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BACKGROUND: Preterm birth is associated with long-term cardiovascular morbidity and mortality. In adults, fibroblast growth
factor-23 (FGF-23), α-Klotho, and secretoneurin have all garnered attention as cardiovascular biomarkers, but their utility in pediatric
populations has not yet been ascertained. The aim of this pilot study was to evaluate these novel cardiovascular biomarkers and
their association with indicators of cardiovascular impairment in the highly vulnerable population of former very preterm infants.
METHODS: Five- to seven-year-old children born at < 32 weeks’ gestation were eligible for the study. Healthy same-aged children
born at term served as controls. Biomarkers were quantified in fasting blood samples, and echocardiographic measurements
including assessment of aortic elastic properties were obtained.
RESULTS: We included 26 former very preterm infants and 21 term-born children in the study. At kindergarten age, former very
preterm infants exhibited significantly higher plasma concentrations of biologically active intact FGF-23 (iFGF-23; mean 43.2 pg/mL
vs. 29.1 pg/mL, p= 0.003) and secretoneurin (median 93.8 pmol/L vs. 70.5 pmol/L, p= 0.046). iFGF-23 inversely correlated with
distensibility of the descending aorta.
CONCLUSION: In preterm-born children, iFGF-23 and secretoneurin both offer prospects as valuable cardiovascular biomarkers,
potentially allowing for risk stratification and timely implementation of preventive measures.

Pediatric Research; https://doi.org/10.1038/s41390-024-03210-7

IMPACT:

● Former very preterm infants have increased plasma concentrations of the novel cardiovascular biomarkers intact fibroblast
growth factor-23 (iFGF-23) and secretoneurin at kindergarten age.

● Increases in iFGF-23 concentrations are associated with decreased distensibility of the descending aorta even at this early age.
● Monitoring of cardiovascular risk factors is essential in individuals with a history of preterm birth. Both iFGF-23 and

secretoneurin hold promise as clinically valuable biomarkers for risk stratification, enabling the implementation of early
preventive measures.

INTRODUCTION
According to the World Health Organization (WHO), cardiovascular
disease is responsible for an estimated 17.9 million (32%) deaths
in 2019 and is, therefore, the single leading cause of global
mortality.1 While family history and lifestyle factors are undeniably
linked to the development of cardiovascular disease, preterm birth
(i.e., < 37 weeks’ gestation), affecting 10.6% of all livebirths
worldwide,2 has been recognized as a significant determinant
contributing to the formation of long-term cardiovascular
morbidity3 and mortality.4–7 Preterm birth is associated with
elevated blood pressure8–12 and hypertension,8,13,14 diabetes
mellitus type 1 and 2,4,15,16 reductions in elastic properties of
the aorta,17 ischemic heart disease,18 risk of heart failure,19

stroke,20 chronic kidney disease21 and cardiovascular mortality4–6

in early childhood and young adulthood. A link between
childhood cardiovascular risk factors and adult cardiovascular

events has just recently been demonstrated in a long-term
prospective cohort study.22

In light of the mounting burden of prematurity and its
association with cardiovascular disease, a necessity arises to find
biomarkers capable of identifying those at increased risk to enable
timely therapeutic intervention. In adult research, fibroblast
growth factor-23 (FGF-23) and its co-receptor α-Klotho have
attracted interest as promising biomarkers of cardiovascular
disease.23 High concentrations of FGF-23 are associated with
hypertension,24 left ventricular mass and hypertrophy,25–27

