Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Is choline deficiency an unrecognized factor in necrotizing enterocolitis of preterm infants?

Abstract

We undertook this review to determine if it is plausible that choline or phosphatidylcholine (PC) deficiency is a factor in necrotizing enterocolitis (NEC) after two clinical trials found a dramatic and unexpected reduction in NEC in an experimental group provided higher PC compared to a control group. Sources and amounts of choline/PC for preterm infants are compared to the choline status of preterm infants at birth and following conventional nutritional management. The roles of choline/PC in intestinal structure, mucus, mesenteric blood flow, and the cholinergic anti-inflammatory system are summarized. Low choline/PC status is linked to prematurity/immaturity, parenteral and enteral feeding, microbial dysbiosis and hypoxia/ischemia, factors long associated with the risk of developing NEC. We conclude that low choline status exists in preterm infants provided conventional parenteral and enteral nutritional management, and that it is plausible low choline/PC status adversely affects intestinal function to set up the vicious cycle of inflammation, loss of intestinal barrier function and worsening tissue hypoxia that occurs with NEC. In conclusion, this review supports the need for randomized clinical trials to test the hypothesis that additional choline or PC provided parenterally or enterally can reduce the incidence of NEC in preterm infants.

Impact statement

  • Low choline status in preterm infants who are managed by conventional nutrition is plausibly linked to the risk of developing necrotizing enterocolitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Alsaied, A., Islam, N. & Thalib, L. Global incidence of necrotizing enterocolitis: a systematic review and meta-analysis. BMC Pediatr. 20, 344 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stoll, B. J. et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 314, 1039–1051 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Caplan, M. S., MacKendrick, W. Necrotizing enterocolitis: a review of pathogenetic mechanisms and implications for prevention. Pediatr. Pathol. 13 https://doi.org/10.3109/15513819309048223 (1993).

  4. Wolf, M. F. et al. Trends and racial and geographic differences in infant mortality in the United States due to necrotizing enterocolitis, 1999 to 2020. JAMA Netw. Open 6, e231511 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Patel, R. M. et al. Causes and timing of death in extremely premature infants from 2000 through 2011. N. Engl. J. Med. 372, 331–340 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Christensen, R. D., Gordon, P. V. & Besner, G. E. Can we cut the incidence of necrotizing enterocolitis in half–today? Fetal Pediatr. Pathol. 29, 185–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Patel, A. L. & Kim, J. H. Human milk and necrotizing enterocolitis. Semin. Pediatr. Surg. 27, 34–38 (2018).

    Article  PubMed  Google Scholar 

  8. Fatemizadeh, R. et al. Incidence of spontaneous intestinal perforations exceeds necrotizing enterocolitis in extremely low birth weight infants fed an exclusive human milk-based diet: a single center experience. J. Pediatr. Surg. 56, 1051–1056 (2021).

    Article  PubMed  Google Scholar 

  9. Hintz, S. R. et al. Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis. Pediatrics 115, 696–703 (2005).

    Article  PubMed  Google Scholar 

  10. Duchon, J., Barbian, M. E. & Denning, P. W. Necrotizing Enterocolitis. Clin. Perinatol. 48, 229–250 (2021).

    Article  PubMed  Google Scholar 

  11. Hsueh, W. et al. Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatr. Dev. Pathol. 6, 6–23 (2003).

    Article  PubMed  Google Scholar 

  12. Gordon, P. V. & Swanson, J. R. Necrotizing enterocolitis is one disease with many origins and potential means of prevention. Pathophysiology 21, 13–19 (2014).

    Article  PubMed  Google Scholar 

  13. Assad, M. et al. Dilemmas in establishing preterm enteral feeding: where do we start and how fast do we go? J. Perinatol. 43, 1194–1199 (2023).

    Article  PubMed  Google Scholar 

  14. Bernhard, W. et al. Choline concentrations are lower in postnatal plasma of preterm infants than in cord plasma. Eur. J. Nutr. 54, 733–741 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Bernhard, W. et al. Choline supply of preterm infants: assessment of dietary intake and pathophysiological considerations. Eur. J. Nutr. 52, 1269–1278 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Carlson, S. E., Montalto, M. B., Ponder, D. L., Werkman, S. H. & Korones, S. B. Lower incidence of necrotizing enterocolitis in infants fed a preterm formula with egg phospholipids. Pediatr. Res. 44, 491 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Drenckpohl, D., McConnell, C., Gaffney, S., Niehaus, M. & Macwan, K. S. Randomized trial of very low birth weight infants receiving higher rates of infusion of intravenous fat emulsions during the first week of life. Pediatrics 122, 743–751 (2008).

