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Mitochondria homeostasis: Biology and involvement in
hepatic steatosis to NASH
Yu-feng Li1, Zhi-fu Xie1, Qian Song1,2 and Jing-ya Li1,2,3

Mitochondrial biology and behavior are central to the physiology of liver. Multiple mitochondrial quality control mechanisms
remodel mitochondrial homeostasis under physiological and pathological conditions. Mitochondrial dysfunction and damage
induced by overnutrition lead to oxidative stress, inflammation, liver cell death, and collagen production, which advance hepatic
steatosis to nonalcoholic steatohepatitis (NASH). Accumulating evidence suggests that specific interventions that target
mitochondrial homeostasis, including energy metabolism, antioxidant effects, and mitochondrial quality control, have emerged as
promising strategies for NASH treatment. However, clinical translation of these findings is challenging due to the complex and
unclear mechanisms of mitochondrial homeostasis in the pathophysiology of NASH.
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INTRODUCTION
Due to caloric excess and sedentary lifestyles, obesity and
metabolic syndrome have become global epidemics. Nonalcoholic
fatty liver disease (NAFLD) is defined as ectopic lipid accumulation
in the liver in the absence of excessive alcohol intake or other
attributable causes. As a hepatic consequence of metabolic
syndrome and obesity, NAFLD is estimated to affect up to 25%
of the adult population worldwide, and it may progress to
nonalcoholic steatohepatitis (NASH) in approximately 20% of
patients, which may lead to cirrhosis or hepatocellular carcinoma
(HCC) [1]. Notably, China experienced an unexpected rapid
increase in NAFLD, with a prevalence of 29.2% and the largest
number of patients, over a short period from 2008 to 2018 [2].
Given the prevalence and burden, rising awareness and urgent
actions are required to control the NAFLD pandemic. Novel
therapeutic targets and a greater understanding of the patho-
physiology of NAFLD are also urgently needed for improved
treatment [3].
NAFLD is a spectrum of chronic liver diseases varying from

isolated excessive hepatic triglyceride accumulation and steatosis
(nonalcoholic fatty liver, NAFL), to a more serious process with
inflammation and hepatocyte damage (steatohepatitis) [1].
Patients with only NAFL carry a very low risk of adverse outcomes,
but the presence of NASH increases the risks progress to cirrhosis,
liver failure, and HCC [4]. NAFLD has very different rates of highly
variable progression between individuals and different clinical
manifestations, which reflects the complex and undefined
pathogenesis. The ‘two-hit’ theory suggests that in the setting of
steatosis alone (i.e., NAFL), a second ‘hit’ from other factors (e.g.,
oxidant stress) was required for the development of NASH, which
was the original hypothesis model of steatohepatitis pathogenesis

20 years ago [5]. However, recent studies indicated that identical
pathogenic drivers in all patients are unlikely. The ‘two-hit’
hypothesis is now considered outdated because it does not
explain the several molecular and metabolic changes that occur in
NAFLD [6]. The ‘multiple hit’ hypothesis considers simultaneous
multiple insults acting on genetically predisposed subjects to
induce NAFLD and provides a more accurate explanation of
NAFLD pathogenesis. These ‘hits’ include insulin resistance,
hormones secreted from adipose tissue, nutritional factors, gut
microbiota, genetic and epigenetic factors [7].
Mitochondria are central powerhouses that perform many key

functions in the cell, including oxidative phosphorylation, reactive
oxygen species (ROS) generation, nutrient metabolism, and
intracellular signaling cascades [8]. Mitochondrial homeostasis is
maintaining the healthy mitochondrial functions that are respon-
sible for intracellular signaling cascades. Mitochondrial dysfunc-
tion underlies the etiology of a broad spectrum of diseases,
including neurodegenerative diseases, NAFLD/NASH, and other
metabolic diseases [9]. The present review discusses the distinct
and diverse mechanisms of mitochondrial dysfunction in the
pathology and etiology of hepatic steatosis, such as the
adaptation and ‘remodeling’ of mitochondrial energetics, mor-
phology, mitochondrial DNA (mtDNA), oxidative stress, nuclear
transcriptional regulation, and autophagy-mediated quality con-
trol. We also review current therapeutic approaches in NASH with
an emphasis on mitochondria as potential therapeutic targets.

MITOCHONDRIAL BIOLOGY IN LIVER
Mitochondrial function plays an important role in normal
physiology and cellular function in the liver [8, 10]. This organelle
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arose approximately two billion years ago from an ancestral
bacterium and contains its own genome (mtDNA). Mammalian
mtDNA encodes 13 proteins that are involved in the respiratory
chains. All other proteins are encoded by nuclear genes and
imported into mitochondria primarily via the translocase of the
outer membrane (TOM) and translocase of the inner membrane
(TIM) complexes [11, 12].

Mitochondrial metabolism
Mitochondria play important roles in energy production. One of
the important functions of mitochondria in the liver is to produce
energy via oxidative phosphorylation [OXPHOS] [13, 14]. Energy
production, primarily in the form of ATP, is controlled by
mitochondria that link oxidative respiration with the metabolism
of nutrients, such as carbohydrates, fatty acids, and amino acids.
Two major steps, oxidation of NADH or FADH2 and phosphoryla-
tion of ADP to form ATP by ATP synthase, are required for
oxidative respiration to produce ATP in mitochondria. These two
reactions are coupled, and OXPHOS is the most efficient pathway
for energy production in the tricarboxylic acid cycle (TCA cycle).
Reducing equivalents (NADH or FADH2) are produced in
respiratory complex I or complex II, respectively, during the
catabolism of carbon substrates into acetyl-CoA from pyruvate
(glycolysis) or acyl-CoA (fatty acid β-oxidation), which are then
oxidized to NAD or FAD. The protons produced during oxidation
are pumped to the inter-mitochondrial membrane via respiratory
complexes I, III, and IV. Electrons from NADH or FADH2 are
transferred via a series of respiratory chain complexes to O2, which
ultimately generates H2O in complex IV. The proton gradient
across the inter-membrane and mitochondrial matrix is the driving
force of ATP production from ADP by ATP synthase (F1F0-ATPase)
[15]. ATP is transported to the cytoplasm via adenine nucleotide
translocators (ANTs) by exchange with ADP and is used for various
biological processes [16]. Notably, the mitochondrial membrane
potential (Δψm) is essential for ATP production, and it sustains
many other mitochondrial functions, including ion and metabolite
exchanges and the importation of mitochondrial precursor
proteins from the cytosol [17].

Mitochondria fully participate in metabolic flexibility. The liver
plays an important role in energy homeostasis by regulating
diverse carbon metabolism of nutrients in the mitochondria,
which are involved in hepatic anabolic pathways (de novo
lipogenesis, gluconeogenesis, and folate metabolism) and cata-
bolic pathways (TCA cycle, urea cycle, fatty acid β-oxidation,
ketogenesis, amino acid metabolism, and ROS production) [18].
The capacity to use distinct substrates under a wide variety of
stimuli enables the continuous work of mitochondria in the liver.
Under a fasting state, β-oxidation is initiated from fatty acids, and
glycolysis is initiated from glucose, which constitutes the most
prominent sources of acetyl-CoA for the TCA cycle [19]. The
abundant acetyl-CoA catalyzed from β-oxidation induces ketone
formation, which is exported from liver and used by peripheral
tissue [20]. During a feeding state, mitochondrial citrate is
transported to cytoplasm and leads to cytosolic acetyl-CoA
formation catalyzed by ATP citrate lyase (ACLY), which is used
for de novo lipogenesis (DNL) or epigenetic histone acetylation
[21, 22].
Acetyl-CoA is the beginning of TCA cycle. Fatty acid β-oxidation

(FAO) is an efficient metabolic pathway for acetyl-CoA production.
Briefly, free fatty acids (FFAs) are converted into acyl-CoA by acyl-
CoA synthetase (ACSLs) and metabolized to acetyl-CoA via
multiple catalytic enzymes in hepatic mitochondria [23].
Branched-chain amino acids (BCAAs) are also involved in acetyl-
CoA production. BCAAs are trans-aminated into branched-chain
keto acids (BCKAs) in muscle and adipose tissue, which are
shuttled to liver and catabolized to acetyl-CoA in mitochondria
[24]. Glutamine-α-ketoglutarate (α-KG) metabolism catalyzed by

glutamate dehydrogenase (GDH) and glutamine synthetase (GS)
in mitochondria, drives the TCA cycle and ATP production [25].
Mitochondrial metabolism also closely controls histone epige-

netic modification. Cytosolic acetyl-CoA derived from mitochon-
dria is transferred into nucleus and participates in histone
acetylation via histone acetyl transferases (HATs) in the progres-
sion of metabolic stress [22, 26]. One carbon produced from serine
links folate, and the methionine cycle contributes to methyl donor
production and DNA methylation. During the process of DNA
methylation, serine is catalyzed by serine hydroxymethyltransfer-
ase 2 (SHMT2) and 5,10-methylene tetrahydrofolate dehydrogen-
ase 2 (MTHFD2) in mitochondria to induce the production of folate
[27]. Glutamine metabolism in mitochondria is also closely
associated with serine metabolism and epigenetic modification
via one carbon and α-ketoglutarate (α-KG) [28].

