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Apart from high-risk scenarios such as the presence of highly penetrant genetic mutations, breast screening typically comprises
mammography or tomosynthesis strategies defined by age. However, age-based screening ignores the range of breast cancer risks
that individual women may possess and is antithetical to the ambitions of personalised early detection. Whilst screening
mammography reduces breast cancer mortality, this is at the risk of potentially significant harms including overdiagnosis with
overtreatment, and psychological morbidity associated with false positives. In risk-stratified screening, individualised risk
assessment may inform screening intensity/interval, starting age, imaging modality used, or even decisions not to screen. However,
clear evidence for its benefits and harms needs to be established. In this scoping review, the authors summarise the established
and emerging evidence regarding several critical dependencies for successful risk-stratified breast screening: risk prediction model
performance, epidemiological studies, retrospective clinical evaluations, health economic evaluations and qualitative research on
feasibility and acceptability. Family history, breast density or reproductive factors are not on their own suitable for precisely
estimating risk and risk prediction models increasingly incorporate combinations of demographic, clinical, genetic and imaging-
related parameters. Clinical evaluations of risk-stratified screening are currently limited. Epidemiological evidence is sparse, and
randomised trials only began in recent years.
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INTRODUCTION
Breast screening is widely implemented in many healthcare
systems to reduce breast cancer mortality through the expedited
diagnosis of smaller, asymptomatic breast cancers. For the
majority of women, this uses mammography starting in middle
age, although different regions differ in their screening recom-
mendations and practices (Table 1). In rarer, very high-risk
situations such as a known, high-penetrance genetic predisposi-
tion, earlier screening with magnetic resonance or ultrasound
imaging is advocated [1, 2].
Whilst meta-analysis of randomised clinical trial data clearly

demonstrates a reduction in the relative risk of breast cancer
mortality due to screening, reduced breast cancer deaths may come
at the expense of overdiagnosis (the identification and unnecessary
treatment of clinically insignificant tumours), as well as the
consequences of false-positive or false-negative results [3–8]. There
is wide variability in the results seen in observational studies in
relation to overdiagnosis estimations, depending on analytical or
modelling approaches [9–12]. The summation of evidence assessed
by the UK Independent Panel [3] was that breast screening does
reduce mortality. It concluded that for every 10,000 women in the
United Kingdom aged 50 years invited to screening for the next 20
years, 43 breast cancer deaths would be avoided and 681 tumours

(invasive or ductal carcinoma in situ [DCIS]) would be diagnosed, but
129 women would be overdiagnosed, i.e. three overdiagnosed cases
per breast cancer death averted, although this calculated
benefit–harm balance has been contested by some [13, 14].
Most countries use an age-based population-level breast screening

strategy that reduces breast cancer mortality but does not account for
the wide variation in individual women’s cancer risks [15–18].
Identification of women at the highest risk of breast cancer may
enable targeted intensification of early detection or preventive
measures, and reduce the public health burden of this common
malignancy. Motivated by such factors, ‘risk-stratified’ breast screening
has emerged as a concept in which decisions to offer screening or the
determination of screening frequency and modality (e.g. from
mammography/tomosynthesis to magnetic resonance imaging
[MRI]) are guided by accurate estimation of an individual woman’s
risk of breast cancer [15, 19–21]. Logically, risk-stratified screening
would target intervention at those that stand to gain the most and
reduce or stop screening in those that stand to gain little benefit,
potentially also informed by the cost-effectiveness evidence.
However, the efficacy and feasibility of personalising screening

strategies is uncertain and would require the meeting of several
critical dependencies for implementation [21]. These include the
need for rigorously developed and validated risk prediction
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models capable of stratifying women accurately, robust health
economic evaluation, and clarity on the balance sheet of benefits
and harms that would become the ‘new norm’ in clinical practice
after prospective studies. Although some recent reviews have
sought to summarise this field [21–23], they differ in the extent to
which they cover each of these dependencies. In this narrative
scoping review, the authors seek to provide a concise overview of
the key topics within the risk-stratified screening literature and
anticipate the potential effects of emerging evidence on clinical
practice. First, the evidence for risk prediction modelling that may
guide personalised screening is reviewed. Thereafter, the evidence
from observational analyses of epidemiological or registry data is
appraised prior to discussion of how ongoing prospective cohorts
and trials have been designed in this area. Furthermore, health
economic evidence and output from qualitative studies is
synthesised. Throughout, there is an emphasis on evidence
quality, its limitations and discussion of how unmet needs may
be satisfied.