    Article  PubMed  Google Scholar 

  18. Institute of Medicine Standing Committee on the Scientific Evaluation of Dietary Reference I, its Panel on Folate OBV, Choline. The National Academies Collection: Reports funded by National Institutes of Health. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B(6), Folate, Vitamin B(12), Pantothenic Acid, Biotin, and Choline. National Academies Press (US) Copyright © 1998, National Academy of Sciences (1998).

  19. Li, Z. & Vance, D. E. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 49, 1187–1194 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Cornell, R. B. & Ridgway, N. D. CTP:phosphocholine cytidylyltransferase: function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Prog. Lipid Res. 59, 147–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Zeisel, S. H., Klatt, K. C. & Caudill, M. A. Choline. Adv. Nutr. 9, 58–60 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Day, C. R. & Kempson, S. A. Betaine chemistry, roles, and potential use in liver disease. Biochim. Biophys. Acta 1860, 1098–1106 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Goss, K. C. W. et al. Postnatal adaptations of phosphatidylcholine metabolism in extremely preterm infants: implications for choline and PUFA metabolism. Am. J. Clin. Nutr. 112, 1438–1447 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Holmes-McNary, M. Q., Cheng, W. L., Mar, M. H., Fussell, S., Zeisel, S. H. Choline and choline esters in human milk and rat milk and in infant formulas. Am. J. Clin. Nutr. 64 https://doi.org/10.1093/ajcn/64.4.572 (1996).

  25. Food, IoM, Intakes NBSCotSEoDR. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. National Academy Press Washington, DC (2000).

  26. Bernhard, W. et al. Combined choline and DHA supplementation: a randomized controlled trial. Eur. J. Nutr. 59, 729–739 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Agostoni, C. et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 50, 85–91 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Nilsson, Ã…., Duan, R. D. & Ohlsson, L. Digestion and absorption of milk phospholipids in newborns and adults. Front. Nutr. 8, 724006 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sentongo, T. A. et al. Whole-blood-free choline and choline metabolites in infants who require chronic parenteral nutrition therapy. J. Pediatr. Gastroenterol. Nutr. 50, 194–199 (2010).

    Article  PubMed  Google Scholar 

  30. Nilsson, A. K. et al. Serum choline in extremely preterm infants declines with increasing parenteral nutrition. Eur. J. Nutr. 60, 1081–1089 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Maas, C. et al. Choline and polyunsaturated fatty acids in preterm infants’ maternal milk. Eur. J. Nutr. 56, 1733–1742 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Zeisel, S. H., Char, D. & Sheard, N. F. Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. J. Nutr. 116, 50–58 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Shunova, A., et al. Choline content of term and preterm infant formulae compared to expressed breast milk—how do we justify the discrepancies? Nutrients 12 https://doi.org/10.3390/nu12123815 (2020).

  34. Premkumar, M. H., Pammi, M., Suresh, G. Human milk-derived fortifier versus bovine milk-derived fortifier for prevention of mortality and morbidity in preterm neonates. Cochrane Database Syst, Rev. https://doi.org/10.1002/14651858.CD013145.pub2 (2019).

  35. Ananthan, A., Balasubramanian, H., Rao, S. & Patole, S. Human milk-derived fortifiers compared with bovine milk-derived fortifiers in preterm infants: a systematic review and meta-analysis. Adv. Nutr. 11, 1325–1333 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Koo, W. & Tice, H. Human milk fortifiers do not meet the current recommendation for nutrients in very low birth weight infants. J. Parenter. Enter. Nutr. 42, 813–820 (2018).

    Article  CAS  Google Scholar 

  37. Bernhard, W., Poets, C. F. & Franz, A. R. Choline and choline-related nutrients in regular and preterm infant growth. Eur. J. Nutr. 58, 931–945 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Ozarda Ilcol, Y., Uncu, G. & Ulus, I. H. Free and phospholipid-bound choline concentrations in serum during pregnancy, after delivery and in newborns. Arch. Physiol. Biochem. 110, 393–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Crawford, S. A., et al. Micronutrient gaps and supplement use in a diverse cohort of pregnant women. Nutrients. 15 https://doi.org/10.3390/nu15143228 (2023).