Mitochondrion is an important source of ROS. Mitochondria are
the major sites of ROS formation in the cell and play key roles in
maintaining normal energy cell redox homeostasis in multiple life
processes [29]. ROS is generated in a physiological range.
However, the partial reduction of O2 or mitochondrial proton
leakage leads to the production of the primary ROS named
superoxide anions (O2

•−). H2O2 is generated via the spontaneous
or superoxide dismutase (SOD)-catalyzed dismutation of O2

•− in
mitochondria. O2

•− and H2O2 are converted into hydroxyl radicals
(OH•) via the Fe2+-mediated Fenton reaction, and it is a highly
reactive oxygen species [30]. OH• initiates the formation of lipid
(L•) and lipid peroxyl (LOO•) radicals. H2O2 is then converted into
H2O via mitochondrial peroxiredoxins, catalase (CAT), and
glutathione peroxidases (GPX) [31].
Under physiological conditions, complex I is the main site

of mitochondrial ROS production, and complex III is also a site for
O2

•− production. A recent study indicated that inducing reverse
electron transport (RET) in vivo increased mitochondrial ROS and
improved mitochondrial function [32]. Another major source of
intracellular ROS production is catalyzed by NADPH oxidase (NOX)
family proteins, which transfer electrons from NADPH to molecular
oxygen [33]. The freely diffusible nitric oxide (NO) formed
elsewhere also crosses mitochondrial membranes to react with
superoxide and form peroxynitrite, which causes the formation of
3-nitrotyrosine residues on several proteins, including respiratory
complex I and V subunits [34]. Normal levels of ROS under
physiological conditions act as signaling molecules that play
critical roles in most intra- and extracellular processes in the liver.
However, intracellular ROS overload induces cellular dysfunction
and pathological processes.

Mitochondrial biogenesis
Mitochondrial biogenesis is highly plastic in response to cellular
energy demands that are triggered by developmental signals and
environmental stimuli. Due to their bacterial origin, mitochondria
have their own genome and auto-replicate [35]. Human mito-
chondrial proteins are encoded by nuclear and mitochondrial
genomes, which means that mitochondrial biogenesis requires
both the regulations of mitochondrial and nuclear genome. We
provide a brief overview of mitochondrial biogenesis regulations,
including mtDNA replication, transcription and translation, nuclear
factor-mediated transcription regulation, and nuclear posttran-
scriptional regulation, such as microRNA interference, alternative
splicing, and RNA stability (Fig. 1).

mtDNA replication, transcription, and translation. Mammalian
mtDNA is a double-stranded circular molecule that contains 37
genes encoding 13 polypeptides of the OXPHOS system, 22 other
tRNAs (transfer RNAs), and two rRNAs (ribosomal RNAs), which are
necessary for the translation of respiratory subunit mRNAs within
the mitochondrial matrix [11, 36]. Therefore, the expression of
mtDNA is vital for the assembly and function of oxidative
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phosphorylation complexes. Defects in the mechanisms regulat-
ing mtDNA gene replication, transcription, and translation are
associated with deficiencies in the assembly of these complexes
and result in mitochondria-related diseases.

mtDNA replication regulations: Mammalian mitochondria con-
tain multiple copies of the mtDNA genome, and a dedicated DNA
replication machinery is required for its maintenance. The specific
mechanism of mtDNA replication is not clear, but a strand
displacement model was presented in 1972 [37]. According to this
model, mtDNA replication is initiated at the H-strand origin of
replication (OH) and continues to produce a new H-strand.
Mitochondrial ssDNA-binding protein (mtSSB) binds and protects
the exposed parental H-strand from mitochondrial RNA polymer-
ase (POLRMT), which initiates random RNA synthesis [38]. When
the replisome passes the L-strand origin of replication (OL), the
H-strand folds into a stem-loop structure and blocks mtSSB
binding. Therefore, a single-stranded loop region remains
accessible, which allows POLRMT to initiate primer synthesis
[39]. After approximately 25 nt, mitochondrial DNA polymerase γ
(POLγ) replaces POLRMT at the 3′-end of the primer and initiates

L-strand DNA synthesis. Synthesis of the two strands proceeds in a
continuous manner until two full, double-stranded DNA molecules
are formed. Another study questioned the strand-displacement
model and proposed a RITOLS model in which the processed
transcripts are successively hybridized to the paternal H-strand
and function as the replication fork advances [40]. Under certain
conditions, strand-coupled replication may function as a backup
replication mode in mammalian mitochondria [41].

mtDNA transcription regulations: Functional mammalian mito-
chondrial biogenesis requires the activation of mitochondrial
transcription. Mammalian mtDNA transcription originates in the
major noncoding region with the L-strand (LSP) and H-strand
(HSP) promoters [42]. In the transcription initiation complex,
mitochondrial transcription factor A (TFAM), bound to DNA,
recruits POLRMT to the promoter via its N-terminal extension, and
mitochondrial transcription factor B2 (TFB2M) modifies the
structure of POLRMT to induce opening of the promoter
[43, 44]. Mitochondrial transcription elongation factor (TEFM)
interacts with POLRMT via its C-terminal domain and strongly
promotes POLRMT processivity because it stimulates the

Fig. 1 The regulations of hepatic mitochondria homeostasis by nuclear and mitochondrial genomes.Mitochondria arose from an ancestral
bacterium and contain their own genome (mtDNA), which encodes 13 proteins involved in the respiratory chains. However, greater than 98%
of the total protein complement of the organelle is encoded by the nuclear genome and plays a crucial role in mitochondrial function. An
overview of the regulation of mitochondrial and nuclear genomes in mitochondrial gene expression and the signaling pathways is
summarized in this figure. MtDNA gene replication, transcription, and translation regulations are all involved in the assembly of OXPHOS
complexes, which play an important role in mitochondrial function. The nuclear genomes encoded mitochondrial function-related proteins
via transcription (chromatin remodeling, DNA methylation, transcription factors) and posttranscription (miRNA interference, alternative
splicing, RNA stability) regulation and control the mitochondrial function, such as OXPHOS, FAO, TCA cycle, mitochondrial biogenesis,
mitochondrial fission/fusion, and mitophagy (see text for additional information).
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formation of longer transcripts for the elongation stage around
the mtDNA downstream [45]. However, the mechanism of
transcription termination is not clear. A previous study suggested
that mitochondrial termination factor 1 (MTERF1) induced
transcription termination via base flipping and DNA unwinding
[46]. However, more recent evidence contradicts this hypothesis
[47], and further study is needed.

mtDNA translation regulations: The regulation of mammalian
mitochondrial translation is fully dependent on various nuclear-
encoded regulatory proteins. The mtDNA-encoded genes in
mammalian mitochondria are translated into proteins with the
assistance of specific translation factors (encoded by nuclear DNA,
nDNA), such as initiation factors 2 and 3 (mtIF2 and mtIF3),
elongation factors Tu, Ts, and G1 (mtEFTu, mtEFTs, and mtEFG1),
translational release factor-1 (mtRF1) and recycling factors
(mtRRF1 and mtRRF2) [48, 49]. Translation is initiated with a
methionine residue, but only a single tRNAMet is used for initiation
and elongation in mammalian mitochondria. Therefore, a for-
mylation of methionine (fMet) is formed to increase its affinity for
mtIF2, which directs the association of fMet-tRNAMet with the
mRNA. MtIF3 positions the AUG or AUA initiation codons of the
mRNA at the peptidyl (P) site and initiates translation [50]. MtEFTu
forms a complex with GTP and aminoacyl tRNA during elongation,
which directs the tRNA to the acceptor (A) site and pairs with the
mRNA at the codon–anticodon site. GTP hydrolysis and mtEFTu
release catalyzes peptide bond formation. MtEFG1 releases the
deacetylated tRNA from the P-site and translocates the peptidyl-
tRNAs from the A and P sites to the P and exit (E) sites, which
causes the mRNA to move along by one codon. The GTP:EFTu
complex is re-established by EFTs [51]. The termination of
mitochondrial translation is triggered by a stop codon at the A-
site, where mtRF1 catalyzes the hydrolysis of peptidyl tRNA and
releases the polypeptide [52]. Mitochondrial ribosomal recycling
factors, mtRRF, catalyze the release of mRNAs, deacetylated tRNAs
and ribosomal subunits [53].

