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A comprehensive approach to evaluate genetic abnormalities
in multiple myeloma using optical genome mapping
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Dear Editor,

Multiple myeloma (MM) is a plasma cell neoplasm (PCN) [1].
Sensitive and accurate identification of genetic abnormalities is
critical for patient risk stratification and therapeutic decision-
making as well as understanding pathogenesis. Recurring genetic
abnormalities include structural variants (SVs), such as rearrange-
ments involving IGH and MYC genes; copy number variants (CNVs),
such as 1g+, del(17p), del(13q); hyperdiploidy/hypodiploidy; and
various gene mutations, such as mutations in the RAS pathway,
BRAF, FAM46C, DIS3, and TP53 [2]. Trisomies/hyperdiploidy and IGH
rearrangements/fusions are considered primary abnormalities
present at disease initiation while 1g+, del(17p)/TP53 mutations
and MYC rearrangements/fusions are considered secondary
abnormalities that develop during disease progression [3]. High-
risk genetic abnormalities including del(17p), t(4;14)/IGH::FGFR3/
NSD2, and t(14;16)/IGH::MAF have been used along with serum
markers for MM risk stratification in the Revised International Stage
System [4]. Other genetic abnormalities including t(14;20)/
IGH:MAFB, and MYC rearrangements/fusions are considered
potential high-risk biomarkers in MM [2]. Recently whole-genome
sequencing (WGS) studies have revealed novel candidate driver
genes and catastrophic complex rearrangements (chromoanagen-
esis) associated with poor clinical outcomes [5]. Furthermore, the
presence of some genetic abnormalities can clearly impact
response to specific therapies, as exemplified by t(11;14)/
IGH::CCND1 and response to BCL2 inhibition [2, 3, 6]. Therefore,
detection of genome-wide genetic abnormalities is essential.

Detection of genetic abnormalities has routinely relied on
karyotyping, fluorescence in-situ hybridization (FISH), and next-
generation sequencing (NGS). Karyotyping offers a low-resolution
whole-genome analysis and requires the presence of actively
dividing cancer cells [7]. FISH is more sensitive than karyotyping
within targeted areas covered by probes but still leaves most of
the genome unexamined [7]. Furthermore, complex gene
rearrangements can make interpretation and analysis of FISH
difficult. For example, FISH failed to detect ~70% of all MYC SV
subtypes reported by NGS [8] and variant IGH rearrangements
may mask IGH rearrangements or cause equivocal results [9].
Chromosomal microarray (CMA) testing has been reported to
provide a whole-genome analysis and improve diagnostic yield for
CNVs compared to FISH/karyotyping [10]. However, CMA is not
capable of detecting balanced SVs (e.g., IGH or MYC rearrange-
ments/fusions), which limits its clinical utility. Currently, RNA-
sequencing and WGS show promising genetic data in MM [5].
These approaches require complex bioinformatics pipelines for
the detection of SVs/CNVs, an abundance of CD138+ plasma cells,
and large capital equipment requirements, which may be
challenging to establish in a clinical laboratory.

Optical genome mapping (OGM) is an emerging technology
that uses fluorescently labeled ultra-high molecular weight
genomic DNA to restructure genome-wide SV and CNV maps. It
has a simple workflow and straightforward bioinformatics analysis
pipelines. It has been shown to detect genome-wide SVs/CNVs in
hematologic malignancies [11-13]. To date, two pilot studies of
OGM on CD138+ plasma cells have been reported: one study
compared OGM data between 4 extramedullary and 7 intrame-
dullary MM [14] and the other compared OGM and FISH results in
20 MM cases with plasma cell percentages of >10% [15]. Although
both studies showed promising OGM results in MM for detection
of genome-wide SVs and CNVs, there is no multi-center study
reporting the clinical utility of combined OGM and NGS for
pathogenesis/prognostication of MM and other PCN (with plasma
cell percentages of <10%) in clinical practice.