incident coronary heart disease, heart failure and overall
cardiovascular mortality.28–31 Animal studies further suggest direct
– i.e. Klotho-independent – cardiotoxicity of FGF-2332,33 and an
association with reduced aortic relaxation.34 Low levels of soluble
α-Klotho are associated with congestive heart failure and
myocardial infarction.35 This increasing body of evidence leads
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to the question whether FGF-23 and α-Klotho may be suitable
markers of an increased cardiovascular risk or even causal
contributory factors in cardiovascular disease.23 Along similar
lines, secretoneurin proved valuable in predicting mortality in
patients with severe sepsis and septic shock,36,37 cardiovascular-
related acute respiratory failure,38 acute and chronic heart
failure39,40 and in patients undergoing heart surgery due to
structural heart disease.41,42 Animal models further indicate an
effect of secretoneurin on endothelium-dependent vascular
relaxation.43 A link to the above-mentioned FGF-23 pathway
may exist via respective ties to hypoxia-inducible factor 1-alpha
(HIF-1α), as evidenced in both in vitro and in vivo models of
hypoxia.44,45 Repeated hypoxic episodes during the vulnerable
preterm period may alter HIF-1α circuits leading to downstream
changes in FGF-23, α-Klotho, and secretoneurin, respectively.
The aim of the present study was to explore these novel

cardiovascular biomarkers and their association with incipient
end-organ impairment by means of non-invasive echocardio-
graphic measurements in a population of very preterm infants.

METHODS
Study design and population
The study was carried out at the Department of Pediatrics II (Neonatology),
Innsbruck University Hospital, Austria. The following data was drawn from
a group of former preterm infants born between 01/01/2007 and 07/31/
2009 at < 32 weeks’ gestation (i.e., very preterm infants), who were invited
to a routine visit at our preterm outpatient follow-up clinic at kindergarten
age. A control group of same-aged children born at term were recruited
through local kindergartens. None of the participants had congenital
malformations or chromosomal abnormalities. In accordance with the
Declaration of Helsinki in its most recent form and the International
Conference on Harmonization: Good Clinical Practice (ICH-GCP) guidelines,
approval for this study was obtained in advance from the institutional
review board (IRB) of the Medical University of Innsbruck (UN 4491).
Written informed consent was obtained from legal guardians, and all
children verbally consented to participation.

Perinatal characteristics
Basic perinatal data for preterm-born participants were drawn from our
institution’s routine preterm follow-up database. To account for sex- and
gestational age-specific differences, z-scores for birth weight were
calculated by means of Fenton 2013 Growth Calculator for Preterm infants
(available from http://www.peditools.org/fenton2013).46 Classification of
smoking during pregnancy was based on self-reporting by mothers.
Maternal educational status was classified as less than 12 years or 12 years
and more. Perinatal data from children born at term previously not
registered at our hospital and data on preterm-born children missing from
our preterm follow-up database was filled in at study visit. The remaining
missing data was classified as “unknown”.

Study visit
All examinations were carried out by specifically trained staff at either
Innsbruck University Hospital or provisional medical posts installed at
participating kindergartens between 8 and 10 a.m. After a routine clinical
examination, body weight was measured using calibrated medical scales and
height was determined by a Harpenden stadiometer. Body mass index (BMI)
was calculated as weight in kilograms divided by height in meters squared.
To account for sex- and age-specific differences, z-scores for BMI were
calculated by means of a reference data set.47 Blood pressure was measured
three times on the right upper extremity after a five-minute resting period in
a seated position using the appropriate cuff size and an automated
oscillometric device. All children and their parents were asked to fill out a
questionnaire on family history of cardiovascular disease and childhood
nutrition habits. A positive family history of cardiovascular disease was
defined as a diagnosis of coronary heart disease, angina, heart attack,
congenital heart disease or stroke in first-degree male relative of child and/or
parent under the age of 55 or first-degree female relative of child and/or
parent under the age of 65. Information on childhood nutrition habits was
collected by means of an established standardized food frequency
questionnaire (“What do you eat?”, kindly provided by the Robert Koch

