Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Bronchopulmonary dysplasia: analysis and validation of ferroptosis-related diagnostic biomarkers and immune cell infiltration features

Abstract

Background

Early and precise diagnosis of bronchopulmonary dysplasia (BPD) is essential to improve the prognosis of preterm infants with BPD. Studying ferroptosis-related genes for diagnostic markers of BPD was the objective of this study.

Methods

Using the GEO database and the FerrDb database, we obtained the GSE32472 dataset and screened the ferroptosis-related differentially expressed mRNAs (FRDE-mRNAs). By using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), possible biological functions and pathways were identified for FRDE-mRNAs. Three machine learning algorithms (LASSO, SVM-RFE, Random Forest) were used to recognize hub genes, as well as CIBERSORT for exploring the immune landscape of BPD and controls. Functional predictions for hub genes were made using single-gene gene set enrichment analysis (GSEA).

Results

Twenty three FRDE-mRNAs were obtained and were mainly involved in autophagy, fatty acid metabolism and ferroptosis. The four hub genes (LPIN1, ACADSB, WIPI1 and SLC7A11) screened were utilized to construct a diagnostic nomogram. The receiver operating characteristic (ROC) curves and calibration curves demonstrateld that the nomogram exhibited good predictive performance. Eight types of immune cell markers differed significantly between BPD and controls.

Conclusion

We developed a diagnostic model for BPD, which could facilitate the early diagnosis and timely intervention of BPD.

Impact

  • The role of ferroptosis in bronchopulmonary dysplasia is rarely reported.

  • The ferroptosis-related genes (LPIN1, ACADSB, WIPI1 and SLC7A11) we identified could serve as early diagnostic biomarkers for BPD.

  • Immune cell infiltration features in BPD and signaling pathways associated with marker genes give new insight into the disease process and provide a basis for further research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of ferroptosis-related differentially expressed mRNAs.
Fig. 2: Enrichment analysis of ferroptosis-related DE-mRNAs.
Fig. 3: Identification of 4 biomarkers using machine learning algorithms.
Fig. 4: Establishment and validation of the model.
Fig. 5: Differential expression analysis of 4 biomarkers.
Fig. 6: Analysis of the immune landscape.

Similar content being viewed by others

Data availability

Publicly available dataset was analyzed in this study. The dataset can be found here: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32472.

References

  1. Lui, K. et al. Inter-center variability in neonatal outcomes of preterm infants: a longitudinal evaluation of 298 neonatal units in 11 countries. Semin Fetal Neonatal Med. 26, 101196 (2021).

    Article  PubMed  Google Scholar 

  2. Cheong, J. L. Y. & Doyle, L. W. An update on pulmonary and neurodevelopmental outcomes of bronchopulmonary dysplasia. Semin Perinatol. 42, 478–484 (2018).

    Article  PubMed  Google Scholar 

  3. Prayle, A. & Rosenow, T. Looking under the bonnet of bronchopulmonary dysplasia with MRI. Thorax. 75, 100 (2020).

    Article  PubMed  Google Scholar 

  4. Chen, X., Kang, R., Kroemer, G. & Tang, D. Organelle-specific regulation of ferroptosis. Cell Death Differ. 28, 2843–2856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mou, Y. et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 12, 34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yu, S. et al. Recent progress of ferroptosis in lung diseases. Front Cell Dev Biol. 9, 789517 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yoshida, M. et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 10, 3145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li, X. et al. Ferroptosis inhibitor alleviates radiation-induced lung fibrosis (RILF) via down-regulation of TGF-Β1. J Inflamm. 16, 11 (2019).

    Article  CAS  Google Scholar 

  9. Chou, H. C. & Chen, C. M. Hyperoxia induces ferroptosis and impairs lung development in neonatal mice. Antioxidants. 11, 641 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pietrzyk, J. J. et al. Gene expression profiling in preterm infants: new aspects of bronchopulmonary dysplasia development. PloS One. 8, e78585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 12, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jobe, A. H. & Bancalari, E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 163, 1723–1729 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, X. et al. Lipocalin-2 silencing suppresses inflammation and oxidative stress of acute respiratory distress syndrome by ferroptosis via inhibition of MAPK/ERK pathway in neonatal mice. Bioengineered. 13, 508–520 (2022).