METHODS
A scoping literature review was undertaken using Medline
(PubMed) with the following search strategy: (“breast screening”
OR “mammography”) AND (“risk#adapted” OR “risk#stratified” OR
“personalised” OR “personalized” OR “tailored” OR “risk#based”).
Papers published in any language prior to 1 November 2020 were
considered for inclusion in this review. We reviewed the reference
lists of systematic reviews to identify key publications if not
identified by the search strategy. We also searched clinicaltrials.
gov on 1 November 2020 to identify ongoing interventional
studies in this area (for search terms: “breast cancer”, “screening”
and “risk”).
Reports retrieved were screened for inclusion based on title and

abstract and, if relevant, were classified into five groups: papers

reporting risk prediction models, epidemiological analyses of risk-
stratified screening or retrospective evaluations, prospective
studies and trials of risk-stratified screening, health economic
evaluations and qualitative research on feasibility or acceptability.
Findings were synthesised narratively, informed by the narrative
synthesis guidelines developed by the Cochrane Collaboration
[24].

Risk prediction models to guide personalised screening
Several risk prediction models for breast cancer incidence have
been reported, which tend to incorporate ‘classical’ risk factors
identified from epidemiological evidence, e.g. clinical, demo-
graphic or pharmacological exposures, but may also assimilate
factors such as family history, genetic risk markers or polygenic
risk scores and imaging-related parameters. Well-recognised ‘risk
factors’ include breast density, first-degree family history of breast
cancer, increased body mass index (BMI), nulliparity or young age
at first birth, and such factors may be attributable for over 52% of
risk [25]. The role of obesity relative to menopause, such as the
apparent ‘protective effect’ of obesity on oestrogen receptor-
positive cancers prior to menopause [26, 27], may be relevant but
is not always incorporated into risk models [28].
Some models have also sought to incorporate markers of

genetic risk, such as the inclusion of BRCA genotype in the
Tyrer–Cuzick (also known as the ‘IBIS’) model [29], as well as the
incorporation of a polygenic risk estimation incorporated into a
later update thereof [30]. Some comprise predominantly genetic
information, such as BOADICEA [31–33] and BRCAPRO [32, 34].
Genetic predisposition, through either highly penetrant mutations
such as BRCA1/2 [35, 36] or subtler single-nucleotide polymorph-
isms (SNPs) may indeed affect breast cancer risk; however, only
25–50% of the familial risk can be explained by known genetic
variants [35, 37–40], and only 16% of the risk of nonfamilial breast
cancer is accounted for by SNPs [36]. Furthermore, breast density

Table 1. Summary of national screening programme strategies or national body recommendations for screening women who are not at elevated
risk of breast cancer (e.g. those without a known familial risk/genetic predisposition, or history of chest wall radiotherapy).

Country Age group Screening strategy

United Kingdom (NHS Breast Screening
Programme) [161]

Women aged 50–70
Women aged 71 years
and older

Invitation to mammography screening every 3 years
Not invited—may self-refer

United States of America (United States
Preventive Service Task Force) [162]

Women aged
40–49 years
Women aged
50–74 years
Women aged 75 years
and older

Individual decision-making recommended
Biennial mammography
No recommendation: evidence insufficient to assess harms and benefits
in this age group

Canada (Canadian Task Force on Preventive
Health Care) [163]

Women aged
40–49 years
Women aged
50–69 years
Women aged
70–74 years

Not recommended; shared decision-making if desired
Mammography every 2–3 years
Mammography every 2–3 years

Netherlands (National Breast Cancer
Screening Programme) [164]

Women aged
50–75 years

Invitation to mammography every 2 years

Australia (BreastScreen Australia) [165] Women aged
40–49 years
Women aged
50–74 years
Women aged 74 years
and older

Not invited, but may ‘opt-in’
Invitation to mammography every 2 years
Not invited but may ‘opt-in’

China (National Health Commission of the
People’s Republic of China) [166]