Institute, Berlin, Germany).48 Nutrition habits were subsequently categorized
as “unfavorable”, “neutral” or “favorable” for further analyses.
Blood sampling was performed after a minimum overnight fasting period

of eight hours. Routine laboratory analyses were conducted at the Central
Institute for Medical and Chemical Laboratory Diagnosis at Innsbruck
University Hospital. The estimated glomerular filtration rate (eGFR) was
calculated by means of the revised Schwartz Formula.49 Concentrations of
HIF-1α in plasma were determined by using a solid phase sandwich enzyme-
linked immunosorbent assay (ELISA) according to manufacturer’s instructions
(HIF-1α ELISA Kit; EHIF1a, Invitrogen by Thermo Fisher Scientific, Vienna,
Austria; inter-assay imprecision coefficient of variability (CV) < 10%). Biologi-
cally active intact FGF-23 (iFGF-23) was quantified by an ELISA that detects
both N- and C-terminal fragments (Kainos Laboratories, Tokyo, Japan; inter-
assay imprecision CV < 10%). The cleavage product C-terminal FGF-23 (cFGF-
23) was measured using an ELISA capable of detecting epitopes within the
carboxyl-terminus of FGF-23 with polyclonal antibodies (Biomedica, Biome-
dica Medizinprodukte, Vienna, Austria; inter-assay imprecision CV < 10%).
Soluble α-Klotho concentrations in plasma were determined by means of an
ELISA according to the manufacturer’s instructions (human soluble α-Klotho
assay kit JP27998, Immuno-Biological Laboratories Co., Gunma, Japan; inter-
assay imprecision CV < 11.4%). Secretoneurin concentrations were deter-
mined by using a sandwich ELISA according to the manufacturer’s
instructions (CardiNor AS, Oslo, Norway; inter-assay imprecision CV < 10%).
For all blood parameters, values below the respective lower limits of detection
(LOD) were censored as LOD/√(2). Both term- and preterm-born participants
underwent standard pediatric transthoracic echocardiography. As previously
described,17 aortic elastic properties were calculated from transthoracic
M-mode echocardiographic images using a standardized ultrasound protocol
and software tool for computerized wall contour analysis.50,51

Statistical methods
Statistical analyses were performed with IBM SPSS Statistics software, version
27.0.1 (IBM Corp., Armonk, NY). Categorical variables were expressed as
absolute numbers (%) and analyzed by means of Fisher’s Exact or Chi-Square
Test. Shapiro-Wilk and Kolmogorov-Smirnov Tests were used to assess the
normal distribution of continuous data. Normally distributed variables were
reported as mean ± standard deviation (SD) and analyzed for differences
between groups using Student’s T-Test, whereas variables following a non-
normal distribution were described as median with 1st and 3rd quartiles and
analyzed using Mann-Whitney U Test. To ensure representativeness of study
samples, both term and preterm study cohorts were compared to reference
populations (term: SIDS database Tyrol, birth dates 01/01/2007 – 07/31/2009;
preterm: Innsbruck routine preterm follow-up database, birth dates 01/01/
2007–07/31/2009) regarding sex distribution, gestational age, and birth
weight by means of Fisher’s Exact Test and Mann-Whitney U or Student’s T-
Test, depending on type and distribution of the variable analyzed. Bivariate
correlation and simple linear regression models were performed to
determine possible relationships between biomarkers and echocardiographic
measurements. Missing data for distinct variables are reported in the
respective Table captions. A two-sided alpha level < 0.05 was considered
significant for all statistical analyses.

RESULTS
Perinatal characteristics and characteristics at study visit
A total number of 47 participants, 26 former very preterm infants
(female 53.8%, mean gestational age 29.5 weeks) and 21 term-
born children (female 47.6%, mean gestational age 40.3 weeks),
were included. Except for gestational age at birth and birth
weight, no differences in perinatal data and characteristics at
study visit between preterm and term infants were found. Details
are provided in Table 1. When comparing study participants to
reference populations of preterm and term infants born within the
same timeframe, no differences were found regarding distribution
of sex, birth weight and gestational age for preterm infants and
sex and birth weight for term infants, respectively (Supplementary
Materials, Supplementary Tables 1 and 2).