This study includes concurrent karyotyping, FISH, OGM, and
NGS analyses on 45 PCN patients from The Johns Hopkins Hospital
and The University of Texas MD Anderson Cancer Center from
January 2022 to November 2023 (Table 1, see Materials and
Methods in the supplementary file for details). It includes 35 MM,
6 smoldering myeloma, 2 monoclonal gammopathy of undeter-
mined/renal significance, and 2 amyloid light chain (AL) amyloi-
dosis (Supplementary Table S1). One patient has simultaneous
diagnosis of both MM and myelodysplastic syndrome (MDS) (case
#30). OGM was performed on CD138+ plasma cells for cases
#1-30 with median 25% plasma cells by morphology, and on fresh
biopsy/aspirate for cases #31-45 without CD138-enrichment
having >50% plasma cells. All FISH and NGS were performed on
CD138+ uncultured specimens. The specimen was considered
abnormal based on laboratory-established cutoffs/criteria. Con-
cordance of karyotyping/FISH and OGM results was determined by
a systematic review of the loci of interest for each sample. This
study was approved by the Institutional Review Board and
performed in accordance with the Declaration of Helsinki.

In this cohort, 14 cases (38%) had abnormal karyotypes and a
total of 233 genomic loci were tested by FISH with an average of 5
FISH loci per specimen (Supplementary Table S1). Ninety-eight
percent of these loci (229 out of 233) displayed concordance
between FISH and OGM (Table 1). Four discordant loci demon-
strated the following: equivocal IGH rearrangement by IGH break-
apart FISH had IGH:MYC fusion by OGM (case #10); MYC
rearrangement by FISH had complex nested inversions within 8q
by OGM (case #16); and two low-level CNVs by FISH were
undetected by OGM due to low levels of plasma cells (cases #31
and #37 - both unselected cases with <5% plasma cells by flow)
(Supplementary Fig. S1). Compared with FISH loci, OGM achieved
100% sensitivity, specificity, and accuracy in CD138+ cases and
96.6% sensitivity, 100% specificity, and 98.3% accuracy in
unselected cases. Furthermore, OGM identified potential translo-
cation partners in 5 cases, which supported IGH and/or MYC
rearrangements by FISH (IGH:MAFA in case #5, IGH:MYC in case
#10, IGH::CCND3 in case #14, IGL::MYC in case #35, MYC:NBEA in
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Fig. 1 Potential genetic testing workflow to classify PCN genetic subty,
preferred, although alternative approaches include OGM and NGS on or
case #24 showing chromoanagenesis (red lines in the center) and hype

pes in a clinical setting. OGM and NGS on CD138+ plasma cells are
iginal specimens with a higher plasma cell burden. A Circos plot of
rdiploidy (gain of chromosomes 3, 4, 11, 15, and 19, green circles).

B Breakpoints of case #43 showing an IGH:FGFR3/NDS2 fusion. C Whole-genome view of case #11 shows hypodiploidy with losses of

chromosomes 4, 6, 13, 15, 16, X, del(17p), and partial del(1p). Common

case #43). OGM identified two t(4; 14) samples with IGH::FGFR3/
NSD2 fusions (cases #31 and #43).

Compared to limited FISH loci, OGM provided a genome-wide
profile of SVs and CNVs. OGM revealed 18 hyperdiploidy, 4
hypodiploidy, and 9 IGH or MYC rearrangements that were not
tested by FISH, as well as 8 cases (18%) with chromoanagenesis
(complex genomic rearrangements and copy number alterations)
(Table 1). OGM changed the prognostication beyond standard
cytogenetics/FISH testing in eight cases (18% of cases in this
study). Most samples displayed additional SVs/CNVs (Tier 3) by
OGM: on average, an additional 7 intra- and inter-chromosomal
translocation events (ranging from 0 to 90 translocations with a
median of 4), an additional 0-5 CNV gain events (>1 Mb), and 0-14
CNV loss events (>1 Mb) per sample (Supplementary Table S2).