  40. Carmichael, S. L., Yang, W. & Shaw, G. M. Maternal dietary nutrient intake and risk of preterm delivery. Am. J. Perinatol. 30, 579–588 (2013).

    PubMed  Google Scholar 

  41. Zhu, J. et al. Dietary choline intake during pregnancy and PEMT rs7946 polymorphism on risk of preterm birth: a case-control study. Ann. Nutr. Metab. 76, 431–440 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Wilson, R. B. Nutrient deficiencies in animals: Choline. Handbook Series in Nutrition and Food, Section E: Nutritional Disorders, Vol II. (1978).

  43. Nilsson, Å. & Duan, R. D. Pancreatic and mucosal enzymes in choline phospholipid digestion. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G425–g445 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. da Silva, R. P. et al. Choline deficiency impairs intestinal lipid metabolism in the lactating rat. J. Nutr. Biochem. 26, 1077–1083 (2015).

    Article  PubMed  Google Scholar 

  45. Bressenot, A. et al. Methyl donor deficiency affects small-intestinal differentiation and barrier function in rats. Br. J. Nutr. 109, 667–677 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Woo, H. D. et al. Dietary patterns in children with attention deficit/hyperactivity disorder (ADHD). Nutrients 6, 1539–1553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu, P. et al. Dietary choline deficiency and excess induced intestinal inflammation and alteration of intestinal tight junction protein transcription potentially by modulating NF-κB, STAT and p38 MAPK signaling molecules in juvenile Jian carp. Fish. Shellfish Immunol. 58, 462–473 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Matthews, D. R. et al. Methionine- and choline-deficient diet-induced nonalcoholic steatohepatitis is associated with increased intestinal inflammation. Am. J. Pathol. 191, 1743–1753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yan, J. K. et al. Supplementary choline attenuates olive oil lipid emulsion-induced enterocyte apoptosis through suppression of CELF1/AIF pathway. J. Cell Mol. Med. 22, 1562–1573 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Stremmel, W., Hanemann, A., Ehehalt, R., Karner, M. & Braun, A. Phosphatidylcholine (lecithin) and the mucus layer: evidence of therapeutic efficacy in ulcerative colitis? Dig. Dis. 28, 490–496 (2010).

    Article  PubMed  Google Scholar 

  51. Feldens, L., Souza, J. C. K. & Fraga, J. C. There is an association between disease location and gestational age at birth in newborns submitted to surgery due to necrotizing enterocolitis. J. Pediatr. 94, 320–324 (2018).

    Article  Google Scholar 

  52. Böckmann, K. A. et al. Choline supplementation for preterm infants: metabolism of four Deuterium-labeled choline compounds. Eur. J. Nutr. 62, 1195–1205 (2023).

    Article  PubMed  Google Scholar 

  53. Farrell, P. M., Epstein, M. F., Fleischman, A. R., Oakes, G. K., Chez, R. A. Lung lecithin biosynthesis in the nonhuman primate fetus: determination of the primary pathway in vivo. Biol. Neonate. 29 https://doi.org/10.1159/000240869 (1976).

  54. Rusnak, T. et al. A physiologically relevant dose of 50% egg-phosphatidylcholine is sufficient in improving gut permeability while attenuating immune cell dysfunction induced by a high-fat diet in male Wistar rats. J. Nutr. 153, 3131–3143 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Andrew, M. J. et al. Optimising nutrition to improve growth and reduce neurodisabilities in neonates at risk of neurological impairment, and children with suspected or confirmed cerebral palsy. BMC Pediatr. 15, 22 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Andrew, M. J. et al. Neurodevelopmental outcome of nutritional intervention in newborn infants at risk of neurodevelopmental impairment: the Dolphin neonatal double-blind randomized controlled trial. Dev. Med. Child Neurol. 60, 897–905 (2018).

    Article  PubMed  Google Scholar 

  57. Andrew, M. J. et al. Nutritional intervention and neurodevelopmental outcome in infants with suspected cerebral palsy: the Dolphin infant double-blind randomized controlled trial. Dev. Med. Child Neurol. 60, 906–913 (2018).

    Article  PubMed  Google Scholar 

  58. Cetinkaya, M. et al. CDP-choline reduces severity of intestinal injury in a neonatal rat model of necrotizing enterocolitis. J. Surg. Res 183, 119–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Thomaidou, A., et al. A prospective, case-control study of serum metabolomics in neonates with late-onset sepsis and necrotizing enterocolitis. J. Clin. Med. 11 https://doi.org/10.3390/jcm11185270 (2022).