Routine laboratory analyses at study visit
We did not detect significant differences in routine laboratory
parameters between preterm- and term-born children at study
visit. Both groups had normal kidney function, and showed no
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signs of inflammation, anemia/increased erythropoiesis or iron
deficiency. Plasma phosphate concentrations were lower in the
preterm group, but this finding did not reach statistical
significance (p= 0.056). Plasma total calcium and alkaline
phosphatase did not differ between groups. Details are shown
in Table 1.

HIF-1α and novel cardiovascular biomarkers at study visit
Plasma measurements were available in 47 of 47 subjects for HIF-1α,
iFGF-23, and cFGF-23, 35 of 47 subjects for α-Klotho (preterm: 25/26
(96.2%), term: 10/21 (47.6%)), and 36 of 47 subjects for secretoneurin

(preterm: 26/26 (100%), term: 10/21 (47.6%)). Sex-specific differences
were only seen for α-Klotho, in that term-born girls had higher α-
Klotho levels than boys (p= 0.033). No further sex-specific
differences were found (all remaining p > 0.05). When testing for
between-group differences, significant differences between former
preterm and term infants were detected for iFGF-23 (mean preterm:
43.2 pg/mL vs. term: 29.1 pg/mL; 95% confidence interval [CI] for the
difference between means: 5.0 to 23.3 pg/mL; p= 0.003) and
secretoneurin concentrations (median preterm: 93.8 pmol/L vs. term:
70.5 pmol/L; p= 0.046). Detailed information is provided in Fig. 1,
Table 2 and Supplementary Fig. 1.

Table 1. Perinatal characteristics and characteristics at study visit in former term and very preterm infants.

Characteristics Term (n= 21) Preterm (n= 26) p-value

Sex, male/female, N (%) 11 (52.4) / 10 (47.6) 12 (46.2)/14 (53.8) 0.772

Perinatal characteristics

Gestational age [weeks] 40.3 (38.7; 40.9) 29.5 (26; 31.4) < 0.001***

Birth weight [g] 3345 ± 446 1204 ± 413 < 0.001***

Birth weight z-score −0.29 ± 0.85 −0.03 ± 0.8 0.286

Maternal smoking during pregnancy, N (%) 2 (9.5) 4 (15.4) 0.079

Maternal educational status, unknown / < 12 years / ≥ 12 years,
N (%)