Women aged
20–39 years
Women aged
40–69 years
Women aged 70 years
and older

Monthly breast self-examination, clinical breast examination 1–3 yearly
Mammography every 1–2 years with ultrasound for women with dense
breasts; monthly breast self-examination and annual clinical breast
examination
Monthly breast self-examination, annual clinical breast examination
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and textural features [41] may be relevant to breast cancer risk
and have been explored as covariates in risk prediction models
rooted in mammographic image analysis or as additions to
covariate panels in updated versions of statistical models.
Generally, assessment of breast density could be determined by
visual assessment scales [42], or automated/algorithmic
approaches [43–45], but the most common appears to be the
four-category ‘Breast Imaging Reporting and Data System’
classification [46] (BI-RADS) [30, 47, 48]. Modelling approaches
utilised include mathematical modelling [29], statistical regression
[49, 50] or ‘machine learning’ techniques [51].
Whilst the implementation of risk-stratified screening to entire

populations depends on the prospective outcome and economic
evaluations, the requirement for accurate and robust multivariable risk
prediction models is the sine qua non of any such approach [52]. All
risk prediction models intended to be used to inform clinical decision-
making should be transparently reported, and robustly evaluated in
terms of various performance metrics [53]. Strong internal validation is
recommended, and appropriate external validation using data
sources that are independent of those used to generate the model
may also be useful [54, 55]. Important considerations include the
discrimination of models, i.e. how well they distinguish between
women who do develop breast cancer versus those who do not [56];
calibration, i.e. the degree of agreement between the predicted risks
and the observed risks [57]; and assessment of ‘net benefit’ using
decision-curve analysis [58, 59]. In terms of discrimination, the ‘area
under the curve’ (AUC) or identical ‘c-statistic’ may be used for binary
outcomes, or the ‘c-index’ for survival data [60] both range between 0
and 1, with values of 1 corresponding to perfect prediction and 0.5
reflecting discrimination no better than a coin toss. Other metrics to
consider include the proportion of variance explained by the model,
such as the R2 [2, 61]. It is increasingly clear that average performance
metrics or ‘overall’ assessments of model performance in populations
are insufficient to truly assess clinical utility on deployment, as there
may be differences in model performance between regions, ethnic
groups or even age groups [62, 63].
Table 2 describes the development and validation results

regarding key published risk prediction models. Our search
strategy sought to identify original reports and secondary
validation studies without restricting the latter to those performed
by model developers. Interestingly, a recent systematic review by
Louro et al. [64], which appraised the evidence for the Breast
Cancer Risk Assessment Tool (BCRAT), Breast Cancer Surveillance
Consortium (BCSC), Rosner and Colditz, IBIS and other models
using the ISPOR-AMCP-NPC [65] questionnaire rather than
PROBAST [66] found that it was challenging to recommend any
model for the purposes of risk-stratified screening. Importantly,
some risk prediction models were missed by their search strategy
[50, 67], and models focussing on genetic determinants of risk
were intentionally excluded [64]. The emergent pattern is that
incorporation of multiple data forms, such as adding breast
density or other mammographic features, or genetic information
yields incremental gains in model performance [68], although
these tend to be relatively small [30, 69]. Specifically, regarding
incorporating breast density on discrimination, the increase in the
AUC of published models ranges from 0.03 to 0.14 [69]. The effects
on calibration are less clear and the effects on net benefit are not
reported.
It is important to note that simply comparing AUC/c-indices of

different model development studies does not constitute a
meaningful comparison as a breast cancer risk is strongly
influenced by age, and the AUC/c-index may be influenced by
the heterogeneity of study population, the prediction horizons
used and the source of the population used may differ across
studies. For example, the AUC/c-index of a model developed in a
cohort with a very broad age range is not directly transferable to a
separate cohort of women with a narrower age range, such as
women eligible for screening currently.