OGM'’s comprehensive genome-wide SVs/CNVs profile led to
classifying genetic subtypes in MM (Fig. 1). All cases had known
MM abnormalities including 24 with IGH gene fusions, 15 with
hyperdiploidy, and 6 had other abnormalities. These cases can be
further classified according to additional MM abnormalities.
Chromoanagenesis was frequent in cases with hyperdiploidy
(n=4, 27% of all hyperdiploidy cases) and in cases with
IGH::CCND1 (n =3, 23% of all IGH::CCND1 fusion cases). MYC:IGL
fusions and NRAS mutations were found in half of the cases with
chromoanagenesis and hyperdiploidy (cases #28, #35, and cases
#16, #28, respectively). Gain of 1q was found in all cases with
chromoanagenesis and IGH rearrangements/fusions, which might
be a novel molecular subtype. Concurrent myeloma NGS results
detected pathogenic mutations in 29 cancer genes, with recurrent
mutations in KRAS (27%), IGLL5, NRAS, TENT5C, TP53 (10%) and
CCND1, CDKN2B, DIS3, DNMT3A, IDH1/2, IKZF3, and PLCG2 (7%).

SPRINGER NATURE

pathogenic mutations in this cohort are listed for each case.

Given that only approximately one-third of cases had abnormal
karyotypes and that FISH included assessment for a limited
number of loci, OGM allowed for a more comprehensive definition
of the plasma cell genome, not only for well-established FISH
targets/regions, but also for hyperdiploidy/hypodiploidy, chro-
moanagenesis, atypical /IGH and/or MYC translocation partners,
and 366 novel SVs/CNVs that might be important in the formation
and development of MM (Supplementary Tables S1-2). For case
#30 with both MM and MDS, MM FISH on CD138+ plasma cells
detected an I/GH:CCND1 fusion while MDS FISH panel and
karyotype on the fresh bone marrow detected del(5q), —7, +8,
and dic(12p; 17p). OGM was able to detect both the MM and MDS
abnormalities.

Genome-wide SVs/CNVs by OGM may be therapeutically
helpful. For example, gain of BCMA/TNFRSF17 on 16p13.13 was
found in patients #12 (+16) and #13 and #20 (BCMA/TNFRSF17+),
detecting BCMA CNVs, such as gain/amplification or bi-allelic loss,
may be associated with the effectiveness or resistance of BCMA-
targeted monoclonal antibodies or CAR T-cell therapies. Patients
#19 and #40 had a loss of GPRC5D on 12p13.1, who may not be
ideal candidates for GPRC5D-targeted therapies.

In this study, genome-wide OGM analysis facilitated classifica-
tion of genetic subtypes in PCN. We propose a potential clinical
workflow for diagnostic testing for PCN (Fig. 1). We advise to
perform OGM and NGS on CD138+ plasma cells. Genome-wide
OGM results will not only provide comprehensive SVs/CNVs
landscape for clarifying cytogenetic risks, but also may lead to the
discovery of novel genetic biomarkers. In the absence of complex
bioinformatics pipelines, OGM is an emerging method for
genome-wide detection of SVs/CNVs in PCN.

Blood Cancer Journal (2024)14:78



In conclusion, this is the first and largest study (performed at
two academic centers) reporting the value of combined OGM
and NGS for PCN pathogenesis in clinical practice. A combination
of OGM for genome-wide SVs/CNVs and NGS to interrogate for
gene mutations may become an essential approach for evaluat-
ing genetic abnormalities in MM in the clinical setting. Future
multi-center studies that incorporate larger numbers of MM
cases, obtain comprehensive clinical data, and follow various
treatment strategies will shed light on how genetic subtypes of
MM are related to treatment response rates, survival, and overall
prognosis.
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