4 (19.0) / 9 (42.9) / 8 (38.1) 0 (0.0) / 15 (57.7) / 11 (42.3) 0.064

Characteristics at study visit

Age at examination [years] 5.6 (5.3; 6.0) 5.4 (5.3; 5.5) 0.131

Current BMI [kg/m²] 14.6 (14.1; 15.5) 14.3 (13.6; 15.0) 0.058

Current BMI z-score −0.56 (−1.01; 0.08) −0.70 (−1.39; −0.41) 0.080

Systolic blood pressure [mmHg] 97 ± 4 99 ± 5 0.275

Diastolic blood pressure [mmHg] 55 ± 7 55 ± 8 0.902

Positive family history of cardiovascular disease, N (%) 1 (4.8) 1 (3.8) 0.534

Favorable childhood nutrition, N (%) 15 (71.4) 12 (46.2) 0.137

Routine laboratory parameters at study visit

Plasma urea [mg/dL] 25.7 ± 5.7 24.1 ± 6.8 0.418

Plasma creatinine [mg/dL] 0.43 ± 0.05 0.42 ± 0.05 0.538

eGFR (Schwartz) [ml/min/1.73 m2] 113 (102; 122) 111 (104; 126) 0.831

C-reactive protein [mg/dL] 0.07 (0.04; 0.12) 0.04 (0.04; 0.16) 0.599

Interleukin-6 [ng/L] 3.0 (2.3; 5.4) 3.5 (2.6; 6.3) 0.591

Red blood cell count [T/L] 4.75 ± 0.29 4.82 ± 0.32 0.436

Hemoglobin [g/L] 130 ± 8 131 ± 9 0.697

Hematocrit [L/L] 0.367 ± 0.02 0.369 ± 0.02 0.758

MCV [fL] 77.9 (75.4; 79.9) 77.0 (75.7; 78.7) 0.714

MCH [pg] 27.6 (26.9; 28.4) 27.6 (26.8; 28.1) 0.965

MCHC [g/L] 356 (347; 362) 356 (351; 362) 0.556

RDW [%] 13.0 (12.8; 13.3) 13.3 (12.7; 13.5) 0.356

Serum iron [μmol/L] 14.8 ± 6.4 16.8 ± 5.5 0.267

Serum transferrin [mg/dL] 272 ± 33 268 ± 31 0.727

Serum transferrin saturation [%] 22 ± 10 25 ± 9 0.291

Serum ferritin [μg/L] 43 (32; 55) 44 (30; 56) 0.877

Plasma total calcium [mmol/L] 2.46 ± 0.08 2.46 ± 0.08 0.943

Plasma phosphate, inorganic [mmol/L] 1.46 ± 0.17 1.37 ± 0.16 0.056

Alkaline phosphatase [U/L] 222 ± 50 229 ± 47 0.647

Categorical data are presented as counts (N) and percentages; continuous data are presented as median (quartile 1; quartile 3) for non-normally distributed
variables or mean ± standard deviation (SD) for variables following a normal distribution. Data for C-reactive protein (limit of detection (LOD) 0.06 mg/dL) and
interleukin-6 (LOD 2.0 ng/L) analyses were censored as follows: LOD/√(2). ***p < 0.001.
BMI body mass index (calculated as weight in kilograms divided by height in meters squared), eGFR estimated glomerular filtration rate (calculated by the
revised Schwartz pediatric bedside formula (2009) as eGFR = 0.413 X (height/serum creatinine), where height is in cm, and creatinine is in mg/dL), MCV mean
corpuscular volume, MCH mean corpuscular hemoglobin, MCHC mean corpuscular hemoglobin concentration, RDW red cell distribution width.
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Echocardiographic measurements and aortic elastic
properties in very preterm- and term-born children
Echocardiographic measurements were available in 39 of 47
subjects (preterm: 25/26 (84.6%), term: 14/21 (66.7%)), while
measurements for aortic elastic properties were available in 42 of
47 subjects (preterm: 22/26 (84.6%), term: 20/21 (95.2%)).

Measurements did not differ between male and female subjects
(all p > 0.05). Significant differences between former preterm and
term infants were detected for the distensibility of the descending
aorta (ADD; mean preterm: 75.4 kPa−1 ×10−3 vs. term: 91.7 kPa−1

× 10−3; 95% CI for the difference between means: −28.7 to
−4.0 kPa−1 ×10−3; p= 0.011). All analyses are listed in Table 3.

Association of novel cardiovascular biomarkers and
echocardiographic measurements
Bivariate correlation analyses were performed to test whether
plasma iFGF-23 or secretoneurin concentrations correlated with
echocardiographic measurements. All analyses are provided in
Table 4. Of note, iFGF-23 concentrations inversely correlated with
ADD (Kendall-Tau-b τb=−0.240, p= 0.026, n= 42). A linear
regression analysis was then used to investigate whether iFGF-23
concentrations were significantly associated with ADD in the overall
study population. In a simple linear regression model, a significant
association between iFGF-23 concentrations and ADD was found
(R2= 0.099, F(1,40)= 4.41, ß=−0.363, p= 0.042). Multiple linear
regression was further used to test if iFGF-23 and maturity at birth
as a dichotomous variable were significantly associated with ADD.
The overall regression model was statistically significant (R2= 0.183,
F(2,39)= 4.368, p= 0.019), however neither iFGF-23 (p= 0.225) nor
maturity at birth (p= 0.053) reached statistical significance.