Nuclear transcription regulations. Mammalian mitochondria con-
tain more than 1000 proteins, but their genome encodes only 13
proteins. Most mitochondrial genes are situated in the nucleus,
and the transcription complexes at the promoters of these genes
control their expression. The following section highlights some of
the major nuclear transcriptional complexes, such as nuclear
respiratory factors, nuclear hormone receptors, and transcriptional
coactivators, that regulate mitochondrial gene expression.

Nuclear respiratory factors: Nuclear respiratory factor 1 (NRF-1)
was initially identified as an important regulator of cytochrome
c gene expression via promoter sequence analysis. NRF-1 controls
the expression of a significant number of the five respiratory
complex proteins, and mitochondrial import proteins [54]. NRF-1
also modulates the gene expression of TFAM and transcription
factor B proteins (TFBs) and controls the transcriptional and
replicative activity of the mitochondrial genome. Another nuclear
respiratory factor, nuclear respiratory factor 1 (NRF-2), is involved
in the promoter region of cytochrome c oxidase complex subunit
IV and regulates the expression of proteins in the electron
transport chain [55]. Similar to NRF1, NRF2 also controls the
expression of TFAM and TFBs and integrates nuclear control with
mitochondrial DNA transcription and replication.

Nuclear hormone receptors: Peroxisome proliferator-activated
receptors (PPARs), which belong to the nuclear hormone receptor
superfamily, are activated by long-chain fatty acids and eicosa-
noids and control mitochondrial function and biogenesis [56].
PPARα regulates the constitutive transcription of genes encoding
fatty acid-metabolizing enzymes and mitochondrial β-oxidation
activity primarily in the liver [57]. Thyroid hormone receptors

(THRs) also directly promote mitochondrial biogenesis by driving
the transcription of nuclear-encoded genes and indirectly via the
thyroid hormone-mediated upregulation of NRF-1 [58]. A trun-
cated form of THRα is localized to the mitochondrion and directly
activates the transcription of mtDNA genes [59]. Another set of
nuclear hormone receptors, estrogen-related receptors (ERRα/γ/δ),
also promote mitochondrial function, including mitochondrial
biogenesis, oxidative phosphorylation, fatty acid oxidation, the
TCA cycle, and mitochondrial fusion/fission [60].

Other transcription factors: cAMP-activated transcription factor
(CREB) promotes the expression of several mitochondrial genes
involved in the TCA cycle and β-oxidation [61]. Many mitochon-
drial genes contain transcription factor Yin and Yang 1 (YY1)
binding sites within their promoter regions, and YY1 works in
conjunction with peroxisome proliferator-activated receptor-γ
coactivator-1α (PGC-1α) to regulate their expression [62].

Transcriptional coactivators: Transcriptional coactivators do not
bind to DNA but coactivate many different DNA-binding
transcription factors, such as the peroxisome proliferator-
activated receptor gamma coactivator 1 (PGC-1) family (PGC-1α,
PGC-1β, and PRC). These factors potentiate the activity of several
transcription factors involved in basic mitochondrial functions and
biogenesis. PGC-1α is the master regulator of mtDNA transcription
and mitochondrial biogenesis [63, 64]. PGC-1α induces mitochon-
drial biogenesis by activating different transcription factors,
including NRF-1, NRF-2, and ERR-α, which interact with TFAM
and promote its expression as the final effector of mtDNA
transcription and replication. Epigenetic modifications, such as
chromatin remodeling and DNA methylation, also play critical
roles in mitochondrial biogenesis and functions. For example,
recent studies demonstrated a critical role for histone-modifying
proteins in the epigenetic control of the expression of genes
implicated in mitochondrial fatty acid β-oxidation [65].

Nuclear posttranscription regulations. The nuclear genome also
controls mitochondrial biogenesis and functions in a posttran-
scriptional regulation manner, including microRNA interference,
RNA processing (RNA alternative splicing), and RNA stability.

Mitochondrial microRNAs interference: Microribonucleic acids
(miRNAs) are short, single-stranded, noncoding ribonucleic acid
(RNA) molecules (19–23 nucleotides) that prevent messenger RNA
(mRNA) translation or induce the degradation of mRNA transcripts
[66]. Although miRNAs are primarily located in the cytosol or
nucleus, a subset of ~150 different miRNAs, called mitochondrial
microRNA (mt-miRNA), localize to mitochondrial fractions. Mt-
microRNA is transcribed from nuclear or mitochondrial genome
and localize with the subunits of the RNA-induced silencing
complex (RISC), which is the protein complex through which
miRNAs normally act to prevent translation of their mRNA targets.
Mt-miRNAs play important roles in mitochondrial function
regulation. For example, miR-122, one of the most abundant
adult hepatic miRNAs, is required for mitochondrial translation of
respiratory proteins, improvement of mitochondrial respiratory
enzyme activity, and enhancement of mitochondrial proteostasis
in the liver [67]. An increasing number of mt-miRNAs modulate
mitochondrial homeostasis by directly targeting mitochondrial
function-related genes, such as miR-21, miR-29a, miR-33, and miR-
34a.

Alternative splicing regulations: Most eukaryotic pre-mRNAs
contain coding exonic sequences and noncoding intron
sequences. An alternative splicing mechanism is needed to
remove intron sequences and generate the correct concatenation
of exonic sequences. One single gene may produce multiple
mRNAs and structurally different proteins via alternative splicing
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and may affect more than 90% of human genes, including
nuclear-encoded mitochondrial function-related genes [68]. Our
later study revealed, for the first time, that DRAK2-SRSF6-mediated
RNA alternative splicing of mitochondrial function-related genes
may be one of the complementary mechanisms of mitochondrial
homeostasis in hepatic steatosis to NASH [69]. We found a
pathological alternative splicing form of Polg2, the coding gene of
mtDNA polymerase γ2, in NASH model mouse livers and
demonstrated that the pathological polg2 alternative splicing
form influenced mitochondrial biogenesis and function. Notably,
these results suggest an underlying mechanism by which the
alternative splicing modulation of nuclear-encoded mitochondrial
function-related genes plays an important role in mitochondrial
biogenesis or other functions.

RNA stability: Post-transcriptional control of RNA stability is
central to the regulation of gene expression and cellular function.
This post-transcriptional process in mitochondria is also vital for
proper expression of the 13 proteins encoded by the mitochon-
drial genome, mitochondrial tRNAs, and rRNAs. All factors involved
in mtRNA stability are encoded by the nucleus and must be
imported into the organelle. Defects in the machinery involved in
human mitochondrial RNA stability are known causes of
mitochondrial genome mutation and mitochondrial biogenesis,
but the details still unknown [70]. Several studies in skeletal
muscle investigated the stability of nuclear-encoded transcripts of
mitochondrial biogenesis-related factors, such as NRF2, TFAM, and
PGC-1α, that control mitochondrial biogenesis [71, 72]. However,
the influence of mRNA stability on the expression of genes
encoding mitochondrial proteins remains relatively unexplored
and needs further study.