    Article  PubMed  Google Scholar 

  14. Yu, T., Yu, Y., Ma, Y. & Chen, G. Inhibition of CREB promotes glucocorticoids action on airway inflammation in pediatric asthma by promoting ferroptosis of eosinophils. Allergol Immunopathol. 51, 164–174 (2023).

    Article  Google Scholar 

  15. Dylag, A. M. et al.New insights into the natural history of bronchopulmonary dysplasia from proteomics and multiplexed immunohistochemistry. Am J Physiol Lung Cell Mol Physiol. 325, L419–L433 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moreira, A. et al. Development of a peripheral blood transcriptomic gene signature to predict bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 324, L76–L87 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Yeganeh, B. et al. Autophagy is required for lung development and morphogenesis. J Clin Investig. 129, 2904–2919 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li, X. et al. Autophagy reprograms alveolar progenitor Cell metabolism in response to lung injury. Stem Cell Rep. 14, 420–432 (2020).

    Article  CAS  Google Scholar 

  19. Yao, H. et al. Fatty acid oxidation protects against hyperoxia-induced endothelial cell apoptosis and lung injury in neonatal mice. Am J Respir Cell Mol Biol. 60, 667–677 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peterson, A. L., Carr, J. F., Ji, X., Dennery, P. A. & Yao, H. Hyperoxic exposure caused lung lipid compositional changes in neonatal mice. Metabolites. 10, 340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Das, U. N. Saturated fatty acids, MUFAs and PUFAs regulate ferroptosis. Cell Chem Biol. 26, 309–311 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem Biol. 26, 420–432.e429 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, J. et al. Autophagy-dependent ferroptosis: machinery and regulation.Cell Chem Biol. 27, 420–435 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tang, S. Q., Jiang, Q. Y., Yang, C. F., Zou, X. T. & Dong, X. Y. [Research and development of Lipin family]. Yi Chuan 32, 981–993 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, Y., Rui, B. B., Tang, L. Y. & Hu, C. M. Lipin family proteins-key regulators in lipid metabolism. Ann Nutr Metab. 66, 10–18 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Yue, L., Lu, X., Dennery, P. A. & Yao, H. Metabolic dysregulation in bronchopulmonary dysplasia: implications for identification of biomarkers and therapeutic approaches. Redox Biol. 48, 102104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang, P. et al. Transcriptomic analysis of short/branched-chain acyl-coenzyme A dehydrogenase knocked out BMECs Revealed Its Regulatory Effect On Lipid Metabolism. Front Vet Sci. 8, 744287 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lu, D. et al. ACADSB regulates ferroptosis and affects the migration, invasion, and proliferation of colorectal cancer cells. Cell Biol Int. 44, 2334–2343 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Koppula, P., Zhang, Y., Zhuang, L. & Gan, B. Amino acid transporter SLC7A11/XCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun. 38, 12 (2018).

    Article  Google Scholar 

  30. Wang, S. J. et al. Acetylation is crucial for P53-mediated ferroptosis and tumor suppression. Cell Rep. 17, 366–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dong, H. et al. Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1. Aging. 12, 12943–12959 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Almannai, M., Marafi, D. & El-Hattab, A. W.WIPI proteins: biological functions and related syndromes. Front Mol Neurosci. 15, 1011918 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar, V. H. S., Wang, H. & Nielsen, L. Adaptive immune responses are altered in adult mice following neonatal hyperoxia. Physiol Rep. 6, e13577 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yildiz, C.Mechanical ventilation induces neutrophil extracellular trap formation. Anesthesiol. 122, 864–875 (2015).

    Article  CAS  Google Scholar 

  35. Zhang, Z. et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HUR to regulate ferroptosis in hepatic stellate cells. Autophagy. 14, 2083–2103 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kalymbetova, T. V. et al. Resident alveolar macrophages are master regulators of arrested alveolarization in experimental bronchopulmonary dysplasia. J Pathol. 245, 153–159 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Changjiang Fang designed the research, analyzed the data, and wrote the manuscript; Haixia Tu, Rong Li and Dengqin Bi analyzed and interpreted the data; Guihua Shu designed the research, analyzed the data, and corrected the manuscript.

Corresponding author

Correspondence to Guihua Shu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, C., Tu, H., Li, R. et al. Bronchopulmonary dysplasia: analysis and validation of ferroptosis-related diagnostic biomarkers and immune cell infiltration features. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03249-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03249-6

Search

Quick links