DISCUSSION
Owing to advancements in perinatal care,52,53 the majority of
preterm infants nowadays reach adulthood.5,6 In view of the
abovementioned facts pertaining to preterm birth rates and
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Fig. 1 Novel cardiovascular biomarkers in term- and very preterm-born children at kindergarten age. Plasma concentrations of intact
fibroblast growth factor-23 (iFGF-23) a, c-terminal FGF-23 (cFGF-23) b, α-Klotho c, and secretoneurin d are shown. Each circle represents an
individual measurement. Measurements in term-born children are depicted as black circles, measurements in very preterm-born children as white
circles. Biomarker concentrations are plotted on the y-axis in pg/mL and pmol/L, respectively. Center lines represent medians, whiskers mark 1st
and 3rd quartiles. In comparison to term-born children, former very preterm infants had significantly higher iFGF-23 and secretoneurin plasma
concentrations. **p < 0.01, *p < 0.05; ns not significant.

Table 2. Concentrations of hypoxia-inducible factor-1α (HIF-1α) and novel cardiovascular biomarkers at study visit in former term and very preterm
infants.

Characteristic Term (n= 21) Preterm (n= 26) p-value

HIF-1α [pg/mL] < LOD; 3706.0 < LOD; 4360.5 0.179

iFGF-23 [pg/mL] 29.1 ± 10.5 43.2 ± 19.9 0.003**

cFGF-23 [pmol/L] 1.47 (1.07; 1.75) 1.24 (0.88; 1.94) 0.839

α-Klotho [pg/mL] 2242.7 ± 1031.2 1976.6 ± 558.9 0.330

Secretoneurin [pmol/L] 70.5 (62.3; 94.2) 93.8 (72.8; 110.3) 0.046*

Data are presented as total range or median (quartile 1; quartile 3) for non-normally distributed variables, and mean ± standard deviation (SD) for variables
following a normal distribution. Plasma measurements were available in 47 of 47 subjects for HIF-1α, iFGF-23, and cFGF-23, 35 of 47 subjects for α-Klotho
(term: 10/21 (47.6%), preterm: 25/26 (96.2%)), and 36 of 47 subjects for secretoneurin (term: 10/21 (47.6%), preterm: 26/26 (100%)). Data for HIF-1α analyses
were censored as follows: limit of detection (LOD)= 81.92 pg/mL; census: LOD/√(2). **p < 0.01; *p < 0.05.
HIF-1α hypoxia-inducible factor-1α, iFGF-23 intact fibroblast growth factor-23, cFGF-23 c-terminal fibroblast growth factor-23.

Table 3. Echocardiographic measurements and aortic elastic
properties at study visit in former term and very preterm infants.

Measurements Term
(n= 21)

Preterm
(n= 26)