Mitochondrial fission and fusion dynamics
Mitochondria are highly dynamic organelles that morphologically
continuously remodel and adapt to diverse cellular pathways,
such as metabolism, intracellular calcium signaling, apoptosis,
mitosis, and mitochondrial DNA replication [73]. Mitochondria
undergo a continuous cycle that involves fusing together to form
larger mitochondria and fission to break into smaller mitochon-
dria. During fission, a single mitochondrion divides into two
mitochondria via cleavage of the inner mitochondrial membrane
(IMM) and outer mitochondrial membrane (OMM). During fusion,
two mitochondria form one larger mitochondrion by the joining of
the OMM and IMM, which occur in equilibrium to ensure
mitochondrial network connectivity. Abnormal mitochondrial
dynamics are associated with morphological, genetic, and
biochemical mitochondrial recalibrations that trigger cellular
stress responses and mitochondrial diseases [74].

Mitochondrial fission. Constriction and scission of the IMM and
OMM are the key events of mitochondrial fission. Dynamin-related
protein 1 (Drp1, also known as DNM1L) is a GTPase that is
recruited to the OMM via the help of mitochondrial fission factor
(MFF) and mitochondrial dynamics proteins 49 and 51 (MID49/51),
and it is responsible for OMM constriction [75]. Once recruited,
Drp1 oligomerizes to wrap around the outer membrane. Upon
GTP hydrolysis, Drp1 dissociates MID49/51 to shrink the oligo-
meric ring and constricts the OMM to drive membrane scission.
Drp1-dependent fission at mitochondria-ER contacts, which are
the marker sites of mitochondrial division, is facilitated by actin
assembly, and the inhibition of actin polymerization reduces
fission frequency and Drp1 recruitment to mitochondria [76, 77].
Two actin nucleating proteins, formin protein inverted formin 2
(INF2) and actin-nucleating protein Spire (Spire1C), promote actin
assembly and mitochondrial constriction and induce fission [78].
Recent advances revealed that nonmuscle myosin II (NMII) was
located near mitochondrial constrictions and was involved, with
actin and INF2, in fission, which is consistent with findings that

NMII promotes Drp1 recruitment to mitochondria [79, 80].
Dynamin-2 (Dnm2), another dynamin GTPase, was found at fission
sites after Drp1 recruitment and influenced mitochondrial fission
[81]. Whereas outer membrane scission depends on Drp1, the
mechanism of inner membrane scission is less clear. Recent
studies showed that the IMM constriction and division at
mitochondria-ER contacts were dependent on INF2-mediated
actin polymerization and NMII, similar to outer membrane
constriction, but the subsequent mechanism of IMM scission is
not known [82].
Although the ER primarily coordinates mitochondrial fission,

several other factors determine the sites of fission. RAB7-GTP is
recruited to the OMM by mitochondrial fission protein 1 (Fis1) and
promotes mitochondria-lysosome contact formation, which are
also marker sites of fission, to restrict mitochondrial motility [83].
The trans-Golgi network (TGN) also modulates fission. After Drp1
recruitment, the small GTPase ADP-ribosylation factor 1 (Arf1) and
its effector, phosphatidylinositol 4-kinase-III-b [PI(4)KIIIb], are
recruited to fission sites on TGN vesicles and promote fission
[84]. Notably, TGN vesicles converge with lysosomes and the ER at
fission sites. Further study is necessary to understand how these
organelles coordinate to promote fission.

Mitochondrial fusion. The dynamin family GTPases mitofusin 1
(Mfn1), mitofusin 2 (Mfn2), and optic atrophy protein 1 (Opa1) are
required for mitochondrial fusion mechanisms and regulation.
Fusion begins with Mfn1/2-mediated OMM tethering and merging
followed by Opa1-mediated joining of the IMM [85]. Mfn1 and
Mfn2 anchor to the mitochondrial outer membrane via the
C-terminal membrane-binding domain, which extrudes the
N-terminal GTPase domain to the cytoplasm [86]. However, their
mechanisms of action in mitochondrial membrane fusion are not
known. Opa1 has two isoforms, a long isoform (L-Opa1) contain-
ing a transmembrane domain and a short isoform (S-Opa1) that
lacks the transmembrane domain due to proteolytic cleavage of
L-Opa1 by the proteases ATP-dependent zinc metalloprotease
(Yme1L) or OMA1 zinc metallopeptidase (Oma1) [87]. One study
found that L-Opa1 was sufficient for fusion, without Yme1L and
Oma1, and S-Opa1 overexpression in these cells resulted in
mitochondrial fragmentation [88]. However, Opa1 processing
tightly regulates fusion, with higher and lower ratios of S-Opa1
to L-Opa1 inhibiting fusion [89].
Additional insight into mitochondrial fusion comes from

mitochondria-ER contact sites. Mitochondrial fusion also occurs
at mitochondria-ER contact sites, similar to fission [90]. Fission and
fusion proteins colocalize at mitochondria-ER contacts for
membrane dynamics. Therefore, the ER regulates multiple aspects
of mitochondrial dynamics at contact sites. How these separate
machineries are coordinated to promote a single process needs
further exploration.

Mitophagy
The autophagic system, termed mitophagy, targets impaired
mitochondria and delivers them to lysosomes for degradation,
which is a fundamental mechanism that is conserved from yeast
to humans that regulates mitochondrial quality and quantity
control. Mitophagy is promoted via specific mitochondrial outer
membrane receptors or ubiquitin molecules conjugated to
proteins on the mitochondrial surface, which leads to the
formation of autophagosomes surrounding mitochondria.
Mitophagy-mediated elimination of mitochondria plays an impor-
tant role in modulating mitochondrial fitness and number in
normal and disease physiology.

PINK1/Parkin pathway. The mitophagy field was constructed on
investigations of the PINK1/Parkin pathway, which is the most
characterized mitophagy pathway. Under normal conditions,
PTEN-induced putative kinase protein 1 (PINK1) is imported into
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the mitochondria then exposed to and cleaved by the mitochon-
drial proteases MPP and PARL [91]. Once mitochondrial depolar-
ization or misfolded mitochondrial proteins accumulate, PINK1
cannot be imported into mitochondria and stabilized on the
surface [92]. PINK1 phosphorylates ubiquitin attached to the E3
ligase Parkin or other OMM proteins [93]. Phosphorylation
encourages Parkin recruitment to these mitochondria and
ubiquitinates multiple surface proteins, such as NDP52 and OPTN,
which results in more phosphorylation and an amplification loop
that sequentially escalates the signal for the degradation on the
surface of mitochondria [94, 95].
Although the PINK1/Parkin pathway is indisputable for mito-

phagy in vitro assays, mice lacking PINK1 or Parkin do not exhibit a
phenotype, and the loss of either protein in the heart or brain
does not affect the levels of basal mitophagy [96]. PINK1/Parkin-
mediated mitophagy is triggered by severe stress, and there are
other pathways that maintain basal levels of mitophagy when
stress is milder. Therefore, it makes sense to have a ubiquitin-
independent group of mitophagy receptors that may be activated
and balance the mitophagy level via other means.

Mitophagy receptor pathways. Mitophagy receptors contain an
LIR motif that enables the recruitment of LC3 and the growing
mitophagophore to the mitochondria [97]. The mitophagy
receptor NIP3-like protein X (NIX) mediates mitophagy during
red blood cell (RBC) differentiation or the hypoxia-driven glycolytic
switch during metabolic transitions [98, 99]. BCL2/adenovirus E1B
19 kDa protein-interacting protein 3 (BNIP3) is also involved in
PINK1 stabilization, DRP1 translocation, and BECN1 freeing during
PINK1-Parkin mitophagy pathway activation [100, 101]. FUN14
domain-containing protein 1 (FUNDC1), the final mitophagy
receptor induced by hypoxia, is also regulated via phosphorylation
within the LIR motif, instead of being transcriptionally regulated.
In addition to hypoxia-mediated mitophagy, FUNDC1 was also
implicated in depolarization-induced mitophagy via interaction
with IP3R2 and is regulated through direct phosphorylation by
Unc-51-like kinase 1 (ULK1) [102, 103].
There are also several less studied receptors associated with

mitophagy. FK506-binding protein 8 (FKBP8), another mitophagy
receptor, mediates mitophagy and fission by binding LC3A,
independent of Parkin [104]. Bcl-2-like protein 13 (BCL2L13),
another OMM protein, mediates mitophagy by binding LC3 and
promoting mitochondrial fission [105]. Prohibitin 2 (PHB2), located
at the IMM, regulates proteasome-driven OMM rupture and is
involved in PINK1-Parkin mitophagy. Upon OMM rupture,
mitochondrial depolarization and PHB2 regulate mitophagy via
PINK1 stability on mitochondria and LC3 binding [106, 107]. NLR
family member X1 (NLRX1) is a NOD-like receptor located within
the mitochondrial matrix and contains an LIR motif [108].
Cardiolipin is a unique phospholipid in the IMM that is also a
mitophagy receptor. Upon mitochondrial damage, cardiolipin
translocates to the OMM, where it interacts with LC3 and may be
involved in PINK1-Parkin mitophagy [109].

