication in 17q12. Eur. J. Med. Genet. 57, 40–43 (2014).

    Article  PubMed  Google Scholar 

  66. Duan, F., Zhai, Y. & Kong, X. Clinical and genetic analysis of a child with X-linked hypohidrotic ectodermal dysplasia.Zhonghua Yi Xue Yi Chuan Xue Za Zhi 38, 469–471 (2021).

    PubMed  Google Scholar 

  67. Schramm, C. et al. De novo microduplication at 22q11.21 in a patient with vacterl association. Eur. J. Med. Genet. 54, 9–13 (2011).

    Article  PubMed  Google Scholar 

  68. Ueda, H. et al. Combination of Miller-Dieker syndrome and vacterl association causes extremely severe clinical presentation. Eur. J. Pediatr. 173, 1541–1544 (2014).

    Article  PubMed  Google Scholar 

  69. Bhagat, M. Vacterl association-type anomalies in a male neonate with a Y-chromosome abnormality. Oxf. Med. Case Rep. 2015, 164–166 (2015).

    Article  Google Scholar 

  70. Kang, J., Mao, M., Zhang, Y., Ai, F. F. & Zhu, L. Congenital anal atresia with rectovestibular fistula, scoliosis, unilateral renal agenesis, and finger defect (vacterl association) in a patient with partial bicornuate uterus and distal vaginal atresia: a case report. Medicines 97, e12822 (2018).

    Google Scholar 

  71. Tumini, S. et al. Yq microdeletion in a patient with vacterl association and shawl scrotum with bifid scrotum: a real pathogenetic association or a coincidence? Cytogenet. Genome Res. 158, 121–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. He, X. et al. Reduced anogenital distance, hematuria and left renal hypoplasia in a patient with 13q33.1-34 deletion: case report and literature review. BMC Pediatr. 20, 327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chung, B. et al. From vacterl-h to heterotaxy: variable expressivity of Zic3-related disorders. Am. J. Med. Genet. A 155a, 1123–1128 (2011).

    Article  PubMed  Google Scholar 

  74. Puvabanditsin, S. et al. Vater/vacterl association and caudal regression with Xq25-Q27.3 microdeletion: a case report. Fetal Pediatr. Pathol. 35, 133–141 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Husain, M. et al. Phenotypic diversity of patients diagnosed with vacterl association. Am. J. Med. Genet. A 176, 1830–1837 (2018).

    Article  PubMed  Google Scholar 

  76. Umaña, L. A., Magoulas, P., Bi, W. & Bacino, C. A. A male newborn with vacterl association and fanconi anemia with a fancb deletion detected by array comparative genomic hybridization (Acgh). Am. J. Med. Genet. A 155a, 3071–3074 (2011).

    Article  PubMed  Google Scholar 

  77. Akcakaya, N. H. et al. De novo 8p23.1 deletion in a patient with absence epilepsy. Epileptic Disord. 19, 217–221 (2017).

    Article  PubMed  Google Scholar 

  78. Shi, S., Lin, S., Chen, B. & Zhou, Y. Isolated chromosome 8p23.2‑Pter deletion: novel evidence for developmental delay, intellectual disability, microcephaly and neurobehavioral disorders. Mol. Med. Rep. 16, 6837–6845 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wagner-Mahler, K. et al. Is interstitial 8p23 microdeletion responsible of 46, Xy gonadal dysgenesis? One case report from birth to puberty. Mol. Genet Genom. Med 7, e558 (2019).

    Article  Google Scholar 

  80. Lo Bianco, M. et al. Deciphering the invdupdel(8p) genotype-phenotype correlation: our opinion. Brain Sci. 10, 451 (2020).

  81. Hao, D. et al. Inherited unbalanced translocation (4p16.3p15.32 duplication/8p23.3p23.2deletion) in the four generation pedigree with intellectual disability/developmental delay. Mol. Cytogenet. 14, 35 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, B., Cui, W., Zhang, Z., Li, J. & Shang, Q. Phenotypic and genetic analysis of a boy with Inv Dup Del(8p). Zhonghua Yi Xue Yi Chuan Xue Za Zhi 38, 581–584 (2021).

    PubMed  Google Scholar 

  83. Slavotinek, A. et al. Fryns syndrome phenotype caused by chromosome microdeletions at 15q26.2 and 8p23.1. J. Med. Genet. 42, 730–736 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, C. P. et al. Prenatal diagnosis of de novo partial trisomy 13q (13q22 –> Qter) and partial monosomy 8p (8p23.3 –> Pter) associated with holoprosencephaly, premaxillary agenesis, hexadactyly, and a hypoplastic left heart. Prenat. Diagn. 25, 334–336 (2005).