The O/E ratio is widely used to assess calibration, and simply
compares the overall number of observed cases versus the
number predicted by a model for a given population, and as a
standalone metric is insufficient, as over-prediction in sub-groups
can be compensated by under-prediction in others and vice versa
[57]. A more comprehensive analysis of alignment between
predicted versus observed risks for individual study participants
could include the use of a calibration plot displaying (mis)
alignment across levels of risk [70]. Some papers report as one
aspect of their analyses the hazard ratio of pre-selected highest
risk groups (such as top tenth) to middle-risk groups (such as
middle 80%) [47]. This alone may provide an incomplete
assessment of model performance as it is comparing small groups
at the extremes of a risk score distribution to the bulk of the study
population, which would naturally be expected to diverge in their
observed risk. These must therefore be interpreted in the context
of the other sources of information regarding model performance
when provided. A key external validation study of four key models
in a cohort of 15,732 women from Australia, Canada and the US
(519 cases of breast cancer) demonstrated c-statistics of 0.70 for
BOADICEA (95% confidence interval [CI]: 0.68–0.72), 0.71 for IBIS
(95% CI: 0.69–0.73), 0.68 for BRCAPRO (95% CI: 0.65–0.70) and 0.60
for BRCAT (0.58–0.62) [71]. Assessment of calibration was limited
to the O/E ratio: BOADICEA 1.05 (95% CI: 0.97–1.14), IBIS 1.03 (95%
CI: 0.96–1.12), BRCAPRO 0.68 (95% CI: 0.65–0.70), and BCRAT 0.79
(95% CI: 0.73–0.85).
Recently, there has been increasing interest in ‘machine

learning’ prediction modelling for healthcare. Whilst arguably
perceived to be more flexible (e.g. better at capturing non-linear,
complex interactions), less reliant on assumptions than traditional
regression and capable of handling some forms of data that
regression models cannot, machine learning has not been shown
to be inherently better than traditional statistical modelling
approaches [72]. Datasets used for ML modelling should capture
clinical reality, i.e. reflect the target population, and the
architecture of any algorithm should be reported, given their
structural flexibility. Clarity of reporting model development can
be problematic [73] and validation/performance assessment
approaches may not always be appropriate or transparent,
especially when comparing different approaches. One recent
study compared the performance of the BOADICEA model with a
Markov chain Monte Carlo generalised linear mixed model, an
adaptive boosting model and a random forest model developed
using data from a single oncogenetic institution in Switzerland
that focusses on counselling and testing for hereditary cancer
syndromes [51]. Whilst the machine learning models were
declared to outperform BOADICEA, no robust evaluation of model
calibration was performed, and the effective comparison was an
external validation of BOADICEA versus an internal validation of
the new model using the data they were derived from. This used
cross-validation with a low number of repeats (n= 20), which
presumably was used for hyperparameter tuning as well as
performance evaluation (not elaborated in paper), an option that
is optimistically biased [74, 75]. Further work in this area of
comparing different model-building strategies for predicting risk
should focus on more robust, meaningful comparisons.
Overall, a range of clinical prediction models has been

developed that could be used to guide risk-stratified screening,
some of which are undergoing evaluation in trials of personalised
screening. The ability of models to guide risk-stratified screening
by predicting incident breast cancer risk in asymptomatic women
is uncertain [64], even if integrating clinical, genetic and imaging-
derived variables [30, 47, 49, 68]. There is no single accepted
benchmark for a given performance metric to render a model
suitable for guiding personalised screening, and decisions
regarding optimal models should not be made on a single metric.
Instead, models need to be robustly assessed in terms of
discrimination, calibration and potential clinical utility in the
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target populations. Whilst a model with an AUC of 0.5 in its target
population cannot be informative, a high AUC in a model
development/evaluation study does not guarantee utility in
guiding risk-based screening. Poorly calibrated models may cause
harm, and those with unstable performance across sub-groups
may raise concerns regarding ‘algorithmic fairness/bias’. Some of
these models are not fully developed using individual-level data,
rather, are pre-determined systems of weights that are then
applied to a test dataset to assess performance [30, 47]. Crucially,
however, weak or non-existent calibration assessment, non-
examination of performance heterogeneity, or the lack of
consideration of geographical and temporal transportability
[55, 76] are notable limitations. The QCancer (Breast) [50], IBIS
[47] and iCARE [77] models are some examples wherein
exploration of performance heterogeneity is performed according
to age groups or other clinically relevant sub-populations (see
Table 2). It has also been suggested that in order to minimise
harms from overdiagnosis of indolent tumours, modelling the risk
of developing lethal breast cancers could be more appropriate
than modelling the diagnosis of any breast cancer in order to risk-
stratify screening [11]. This is another avenue for further
exploration and analysis.