MITOCHONDRIAL DYSFUNCTION IN NAFLD AND NASH
The major feature of NAFLD/NASH is excess lipid accumulation in
the liver, with inflammation and liver damage. During NAFLD
development, there is a constant dysfunction of mitochondria,
including alterations in enzyme activities, protein expression, and
signaling networks [110]. These processes are tightly coupled with
mitochondrial quality control, hepatocyte cell death, and inflam-
matory responses (Fig. 2).

Changes in mitochondrial lipid metabolism in NAFLD livers
Under normal conditions, the liver balances lipid degradation and
lipogenesis. However, lipid homeostasis is altered in NAFLD.
During the pathophysiology of NAFLD, lipid accumulation is

excessive, and the oxidative catabolism of FFAs is insufficient.
Under fasting conditions, the proportion of triglycerides (TGs)
stored in the liver of NAFLD patients is 59.0% ± 9.9% from plasma
FFAs, 26.1% ± 6.7% from de novo lipogenesis (DNL), and 14.9% ±
7.0% from dietary intake, which were traced using orally fed stable
isotopes in humans, and the DNL rate is up to three-fold higher in
NAFLD patients than healthy humans [111, 112]. The expression of
lipogenic-related factors and enzymes, such as sterol regulatory
element-binding protein (SREBP1c), carbohydrate-responsive ele-
ment-binding protein (ChREBP), ACLY, fatty acid synthase (FAS),
acetyl-CoA carboxylase 1 (ACC1), and acyl-CoA desaturase 1
(SCD1), is much higher in fatty livers than normal healthy livers
[113]. Moreover, the expression of SREBP1c and lipogenesis can
also be induced by tumor necrosis factor-alpha (TNF-α) [113].
Mitochondria from NAFLD livers show increased TCA cycle
function, and the overloading of acetyl-CoA in the cytoplasm
accelerates lipogenesis. Overactivated TCA cycle produces exces-
sive ROS and mitochondrial damage, which also induce systemic
insulin resistance and inflammation. High levels of insulin
contribute to lipogenic enzyme expression and lipogenesis.
Continuously increased lipogenesis inhibits fatty acid oxidation

for intermediate malonyl-CoA production by inhibiting carnitine
palmitoyltransferase 1 (CPT1) activity [114]. However, the change
in mitochondrial β-oxidation is closely coordinated with steato-
hepatitis and the function of mitochondria in patients with NAFLD
or NASH [110, 115]. Fatty acid utilization is excessive in the early
stage of NAFLD development [116]. However, the expression of
genes related to β-oxidation is decreased in the progressive NASH
livers compared to simple NAFL, and these genes are partially
regulated by PPARα. Although hepatic PPARα levels do not differ
between NAFLD patients with simple steatosis and healthy
controls, PPARα was downregulated in patients with NASH
compared to patients with steatosis and healthy controls
[117, 118]. Therefore, overactivated β-oxidation in mitochondria
leads to a remarkable increase in ROS in the simple steatosis stage,
which promotes the occurrence of NASH by inducing oxidative
stress and inflammation.
Ketogenesis in the liver is the third flux for the acetyl-CoA pool

produced by FAO and glycolysis (the other two are the TCA cycle
and lipogenesis). The serum β-hydroxybutyrate concentration
negatively correlates with the fat content in the liver. Compared to
high-fat diet (HFD)-fed mice, ketogenic insufficiency aggravated
hepatic lipogenesis, inflammation, and injury in HFD-fed mice
[115, 119]. Hepatocyte-derived acetoacetate (AcAc) acts as the
energy substrate for macrophages, which ameliorates diet-
induced hepatic fibrosis [120]. All of these results indicate that
the extent of FAO and the function of mitochondria are altered
during the progression of simple steatosis and NASH, which are
tightly associated with mitochondrial metabolism and ROS
generation.

Mitochondrial defects stimulate ROS production and oxidative
stress in fatty liver
The intracellular balance of ROS and antioxidants is disrupted with
the overproduction of free radicals in fatty liver [121]. The
electronic respiratory chain of mitochondria in hepatocyte
generates the major content of ROS in the process of NAFLD.
The excessive ROS produced by dysfunctional mitochondria
trigger pathological redox signaling and lead to serious hepato-
cyte DNA damage, apoptosis or necrosis, immune cell infiltration,
and hepatic stellate cell (HSC) activation, which participates in the
progression of NAFLD and NASH development [122].
The mitochondrial β-oxidation rate is increased significantly

during rapid lipid overload in the liver to restrain hepatic fat
accretion, which accelerates the accumulation of intercellular ROS.
Inactivation of complexes I and III in the presence of fatty acids,
especially polyunsaturated fatty acids (PUFAs), enhances O2

•-

production via the electronic respiratory chain [123, 124]. Fatty
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acid incorporation into the inner membrane of mitochondria also
increases membrane fluidity and promotes electron leakage.
Hepatic iron overload occurs in some NASH patients and facilitates
the conversion of H2O2 to extremely toxic HO• via the Fenton
reaction [125]. Lipotoxicity induces unfolded and misfolded
protein accumulation and leads to the unfolded protein response
(UPR), which generates stress in the ER and increases ROS
production [126].
ROS production in the liver contributes to a large range of

pathologies in the progression of NAFLD development. ROS
overload decreases mitochondrial ETC activity and opens the
mitochondrial permeability transition pore (mPTP), and the
subsequent release of cytochrome c to the cytosol from
mitochondria induces the apoptotic pathway in the liver
[29, 127]. Excess ROS oxidize phospholipids, which increase the
activation of proinflammatory and apoptotic signaling pathways
in the liver [128]. NAFLD-induced lipid overload decreases sarco/
ER Ca2+-ATPase (SERCA) activity. The excess calcium released into
the cytoplasm is absorbed by the mitochondria and exacerbates
cell death via mPTP [129].
During ROS-induced liver injury, the activation of redox-

sensitive transcription factors, such as nuclear factor kappa B
(NF-κB), are increased, and the inflammatory response is activated.
The nucleotide-binding domain and leucine-rich repeat contain-
ing PYD-3 (NLRP3) inflammasome induce caspase 1-dependent
release of the proinflammatory cytokines interleukin-1β (IL-1β)
and interleukin-18 (IL-18), which induce liver cell death under lipid

overload conditions. As one of many important NLRP3 inflamma-
some activators, ROS are important NLRP3 activators that promote
NAFLD development [130]. ROS activate macrophages and HSCs,
which induce fibrosis in hepatic tissue. ROS-induced macrophage
activation triggers innate and adaptive immune responses with
the release of proinflammatory cytokines and chemokines, which
activate natural killer T cells and HSCs [131, 132].