    Article  PubMed  Google Scholar 

  85. Simioni, M. et al. Insertional translocation of 15q25-Q26 into 11p13 and duplication at 8p23.1 characterized by high resolution arrays in a boy with congenital malformations and aniridia. Am. J. Med. Genet. A 158a, 2905–2910 (2012).

    Article  PubMed  Google Scholar 

  86. Zeng, Y. et al. Prenatal diagnosis and genetic analysis of a special case with complex structural rearrangements of chromosome 8. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 40, 1181–1184 (2023).

    PubMed  Google Scholar 

  87. Winberg, J. et al. Pathogenic copy number variants are detected in a subset of patients with gastrointestinal malformations. Mol. Genet. Genom. Med. 8, e1084 (2020).

    Article  CAS  Google Scholar 

  88. Meng, X. & Jiang, L. Prenatal detection of chromosomal abnormalities and copy number variants in fetuses with congenital gastrointestinal obstruction. BMC Preg. Childbirth 22, 50 (2022).

    Article  CAS  Google Scholar 

  89. Thiem, C. E. et al. Re-sequencing of candidate genes Foxf1, Hspa6, Haao, and Kynu in 522 individuals with vater/vacterl, vacter/vacterl-like association, and isolated anorectal malformation. Birth Defects Res. 114, 478–486 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Reinicke, T., Costantino, C. L., Anderson, D. J., Tran, J. & Griggs, C. A network of anomalies prompting vacterl workup in a trisomy 21 newborn. Cureus 14, e21290 (2022).

    PubMed  PubMed Central  Google Scholar 

  91. Kotani, T. et al. Prenatal diagnosis of distal 13q deletion syndrome in a fetus with esophageal atresia: a case report and review of the literature. J. Med. Case Rep. 16, 481 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Barber, J. C. et al. 8p23.1 duplication syndrome; a novel genomic condition with unexpected complexity revealed by array Cgh. Eur. J. Hum. Genet 16, 18–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Pope, K. et al. Dextrocardia, atrial septal defect, severe developmental delay, facial anomalies, and supernumerary ribs in a child with a complex unbalanced 8;22 translocation including partial 8p duplication. Am. J. Med. Genet. A 158a, 641–647 (2012).

    Article  PubMed  Google Scholar 

  94. Chen, C. P. et al. Molecular cytogenetic characterization of Inv Dup Del(8p) in a fetus associated with ventriculomegaly, hypoplastic left heart, polyhydramnios and intestinal obstruction. Taiwan J. Obstet. Gynecol. 55, 415–418 (2016).

    Article  PubMed  Google Scholar 

  95. Tokutake, H. & Chiba, S. A case report of respiratory syncytial virus-infected 8p inverted duplication deletion syndrome with low natural killer cell activity. Tohoku J. Exp. Med. 257, 347–352 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Grassi, M. S. et al. Cytogenomics investigation of infants with congenital heart disease: experience of a Brazilian Center. Arq. Bras. Cardiol. 118, 61–67 (2022).

    CAS  PubMed  Google Scholar 

  97. Montenegro, M. M. et al. Expanding the phenotype of 8p23.1 deletion syndrome: eight new cases resembling the clinical spectrum of 22q11.2 microdeletion. J. Pediatr. 252, 56–60.e52 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Hong, N. et al. The transcription factor Sox7 modulates endocardiac cushion formation contributed to atrioventricular septal defect through Wnt4/Bmp2 signaling. Cell Death Dis. 12, 393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program (2021YFC2701003,2021YFC2701104) and the National Natural Science Foundation of China (Grant no. 82171649) by Zhengwei Yuan, the National Natural Science Foundation of China (Grant no. 82070531) by H.J., and the Basic Research project of the Education Department of Liaoning Province (grant number LJKMZ20221195) by Z.Y.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. wrote the manuscript. Y.L. and P.L. reviewed the manuscript. W.W., H.J., and Z.Y. revised and completed the manuscript. Z.Y. wrote and revised the manuscript.

Corresponding authors

Correspondence to Yuzuo Bai, Zhengwei Yuan or Zhonghua Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The protocol for this study was approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University (No. 2021PS183K).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, P., Wang, W. et al. A novel genotype-phenotype between persistent-cloaca-related VACTERL and mutations of 8p23 and 12q23.1. Pediatr Res 95, 1246–1253 (2024). https://doi.org/10.1038/s41390-023-02928-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02928-0

Search

Quick links