Epidemiological analyses and retrospective evaluations of
risk-stratified screening
The real-world effects of implementing risk-stratified screening
strategies [78] warrant evaluation in prospective studies and trials.

Whilst trials have recently been initiated (see later section), there
have also been several explorations of the possible benefits and
harms of using epidemiological approaches in a jurisdiction where
multiple forms of mammography screening are available, namely
in Taiwan. This complements studies modelling breast cancer risk
in large cohort studies relative to age, or retrospectively
simulating the effect of implementing different screening
practices in screening cohorts. Table 3 summarises the evidence
from such epidemiological papers or retrospective clinical
evaluations simulating the possible effects of risk decision rules
using patient data.
A large Taiwanese study (n > 1.4 million) exploited the natural

experiment of the concurrent availability of three screening
approaches in the country’s population, namely annual clinical
breast examination as the baseline (women aged 35 years and
over), risk-stratified biennial mammography screening or universal
mammography (both for women aged 50–69 years) [79]. The
existence of three available approaches was predicated by a low
breast cancer incidence rate in 2002–2004 and concerns about
healthcare system capacity for whole population screening at the
time, although the rates have increased since [80]. Risk stratifica-
tion used a ‘risk score’ derived from reproductive/menstrual
history and family history data obtained during attendances for
clinical breast examination between 1999 and 2001, with the
median of the risk scores used as the cut-off for eligibility for
biennial mammography. Using propensity score methodology to
try to adjust for disparities in baseline risk factors across the three

Table 3. Comparison of studies evaluating risk-stratified screening using simulations on retrospective data, or epidemiological studies.

Study Country and setting Description of modelling processes Key results

Retrospective evaluations using clinical data, or epidemiological modelling

van den Broek
et al. [178]

US
Women aged 30–50 years

Breast cancer simulation models: average-risk
women, screened according to USPSTF
guideline
Family history strategy
Polygenic breast cancer risk model (313 SNPs)
Family history+ polygenic risk

Per 1000 women screened, during lifetime: 118
life-years gained, 7 deaths averted, 15
overdiagnoses, 920 false positives
125 life-years gained, 6.9 deaths averted, 14.9
overdiagnoses, 1000 false positives
141 life-years gained, 7.4 breast cancer
deaths averted, 16.0 overdiagnoses, 1156
false positives
154 life-years gained, 7.9 deaths averted, 16.6
overdiagnoses, 1169 false positives

Mukama et al.
[82]

Sweden, n= 5,099,172 10-year cumulative risk curves for
breast cancer
Analysed risk levels of women with parity and
first birth age: risk-adapted starting age of
screening based on reproductive profiles

Women with first birth at age <25 years and
one child attained the same level of risk as
average 50-year-old female at age 51 years;
those with parity of 4 or more met this
threshold at 59

Mukama et al.
[81]

Sweden, n= 5,099,172 Modelled age at which women with specific
permutations of family history variables
attained the risk level of the average 50-year-
old woman (age at which screening starts)

If screening would be advised to start at 50
years, women with one first-degree relative
diagnosed with breast cancer aged <40 years
met the benchmark level of risk at 36
years of age

Lee et al. [88] US Screening mammograms
from 2,647,315 women

Separated women into risk groups based on
5-year age bracket, family history of breast
cancer, personal history of breast cancer and
dense breasts

Women aged 30–34 years had similar cancer
detection rates and recall rates as those aged
40–49 years, suggesting earlier screening in
women at higher risk may be appropriate

Burnside et al.
[87]

US Screening mammograms
from 10,280 women

Cross-sectional study comparing two
scenarios: standard age-based screening
versus risk-based, defined as having 5-year
risk greater than average 50-year-old

Age-based screening diagnosed more
cancers than risk-based (68 versus 26%),
more false positives (50.3 versus 12.1%)

Prospective epidemiological studies

Yen et al. [79] Taiwan, population-based
cohort study, n= 1,429,890

Cohort study of three screening strategies,
adjusting for propensity score for
participation: clinical breast examination, risk-
based mammography and universal
mammography (aged 50–69 years)