Mitochondrial dysfunction and liver cell death
Animal models and clinical studies clearly demonstrated that
hepatocyte death was an important driver of NASH progression.
Liver injury, induced by multiple stimulations, is at the center of
NASH development [133]. Various forms of cell death are observed
in the liver, including apoptosis, necrosis, and necroptosis.
Hepatocyte apoptosis induced by lipotoxicity (including fatty
acids and cholesterol) and ROS stress are well-recognized cell
death pathways in NASH. Apoptosis signal-regulating kinase 1
(ASK1) is ubiquitously expressed and activated by pathological
stimulation in human and animal NASH livers [134]. Therefore,
caspase inhibitors, such as pancaspase inhibitors and ASK1
inhibitors, were protective in animal models of NASH [135].
Homodimerization of the apoptosis-related proteins Bax and

Bak within the OMM, which belong to the Bcl-2 family of proteins,
is a direct activator of hepatocyte apoptosis [136]. Mitochondrial
dysfunction is tightly associated with hepatocyte apoptosis.
Excessive lipid immersion in hepatocytes promotes fatty acid β-
oxidation, which promotes ROS and related byproducts, such as

Fig. 2 Hepatic mitochondrial dysfunction is tightly associated with NASH development. Western diet drives the mitochondrial TCA cycle
and induces lipogenesis and lipid droplet formation. Hepatic lipid accumulation accelerates insulin resistance in the liver and adipose tissue,
which results in a massive flux of FFAs into the liver from adipose tissue. FFAs overload in the liver and hepatic insulin resistance results in
inefficient β-oxidation and uncouples mitochondrial TCA cycle activity from OXPHOS, which leads to excessive ROS generation. Hepatic ROS
accumulation and lipotoxicity caused by lipid overload promote hepatocyte cell death via apoptosis or necrosis. Dysfunctional hepatocytes
secrete microparticles containing chemotactic signals (inflammatory or necrosis factor) into the extracellular matrix, which induce hepatic
resistant immune cells (macrophages) or recruit immune cells from bone marrow activation. The fibrogenic signal derived from dysfunctional
hepatocytes and/or inflammatory cells activates HSCs and promotes the development of liver fibrosis. Overnutrition or intestinal microbiota-
derived signal stimulation induces mitochondrial metabolic remodeling in macrophages and HSCs, which further accelerates the
development of NASH directly or indirectly. Abbreviations: ROS reactive oxygen species, TCA cycle tricarboxylic acid cycle, FFA free fatty acid,
OXPHOS oxidative phosphorylation system, mtDNA mitochondrial DNA, HSCs hepatic stellate cell, NASH nonalcoholic steatohepatitis.
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oxidized phospholipids (OxPLs) and oxidized cholesterol accumu-
lation. Oxidative stress initiates hepatocyte apoptosis and liver
injury. A recent study indicated that loss-of-function augmenta-
tion of liver regeneration (ALR), which is a flavin-containing
oxidase localized in the mitochondrial intermembrane space,
induced mitochondrial release of cytochrome c and accelerated
the development of NASH [137]. Mitochondrial cytochrome c
release leads to caspase-mediated hepatic apoptosis, and the
energy sensor AMP-activated protein kinase (AMPK) phosphor-
ylates proapoptotic caspase-6 protein to inhibit its activation via
cytochrome c from mitochondria [138]. Apoptotic hepatocytes
stimulate immune cell activation or infiltration and HSC activation
toward the progression of NASH via the production of inflamma-
somes and cytokines [139]. These data suggest that mitochondria-
initiated apoptosis is extremely important in hepatic injury and
NASH development.

Mitochondrial metabolism regulates macrophage infiltration in
fatty liver
Macrophage phenotypes exhibit marked metabolic plasticity in
the liver, which depends on environmental stimulation. Kupffer
cells and monocyte-derived macrophages represent distinct
origins of hepatic macrophage populations that perform a range
of metabolic functions. Various dangerous molecules and fatty
acids promote a proinflammatory phenotype in macrophages,
which contributes to the development of persistent, low-grade
inflammation in the early stage of NAFLD. Proinflammatory
cytokines, chemokines, mtDNA, apoptosis, or necrosis signals,
which are transmitted from dysfunctional hepatocytes, the gut-
liver axis, and adipocytes, stimulate the activation or infiltration of
macrophages into the liver [140, 141].
Macrophage metabolic disorder induced by multiple energy

stresses also plays a role in NASH development. The activities of
isocitrate dehydrogenase (IDH) and succinate dehydrogenase
(SDH) are much lower than quiescent macrophages, which induce
the accumulation of citrate and succinate in macrophages. Citrate
is exported into the cytoplasm and cleaved by ACLY into acetyl-
CoA and oxaloacetate, which acts as an epigenetic modifier or
NADPH provider and induces inflammatory factor production
[142]. Succinate induces mitochondrial ROS production or HIF-1α
and acts as a signal to activate proinflammatory-related gene
expression and cytokine secretion [143]. Itaconate is generated by
the mitochondria-associated enzyme immune responsive gene 1
(IRG1) from the TCA cycle metabolite cis-aconitate in the
mitochondrial matrix, which potently modulates macrophage
metabolism by inhibiting succinate dehydrogenase-mediated
oxidation of succinate in the TCA cycle [144]. Glutamine is
effective in inducing the polarization of M2 macrophages via the
glutamine-UDP-N-acetylglucosamine pathway and α-
ketoglutarate produced via glutaminolysis, and succinate synthe-
sized via glutamine-dependent anerplerosis or the γ-aminobutyric
acid shunt promotes the polarization of M1 macrophages.
Macrophage dysfunction induces mtDNA release, which stimu-
lates innate immune receptors and activates the inflammatory
response in the liver [145, 146].

Mitochondrial-related HSC activation
Activated HSCs produce extracellular matrix (ECM) proteins and
sustain the wound-healing process to gradually develop liver
fibrosis when hepatocytes lose their function [147]. Mitochondrial
signals from neighboring cells, such as hepatocytes and immune
cells, lead to HSCs activation. Hepatocytes release damage-
associated molecular patterns derived from mitochondria (mito-
DAMPs) upon injury or death [148]. Hepatocyte mito-DAMPs are
elevated in human NAFLD/NASH and directly trigger profibro-
genic HSCs activation [149]. Hepatocytes release microparticles to
activate HSCs upon increased oxidative stress and apoptotic death
induced by chemical hypoxia [150].

Decades of studies indicated that mitochondrial dysfunction-
induced oxidative stress is a major inducer of HSCs activation in
the development of NASH [151]. The NAPDH oxidase enzyme
proteins NOX1, NOX2, NOX4, and NOX5 are upregulated
prominently in activated HSCs [152–154]. Intracellular ROS
provoke NLRP3 inflammasome activation, which contributes to
HSC activation [155]. Recent research identified that the redox
enzyme Shc (p66Shc) was significantly increased in human fibrosis
and mediated mitochondrial ROS generation and triggered NLRP3
inflammasome and HSCs activation [156]. Morphological stimula-
tion also manipulates HSCs activation. The downregulation of ALR
in HSCs, which is associated with F-actin assembly, is also
attributed to the promotion of HSCs migration and mitochondrial
fusion during hepatic fibrosis [157].
An important source of ECM in the liver is hepatocyte epithelial

mesenchymal transition (EMT). Oxidative stress-induced hepatic
damage and mtDNA deletion are closely associated with
abnormal mitochondrial fission, EMT, and liver fibrosis via PGC-
1α transcriptional regulation [158]. Therefore, antioxidant reagents
may attenuate transforming growth factor β1 (TGF-β1)- and
platelet-derived growth factor (PDGF)-stimulated HSCs activation
and improve liver diseases [159].

THERAPIES TARGETING MITOCHONDRIA IN NAFLD AND NASH
The goal of anti-NASH drugs is to reduce the accumulation of liver
fat, inflammation, and fibrosis. Despite the high prevalence and
potential consequences, there are no approved treatments for
NASH. Calorie restriction and weight loss are the only effective
means to clinically reduce fat in the liver. Mitochondria are the
center of cellular metabolism. A total of 31%–40% of patients with
steatohepatitis have lower hepatic mitochondrial respiratory levels
than obese patients. This difference indicates that improvements
in mitochondrial dysfunction may contribute to the treatment
of NASH.