  60. Innis, S. M., Davidson, A. G., Bay, B. N., Slack, P. J. & Hasman, D. Plasma choline depletion is associated with decreased peripheral blood leukocyte acetylcholine in children with cystic fibrosis. Am. J. Clin. Nutr. 93, 564–568 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Bean, J. W., Sidky, M. M. Intestinal blood flow as influenced by vascular and motor reactions to acetylcholine and carbon dioxide. Am. J. Physiol. 1958;194 https://doi.org/10.1152/ajplegacy.1958.194.3.512 (1958).

  62. Sengupta, S., Piotrowski, E., Slomiany, A., Slomiany, B. L. Role of adrenergic and cholinergic mediators in gastric mucus phospholipid secretion. Biochem. Int. 1991;24 (1991).

  63. de Araujo, A. & de Lartigue, G. Non-canonical cholinergic anti-inflammatory pathway in IBD. Nat. Rev. Gastroenterol. Hepatol. 17, 651–652 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Simon, T. et al. The cholinergic anti-inflammatory pathway inhibits inflammation without lymphocyte relay. Front. Neurosci. 17, 1125492 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wu, C. C., Chen, S. J., Yen, M. H. Loss of acetylcholine-induced relaxation by M-3 receptor activation in mesenteric arteries of spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 30 https://doi.org/10.1097/00005344-199708000-00015 (1997).

  66. Watkins, D. J. & Besner, G. E. The role of the intestinal microcirculation in necrotizing enterocolitis. Semin. Pediatr. Surg. 22, 83–87 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Nowicki, P. T. Ischemia and necrotizing enterocolitis: where, when, and how. Semin Pediatr. Surg. 14, 152–158 (2005).

    Article  PubMed  Google Scholar 

  68. Beach, R. C., Menzies, I. S., Clayden, G. S., Scopes, J. W. Gastrointestinal permeability changes in the preterm neonate. Arch. Dis. Child. 57 https://doi.org/10.1136/adc.57.2.141 (1982).

  69. Edelstone, D.I., Holzman, I.R. Fetal and neonatal intestinal circulations. In: Shepherd, A.P., Granger, D.N. (eds.) Physiology of the Intestinal Circulation. 181–190 (Raven Press, New York, 1984).

  70. Caplan, M. S., Adler, L., Kelly, A. & Hsueh, W. Hypoxia increases stimulus-induced PAF production and release from human umbilical vein endothelial cells. Biochim. Biophys. Acta 1128, 205–210 (1992).

    Article  CAS  PubMed  Google Scholar 

  71. Qu, X. et al. Endotoxin induces PAF production in the rat ileum: quantitation of tissue PAF by an improved method. Prostaglandins 51, 249–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Caplan, M. S., Simon, D. & Jilling, T. The role of PAF, TLR, and the inflammatory response in neonatal necrotizing enterocolitis. Semin. Pediatr. Surg. 14, 145–151 (2005).

    Article  PubMed  Google Scholar 

  73. Bar-Natan, M. F., Wilson, M. A., Spain, D. A. & Garrison, R. N. Platelet-activating factor and sepsis-induced small intestinal microvascular hypoperfusion. J. Surg. Res. 58, 38–45 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Chatterton, D. E., Nguyen, D. N., Bering, S. B. & Sangild, P. T. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int. J. Biochem. Cell Biol. 45, 1730–1747 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Anto, L., Warykas, S. W., Torres-Gonzalez, M., Blesso, C. N. Milk polar lipids: underappreciated lipids with emerging health benefits. Nutrients 12 https://doi.org/10.3390/nu12041001 (2020).

  76. Tongviratskool, C. et al. How does human milk protect against necrotizing enterocolitis (NEC)? Targeted validation and time-course analysis of 35 gene responses as NEC-signature in fetal intestinal epithelial cells. Omics 26, 440–450 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Ewer, A. K. et al. The role of platelet-activating factor in a neonatal piglet model of necrotising enterocolitis. Gut 53, 207–213 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Palleri, E. et al. Clinical usefulness of splanchnic oxygenation in predicting necrotizing enterocolitis in extremely preterm infants: a cohort study. BMC Pediatr. 23, 336 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Özkan, H., Çetinkaya, M., Dorum, B. A. & Köksal, N. Mesenteric tissue oxygenation status on the development of necrotizing enterocolitis. Turk. J. Pediatr. 63, 811–817 (2021).