p-
value

EF [%] 67 (61; 69) 66 (62; 68) 0.747

FS [%] 35 ± 4 35 ± 3 0.881

LVM (Devereux) [g] 47.4 ± 10.1 44.0 ± 8.3 0.265

AAD [kPa−1 × 10−3] 67.1 ± 19.2 66.9 ± 17.4 0.973

AAS 3.4 (2.7; 4.4) 3.3 (3.0; 4.2) 0.850

ADD [kPa−1 × 10−3] 91.7 ± 22.3 75.4 ± 17.3 0.011*

ADS 2.7 (2.0; 3.2) 2.9 (2.4; 3.7) 0.065

Data are presented as median (quartile 1; quartile 3) for non-normally
distributed variables, and mean ± standard deviation (SD) for variables
following a normal distribution. Echocardiographic measurements were
available in 39 of 47 subjects (term: 14/21 (66.7%), preterm: 25/26 (84.6%)),
while measurements for aortic elastic properties were available in 42 of
47 subjects (term: 20/21 (95.2%), preterm: 22/26 (84.6%)). **p < 0.01; *p < 0.05.
EF ejection fraction, FS fractional shortening, LVM left ventricular mass
(calculated according to Devereux), AAD aorta ascendens distensibility, AAS
aorta ascendens stiffness index, ADD aorta descendens distensibility, ADS
aorta descendens stiffness index.
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cardiovascular risk factors, increasing long-term morbidity in
former preterm-born persons is on the cusp of becoming a public
health challenge. Therefore, the elevated cardiovascular risk in this
vulnerable population could further reinforce the significance
cardiovascular disease is having on global morbidity and
mortality.54–56 To the best of our knowledge, our study poses
the first attempt to examine novel cardiovascular biomarkers and
their association with incipient end-organ impairment utilizing
non-invasive echocardiographic assessments in a population of
very preterm-born children. To ensure representativeness of our
sample, we compared our study cohorts to reference populations
of former very preterm and term infants born within the same
time frame. In the process of this analysis, no differences
regarding distribution of sex, birth weight and gestational age
were found (Supplementary Materials, Supplementary
Tables 1 and 2). When comparing preterm and term infants
within the study cohort, no differences in perinatal characteristics
(except for the obvious difference in gestational age at birth and
birth weight), characteristics at study visit, and routine laboratory
parameters were found (see Table 1). Of relevance, both study
groups had no comorbidities known to affect plasma concentra-
tions of the biomarkers under investigation (i.e. normal kidney
function, no signs of inflammation, anemia/increased erythropoi-
esis or iron deficiency).33,36,57

We found significantly higher concentrations of iFGF-23 and
secretoneurin in former very preterm infants in comparison to
term-born controls, while no differences in HIF-1α, cFGF-23 and α-
Klotho were detectable. The increased levels of iFGF-23 were
accompanied by lower plasma phosphate concentrations in the
preterm group, but this finding did not reach statistical
significance. Interestingly, the observed excess in iFGF-23 was
not accompanied by α-Klotho deficiency, which points to an intact
expression of Klotho and a potential compensatory effect.33 The
observed higher concentrations of secretoneurin in preterm-born
children in comparison to term-born controls reveal dissimilarities
with our previous findings of lower secretoneurin concentrations
in very preterm infants in umbilical cord blood and blood drawn at
48 h of life.58 But very preterm infants frequently experience
hypoxemic episodes in the clinical course, and elevated secreto-
neurin concentrations later in life may be indicative of repeated
insults throughout their stay in Neonatal Intensive Care.58,59

In echocardiographic assessments, we did not detect differ-
ences in estimates of ventricular systolic function or left
ventricular mass, but did find significantly reduced aorta
descendens distensibility (ADD) in former preterm infants. Further
analyses revealed a significant inverse correlation of ADD with
iFGF-23, which is in accordance with animal studies reporting
reduced aortic relaxation in mice with elevated FGF-23 levels.34

The significant effect of iFGF-23 on ADD in the simple linear
regression model was lost after controlling for preterm-born
status in the multivariable regression. This could be the result of

multicollinearity (of iFGF-23 and gestational age at birth) and/or
further interpreted using the concept of mediation (with iFGF-23
as a possible mediator for the effect of gestational age on ADD).
Additional larger studies (ideally with serial measurements) are
required to disentangle direct and indirect effects as well as
explore alternative mediators and confounders.
The limited sample size is the main limitation of our pilot study.

This was partly accounted for by comparison to a reference
population to ensure representativeness.
In essence, we offer first insights into the novel cardiovascular

biomarkers FGF-23, α-Klotho and secretoneurin in a population of
preterm-born children at kindergarten age. Our findings warrant
replication in larger, more diverse study populations encompass-
ing a broad range of gestational ages at birth and co-morbidities
in the neonatal period, which may affect both biomarker
concentrations and cardiovascular outcomes later in life.
In light of the increasing number of survivors of preterm birth

and associated cardiovascular health challenges, early identifica-
tion and initiation of tailored management in at-risk individuals is
essential. Both iFGF-23 and secretoneurin hold promise as
valuable cardiovascular biomarkers potentially allowing for risk
stratification and timely implementation of preventive measures
in those facing the most pronounced risk.

DATA AVAILABILITY
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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