PPARs agonists for NASH treatment
Hepatic lipid overload is a hallmark of NASH. Therefore,
stimulating mitochondrial fatty acid oxidation reduces lipotoxicity
and improves hepatic dysfunction. Gene expression controlled by
PPAR-α and -β is related to mitochondrial and peroxisomal β-
oxidative catabolism and ketogenesis. PPAR-γ is a critical regulator
of adipocyte differentiation and lipogenesis and acts as a
functional insulin sensitizer. Therefore, a series of PPARs regulators
were identified and used in NASH treatment [160].
PPARα agonists (primarily fibrates) reduce alanine aminotrans-

ferase (ALT) and aspartate aminotransferase (AST) activity and
inflammatory factor content in the serum. However, a long-term
clinical study demonstrated that fenofibrate or clofibrate treat-
ment did not improve the liver histology of NASH [161]. Oral
administration of the PPARα/δ agonist elafibranor reduced hepatic
steatosis inflammation and fibrosis in a mouse model, but the
antifibrotic effects were limited in phase II and phase III studies
[162]. The PPAR-γ agonist pioglitazone reduced hepatic steatosis
and inflammation but not the concomitant fibrosis [163]. The pan-
PPARs agonist lanifibranor, which targets the three PPAR isotypes,
reduced hepatic steatosis and inflammation in different mouse
models of NASH. A recent phase 2b trial showed that lanifibranor
treatment achieved significant therapeutic effects on NASH
resolution and did not worsen fibrosis [164].
Fibroblast growth factor 21 (FGF21) is a hepatokine that is

expressed and secreted in response to PPARα activation in the
fasting state. Recent FGF21 analogs demonstrated efficacy in
animal models and humans with NASH by inducing β-oxidation
and improving mitochondrial function [165]. Farnesoid X receptor
(FXR) is a metabolic regulator that plays a key role in bile acid
metabolism. FXR agonists demonstrated promising clinical results
in the treatment of NASH [166]. FXR activation increased the
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expression of PPARα and related genes in humans [167]. Whether
FXR agonist treatment improves mitochondrial function in NASH
patients requires further study.

Thyroxine receptorβ (THRβ) agonists for NASH treatment
The THRβ isoform is responsible for the metabolic rate induced by
thyroxine in the liver. THR activation stimulates mitochondrial fatty
acid β-oxidation and oxidative phosphorylation in the liver [168].
Studies from patients also showed an inverse relationship
between NASH liver function and serum thyroxine levels [169].
Therefore, THRβ agonists are a treatment strategy for NASH.
Resmetirom (MGL-3196) is a recently developed liver-directed
THRβ-selective agonist by Madrigal Pharmaceuticals that exhibited
great potential for the treatment of NASH. Resmetirom adminis-
tration reduced hepatic fat and significantly decreased the
expression of inflammation and fibrosis marker genes, which
was a positive phase II clinical trial result in patients with NASH.
Mechanistically, THRβ agonists decrease steatosis in the liver by
increasing fatty acid β-oxidation via the induction of autophagy,
mitochondrial biogenesis, and enzyme expression for lipid
oxidation [170].
Beyond transcriptional regulation, other potential NASH ther-

apeutic strategies in clinical trials are tightly associated with
mitochondrial function improvement. GLP-1 receptor agonists
were promising anti-NASH candidates in clinical phase III studies.
A recent study showed that the GLP-1R/GcgR dual agonist
cotadudidide improved NASH by modulating mitochondrial
function [171]. The cellular energy sensor AMPK improves
mitochondrial function via multiple mechanisms [172, 173]. The
AMPK activator PXL770 met its primary efficacy endpoint in a
phase II trial for NASH treatment [174].

Antioxidants for NAFLD and NASH treatment
Intra/extra-mitochondrial oxidative stress is a major player that
triggers the progression of NASH. Recent literature strongly
suggests that vitamin E or other antioxidant supplementation is
beneficial in improving the clinical biochemical and histological
parameters in NASH.
Vitamin E is a chain-breaking antioxidant in free radical

reactions and may be an option for the treatment of NAFLD and
NASH. Preclinical animal studies showed that vitamin E adminis-
tration reduced mitochondrial lipid peroxidation and corrected
oxidative stress, improved TGFβ1-induced fibrosis, and reduced
the content of TNF-α. Notable reductions in oxidative stress and
cytokine markers in NASH patients treated with vitamin E were
observed, which support the role of vitamin E as an antioxidant
[175, 176]. Vitamin E treatment improved liver function and
reduced liver fat in NASH patients in clinical trial studies. Vitamin E
combined with vitamin C was a potent antioxidant for NASH
treatment or was protective against NAFLD-related liver damage
[177]. However, a recent study also indicated that vitamin E alone
improved steatosis but did not significantly change inflammation,
ballooning, or fibrosis in NASH patients with type 2 diabetes,
which indicates the multilevel and multifactorial pathogenesis of
NASH development [178]. Several other antioxidants, such as
N-acetylcysteine (NAC), betaine, and probucol, were also eval-
uated for their potential therapeutic effects in NASH patients
[179–181]. Accumulating data demonstrated that antioxidants
may be effective candidates for NASH treatment.

Dissipation of abnormal liver lipid accumulation by mitochondrial
uncoupler
Mitochondrial uncoupling is a process that shuttles protons across
the IMM via a pathway that is independent of ATP synthesis.
Therefore, the energy derived from fat oxidation in OXPHOS is
directly converted to heat rather than ATP synthesis [182]. Small-
molecule mitochondrial uncouplers mimic the mild physiological
effects of mitochondrial uncoupling in the liver. Rodent and

nonhuman primate studies indicated that mitochondrial uncou-
plers safely reversed NAFLD/NASH [183]. The therapeutic effects of
mitochondrial uncouplers are often linked to increased fatty acid
β-oxidation, activation of the AMPK response to inefficient ATP
production, and a reduction in ROS production.
The most notable mitochondrial uncoupler, 2,4-dinitrophenol

(DNP), is widely used as a weight-loss agent in obese humans
[184]. However, a series of toxic side effects, including hyperther-
mia, cataracts, agranulocytosis, and death, were reported con-
tinuously, which caused the US Food and Drug Administration
(FDA) to ban its use in the 1930s [185]. Several attempts were
made to develop pharmacological agents based on DNP to
discover safe chemical uncouplers. Perry et al. developed a
prodrug named DNPME that targeted DNP in the liver with a
50–200-fold greater therapeutic window than DNP [186]. They also
identified an extended-release formulation of DNP (CRMP). Oral
administration of CRMP prominently increased hepatic lipid
utilization and reduced hepatic steatosis [187]. Wei et al.
developed a liquid crystal gel formulation with extended-release
properties (DNP-LC gel) that safely reduced dyslipidemia and
hepatic steatosis in a rat model [188].
Researchers also identified a series of chemical uncouplers that

exhibited therapeutic promise for NAFLD treatment. We synthe-
sized a novel compound (6j) with mitochondrial uncoupling
activity and pyruvate dehydrogenase activation effects. The
administration of 6j improved hyperglycemia and hepatic
steatosis [189]. Jian et al. identified that sorafenib, an extracellular
signal-regulated kinase (ERK) inhibitor for HCC treatment, acted as
a mitochondrial uncoupler to improve NASH in rodent and
nonhuman primate models [190]. Salamoun and Alexopoulos
et al. identified that BAM15 and its two BAM15 derivatives were
efficacious for anti-NASH in a STAM murine model [191, 192]. All of
these studies indicate that modestly increased uncoupling mimics
some of the benefits of calorie restriction, and small molecule
mitochondrial uncoupler treatment increases cellular energy
expenditure, which is a promising therapeutic strategy to improve
fatty liver.

Mitochondrial microRNAs interference
Many studies revealed the significance of mt-miRNA in modulat-
ing mitochondrial homeostasis and improving the pathophysiol-
ogy of NAFLD by directly targeting key genes. Therefore, abnormal
mt-miRNA expression may result in mitochondrial dysfunction,
which alters lipid metabolism, oxidative stresses, and inflamma-
tion in the liver and plays a crucial role in the pathophysiology
of NAFLD.
MiR-29a protects mitochondrial structural integrity, restricts