    Article  PubMed  Google Scholar 

  80. Murdoch, E. M., Sinha, A. K., Shanmugalingam, S. T., Smith, G. C. & Kempley, S. T. Doppler flow velocimetry in the superior mesenteric artery on the first day of life in preterm infants and the risk of neonatal necrotizing enterocolitis. Pediatrics 118, 1999–2003 (2006).

    Article  PubMed  Google Scholar 

  81. Yue, G. et al. Prediction of necrotizing enterocolitis in very low birth weight infants by superior mesenteric artery ultrasound of postnatal day 1: a nested prospective study. Front. Pediatr. 10, 1102238 (2022).

    Article  PubMed  Google Scholar 

  82. Kovács, T. et al. Dietary phosphatidylcholine supplementation attenuates inflammatory mucosal damage in a rat model of experimental colitis. Shock 38, 177–185 (2012).

    Article  PubMed  Google Scholar 

  83. Ghyczy, M. et al. Oral phosphatidylcholine pretreatment decreases ischemia-reperfusion-induced methane generation and the inflammatory response in the small intestine. Shock 30, 596–602 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Tokés, T. et al. Protective effects of a phosphatidylcholine-enriched diet in lipopolysaccharide-induced experimental neuroinflammation in the rat. Shock 36, 458–465 (2011).

    Article  PubMed  Google Scholar 

  85. Tőkés, T. et al. Protective effects of L-alpha-glycerylphosphorylcholine on ischaemia-reperfusion-induced inflammatory reactions. Eur. J. Nutr. 54, 109–118 (2015).

    Article  PubMed  Google Scholar 

  86. Gatt, M. et al. Changes in superior mesenteric artery blood flow after oral, enteral, and parenteral feeding in humans. Crit. Care Med. 37, 171–176 (2009).

    Article  PubMed  Google Scholar 

  87. Maas, C. et al. A historic cohort study on accelerated advancement of enteral feeding volumes in very premature infants. Neonatology 103, 67–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Oddie, S. J., Young, L. & McGuire, W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst. Rev. 8, Cd001241 (2021).

    PubMed  Google Scholar 

  89. Bjornvad, C. R. et al. Enteral feeding induces diet-dependent mucosal dysfunction, bacterial proliferation, and necrotizing enterocolitis in preterm pigs on parenteral nutrition. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G1092–G1103 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Teratani, T. et al. The liver-brain-gut neural arc maintains the T(reg) cell niche in the gut. Nature 585, 591–596 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Till, H., Castellani, C., Moissl-Eichinger, C., Gorkiewicz, G. & Singer, G. Disruptions of the intestinal microbiome in necrotizing enterocolitis, short bowel syndrome, and Hirschsprung’s associated enterocolitis. Front. Microbiol. 6, 1154 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kim, C. S. & Claud, E. C. Necrotizing enterocolitis pathophysiology: how microbiome data alter our understanding. Clin. Perinatol. 46, 29–38 (2019).

    Article  PubMed  Google Scholar 

  93. Pammi, M. et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome 5, 31 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gudan A., Kozłowska-Petriczko K., Wunsch E., Bodnarczuk T., Stachowska E. Small intestinal bacterial overgrowth and non-alcoholic fatty liver disease: what do we know in 2023? Nutrients 15 https://doi.org/10.3390/nu15061323 (2023).

  95. Romano, K. A. et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption. Cell Host Microbe 22, 279–290.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Qiu, Y. et al. Supplemental choline modulates growth performance and gut inflammation by altering the gut microbiota and lipid metabolism in weaned piglets. J. Nutr. 151, 20–29 (2021).

    Article  PubMed  Google Scholar 

  97. Zhan, X. et al. Choline supplementation regulates gut microbiome diversity, gut epithelial activity, and the cytokine gene expression in gilts. Front. Nutr. 10, 1101519 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhang, M. et al. Choline supplementation during pregnancy protects against gestational lipopolysaccharide-induced inflammatory responses. Reprod. Sci. 25, 74–85 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Stremmel, W. et al. Mucosal protection by phosphatidylcholine. Dig. Dis. 30, 85–91 (2012).

    Article  PubMed  Google Scholar 

  100. AlFaleh, K., Anabrees, J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. Cd005496. https://doi.org/10.1002/14651858.CD005496.pub4 (2014).