mito-DAMPs, and exerts an anti-inflammatory effect on the
pathogenesis of NAFLD by targeting voltage-dependent anion
channels and Bcl-2-associated X genes, whose oligomerization is
involved in mPTP opening and mito-DAMPs release [193, 194].
One computational analysis revealed that miR-29a targeted DRP1
[195], which suggests its potential role in regulating mitochondrial
dynamics and mitophagy. MiR-29a inhibits glycogen synthase
kinase-3β (GSK3β) to suppress sirtuin 1 (SIRT1)-mediated mito-
chondrial biogenesis, which leads to alleviation of mitochondrial
proteostatic stress and UPRmt in the context of NASH [196].
Hepatic miR‑34a expression is increased from steatosis to less and
more severe NASH [197]. Inhibition of miR-34a mitigated steatosis
in an experimental NAFLD model [198]. MiR-34a exhibited
suppressive activity on PPARα via direct association with its mRNA
3′UTR [198], which decreased mitochondrial biogenesis and
increased oxidative stress and the inflammatory response. The
miR-34a/SIRT1/AMPK pathway caused mitochondrial dynamics
dysfunction in a mouse NASH model [199]. MiR-34a impaired the
mitochondrial quality control mechanism via SIRT3/FoxO3a/
PINK1 signaling in an experimental mouse model of liver
inflammation [200]. GLP-1 treatment increased the expression of
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the mitochondrial protective gene PGC-1α by downregulating
miR-23a to inhibit hepatocyte apoptosis [201].
Other miRNAs also impact pathways that regulate mitochon-

drial functions in the liver, such as miR-122, miR-370, and miR-21
[202–204]. Many miRNAs play important roles in mitochondrial
function, but their roles in liver diseases are not clear, such as
miRNA-144 [205], miRNA-145 [206], and miRNA-126 [207]. How-
ever, other miRNAs, such as miRNA-103/107 and miRNA-221/222,
play key roles during NAFLD pathophysiology via a mechanism
other than mitochondrial function regulation [208, 209].
The available pieces of evidence suggest a new framework for

considering and understanding mt-miRNA as a novel biomarker in
mitochondrial dysfunction by linking it with many complex
diseases, including NAFLD and NASH. The analysis of miRNA
profiles in serum, plasma, and blood cells linked with the
development and progression of mitochondrial dysfunctions
may lead to novel therapeutic strategies for NAFLD/NASH. MiRNAs
may serve as potential noninvasive prognostic and diagnostic
markers for NAFLD/NASH. Significant research endeavors must be
exercised on miRNAs to determine their future use and clinical
application. The applicability of miRNAs in mitochondrial research
remains elusive.

Nuclear-encoded mitochondrial gene alternative splicing
Alterations in mRNA splicing are important causes of disease, and
alterations in this pathway are found in many human diseases. Our
recent study revealed a novel mechanism underlying NAFLD/
NASH progression via the dysregulation of mitochondrial function-
related gene alternative splicing via DRAK2-SRSF6 signaling and
suggests that targeting this mechanism is a promising approach
for NAFLD/NASH treatment. We found pathological alternative
splicing forms of many mitochondrial function-related genes, such
as Polg2, Rnasel, Nme4, Nudt13, and Guf1, which suggests a close
relationship between the pathological alternative splicing form
and mitochondrial function during NAFLD development. We also
used the DRAK2 inhibitor 22b to explore the therapeutic potential
of targeting the DRAK2-SRSF6 axis during the progression of
NAFLD/NASH. Notably, HFD-induced alternative splicing altera-
tions in mitochondrial function-related genes, including Polg2,
Nudt13, Guf1, Rnasel, and Nme4, and SRSF6 hyperphosphorylation
were largely blocked by 22b intervention, which further supports
the feasibility of targeting nuclear-encoded mitochondrial gene
alternative splicing to treat NAFLD/NASH [69].
PGC-1a is a transcriptional coactivator that is expressed as

multiple alternatively spliced variants transcribed from different
promoters that coordinate metabolic adaptation and protect
against inflammation. Transcription initiated from the PGC-1a
proximal promoter generates canonical PGC-1a1 (also known as
PGC-1a-a) and NT-PGC-1a-a is a truncated version containing a 31-
nucleotide insertion between exons 6 and 7 that generates a
premature stop codon [210]. Overexpression of NT-PGC-1a-a and
PGC-1a1 drives similar gene programs, including mitochondrial
biogenesis and fatty acid oxidation [210, 211]. PGC-1a variants
have distinct yet complementary roles in hepatic mitochondrial
function via alternative RNA splicing.
The mitochondrial fission GTPase Drp1 also expresses multiple

splicing variants. Mitochondrial fission is mediated by the GTPase
activity of Drp1. Cooperative GTPase activity is contingent upon
intra- and intermolecular interactions between the four major
domains of Drp1 [212]. Different Drp1 isoforms may affect this
process because variations in the GTPase and variable domain of
Drp1 have an allosteric effect on the preferred curvature and
cooperative GTPase activity of Drp1 polymers [213]. The
posttranslational modifications of Drp1 vary for the alternate
Drp1 isoforms and result in distinct functions [214, 215]. Therefore,
different Drp1 isoforms have distinct and overlapping roles in
mitochondrial fission and cell death, which suggests a potential
role of Drp1 alternative splicing in NAFLD and NASH.

There are many other mitochondrial function-related genes
with different isoforms arising from alternative splicing, such as 12
complex I-associated genes (NDUFA3, NDUFA13, NDUFA8, NDUFS2,
NDUFS4, NDUFA4, NDUFA12, NDUFB6, NDUFV1, NDUFA5, NDUFB11,
and NDUFA7), OPA1, and MRPL33 [216], but the functions of many
different isoforms are not clear and need further study.
Risdiplam (Evrysdi™), an orally administered, survival motor

neuron 2 (SMN2)-directed RNA splicing modifier developed by
Roche, PTC Therapeutics Inc., and the SMA Foundation, received its
first approval in the USA for the treatment of spinal muscular
atrophy [217, 218], which indicates a novel therapeutic strategy
targeting alternative splicing modification. Various studies investi-
gated the role of alternative splicing in disease development and
the use of alternative splicing events as diagnostic markers and
therapeutic targets for various diseases. Given the role of alternative
splicing in mitochondrial function, targeting nuclear-encoded
mitochondrial gene alternative splicing may be a promising
approach for NAFLD/NASH treatment. Further investigation is
warranted to determine how these genes play different roles in
mitochondrial function with different alternative splicing forms and
to elucidate their relevance to human NAFLD/NASH etiology.

CONCLUSION AND PERSPECTIVE
NAFLD is the most common chronic liver disease worldwide and
impacts 25% of the world’s population. With NAFLD spreading,
the prevalence of NASH, liver cirrhosis, and HCC inevitably
increases. Given the overall burden of the disease, further studies
are urgently needed to identify novel therapeutic targets for
NAFLD prevention and treatment. Although several new drugs
and molecular targets are promising, many clinical trials con-
cluded that the optimal pharmacological approach will require
modification of the complex pathogenesis of NAFLD and NASH.
Comprehensive evidence supports a pivotal role of mitochondrial
dysfunction in hepatic steatosis to NASH pathogenesis, which
indicates one promising therapeutic strategy targeting mitochon-
drial homeostasis. The present review highlighted the mitochon-
drial biology and homeostasis involved in hepatic steatosis to
NASH and reviewed the current therapeutic approaches in NAFLD
with an emphasis on mitochondria as potential therapeutic
targets. Despite progress in our understanding of mitochondrial
dysfunction in NAFLD/NASH and the therapeutic potential of
targeting mitochondrial homeostasis mechanisms, several ques-
tions remain.
First, many of these findings were derived from experimenta-

tion on animal models of simple steatosis and NASH, and
translation of these results into human subjects with a spectrum
of disease stages remains a major priority. Second, although
comprehensive evidence supports a pivotal role of mitochondrial
dysfunction in hepatic steatosis to NASH pathogenesis, mitochon-
drial biology and pathology during NAFLD/NASH are not fully
understood. For example, the key point at which mitochondrial
adaptation remains in hepatic steatosis but is lost in NASH and the
balance of mitochondrial dynamics, mitophagy and mitochondrial
biogenesis, are not well understood. Third, hepatic mitochondria
maintain a tight balance between fat oxidation and the
generation of ROS, and therapies aimed at increasing mitochon-
drial activity may reduce steatosis but at the cost of increasing
inflammation and fibrosis, especially in humans [219]. Fourth,
despite exciting preclinical data, translation of mitochondria-
targeted agents into clinical use remains a major challenge
because of their potential adverse effects, unclear mechanism of
action, and the unclear mitochondrial biology and pathology
underlying these conditions. Therefore, further studies should
focus on identifying the role and regulation of mitochondrial
homeostasis mechanisms during the development of hepatic
steatosis to NASH pathogenesis to facilitate the discovery of
pharmacological modulators to prevent and treat this disease.
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