  101. Al Mutairi, F. Hyperhomocysteinemia: clinical Insights. J. Cent. Nerv. Syst. Dis. 12, 1179573520962230 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Danese, S. et al. Homocysteine triggers mucosal microvascular activation in inflammatory bowel disease. Am. J. Gastroenterol. 100, 886–895 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Munjal, C. et al. Mesenteric vascular remodeling in hyperhomocysteinemia. Mol. Cell Biochem. 348, 99–108 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Smith, R. M., Rai, S., Kruzliak, P., Hayes, A. & Zulli, A. Putative Nox2 inhibitors worsen homocysteine-induced impaired acetylcholine-mediated relaxation. Nutr. Metab. Cardiovasc. Dis. 29, 856–864 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Alexander, T., Rajnish, R., Balakrishnan, R. & Shallam, J. F. Hyperhomocysteinemia presenting as superior mesenteric artery thrombosis. Indian J. Gastroenterol. 24, 78–79 (2005).

    PubMed  Google Scholar 

  106. Bala, R., Verma, R., Budhwar, S., Prakash, N. & Sachan, S. Fetal hyperhomocysteinemia is associated with placental inflammation and early breakdown of maternal-fetal tolerance in pre-term birth. Am. J. Reprod. Immunol. 88, e13589 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Papa, A. et al. Hyperhomocysteinemia and prevalence of polymorphisms of homocysteine metabolism-related enzymes in patients with inflammatory bowel disease. Am. J. Gastroenterol. 96, 2677–2682 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Whittle, B. J. R., Vane, J. R. Prostanoids as regulators of gastrointestinal function. Physiology of the Gastrointestinal Tract, 2nd Ed. (Raven Press, New York, 1987).

  109. Wilson, D. E. Role of prostaglandins in gastroduodenal mucosal protection. J. Clin. Gastroenterol. 13 https://doi.org/10.1097/00004836-199112001-00011 (1991).

  110. Hart, M. H., Grandjean, C. J., Park, J. H. Y., Erdman, S. H., Vanderhoof, J. A. Essential fatty acid deficiency and postresection mucosal adaptation in the rat. Gastroenterology 94 https://doi.org/10.1016/0016-5085(88)90239-9 (1988).

  111. Allen, A., Flemstrom, G., Garner, A., Kivilasskso, E. Gastroduodenal mucosal protection. Physiol. Rev. 73 https://doi.org/10.1152/physrev.1993.73.4.823 (1993).

  112. Scheiman, J. M., Kraus, E. R., Bonnville, L. A., Weinhold, P. A., Boland, C. R. Synthesis and prostaglandin E2-induced secretion of surfactant phospholipid by isolated gastric mucous cells. Gastroenterology 100 https://doi.org/10.1016/0016-5085(91)70009-M (1991).

  113. Kao, Y. C. J., Lichtenberger, L. M. A method to preserve extracellular surfactant-like phospholipids on the luminal surface of the rodent gastric mucosa. J. Histochem. Cytochem. 38 https://doi.org/10.1177/38.3.1689341 (1990).

  114. Caplan, M. S. et al. Effect of polyunsaturated fatty acid (PUFA) supplementation on intestinal inflammation and necrotizing enterocolitis (NEC) in a neonatal rat model. Pediatr. Res. 49, 647–652 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Caplan, M. S. & Jilling, T. The role of polyunsaturated fatty acid supplementation in intestinal inflammation and neonatal necrotizing enterocolitis. Lipids 36, 1053–1057 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Alshaikh, B. N. et al. Enteral long-chain polyunsaturated fatty acids and necrotizing enterocolitis: a systematic review and meta-analysis. Am. J. Clin. Nutr. 117, 918–929 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.C.D. and S.E.C. developed the review question and conducted the literature search. D.C.D. and S.E.C. wrote the first draft with input from DNC. All three authors participated in writing and approve the final edited version of the review.

Corresponding author

Correspondence to Susan E. Carlson.

Ethics declarations

Competing interests

D.C.D., D.N.C. and S.E.C. declare no conflicts of interest related to choline. S.E.C. has received NIH funding for research on docosahexaenoic acid (DHA) and cognitive development of preterm and term infants, and, more recently, for a randomized clinical trial to test the effect of DHA dose on preterm birth.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Given the large body of literature on NEC and intestinal function, it is impossible to cite all excellent published work. We apologize if we have unintentionally omitted references to original work that should have been cited in preference to other citations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drenckpohl, D.C., Christifano, D.N. & Carlson, S.E. Is choline deficiency an unrecognized factor in necrotizing enterocolitis of preterm infants?. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03212-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03212-5

Search

Quick links