No overdiagnosis compared to clinical
examination for risk-based screening, versus
13% overdiagnosis with universal screening
41% reduction in breast cancer mortality
with universal screening (adjusted for year of
birth and propensity score), non-significant
reduction with risk-stratified screening
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groups (age at menarche, parity, breastfeeding and BMI), Cox
models were used, where screening modality was modelled as a
time-dependent covariate. Compared to clinical examination,
universal biennial mammography had a higher breast cancer
detection rate, was associated with a downwards stage migration
of detected cancers, a 13% overdiagnosis rate (95% CI: 8–18%), a
30% reduction in stage II+ breast cancers (hazard ratio [HR] 0.70,
95% CI: 0.66–0.74), and a 41% reduction in breast cancer mortality
(95% CI: 27–52%) when adjusting for propensity score and year of
birth [79]. Compared to clinical examination, the overdiagnosis
with risk-based screening was negligible (HR for diagnosis 0.97,
95% CI: 0.92–1.03), there was an 8% reduction in stage II+ breast
cancers (HR 0.92, 95% CI: 0.86–0.99) and a ‘non-significant’
reduction in breast cancer mortality of 14% (HR 0.86, 95% CI:
0.73–1.03) [79]. However, the risk-stratification mechanism in this
study was unclear—data were not provided on the modelling
methodology used, the risk score covariates, the risk score
distribution in the population seeking to opt into risk-based
screening (or across the three arms) or performance evaluation to
assess if this approach was suitable for clinical use. Further detail is
needed to make meaningful inferences on the performance of
risk-based screening versus ‘standard’ screening in this analysis. In
addition, given the relatively low, albeit increasing, breast cancer
incidence rate in this population, risk stratification beyond age
and sex may have different proportional benefits in Taiwan in
comparison to other nations.
Rather than analysing the effects of altering screening intensity

or avoiding screening in low-risk women, a large Swedish cohort
with linkage to several national databases (n > 5,000,000 women)
was used to assess whether earlier screening starting ages could
be appropriate for some women. By using 10-year cumulative risk
estimations, the risk level of the ‘average’ 50-year-old woman that
would be offered screening was calculated as a benchmark. The
ages at which other women would attain the same 10-year risk
were compared, based on patterns of family history [81] or
personal reproductive history (parity and age at first birth) [82].
Both studies found that either approach could identify women
who, despite not being eligible to start age-based screening, had
the same 10-year risk estimate as 50-year-old women who would
be invited to screen, or indeed may only attain that same
threshold of risk after age 50 years. For example, women who had
their first baby aged under 25 years met the benchmark aged 51
years, whereas women who had four births by age 25 years met
this at 59 years of age [82]. Furthermore, women with one first-
degree relative diagnosed with breast cancer before the age of 40
years met the average risk of women starting age-based screening
at age 36 years [81]. Therefore, despite debate around the benefits
of universally expanding screening to younger age groups such as
the lack of long-term effect seen in Age UK [83], selected women
with selected risk factors may be suitable for earlier or delayed
commencement of early detection strategies. The optimal way to
assess risk would require elucidation as reliance on two albeit
important risk factors may inadequately capture risk.
In the radiological literature, some commentators have voiced

criticism of the potential harms offered by risk-stratified screening
[84–86], typically fuelled by retrospective studies applying risk
factor-based decision rules to cohorts of women that partook in
service screening [86–89]. For example, Lee et al. examined recall
rates, cancer detection rates and positive predictive values for
biopsy recommendation and the fact of biopsy across age groups,
when accounting for breast cancer family history, personal breast
cancer history and having dense breasts in a cohort of >2.6 million
women [88]. The recall and cancer detection rates in 30–39-year-
old women were the same with these risk factors undergoing
incidence screening as the 40–49-year-old ‘average-risk’ women
undergoing screening; thus, they concluded that such a higher-
risk women may benefit from earlier screening starting age. Other
institutional studies have expressed concern that risk-stratified

approaches have the potential to miss 75.6–88% of cancers if
screening was purely based on family history, 56–86% of cancers if
density was the sole determinant or 43.5–76% if access to
screening was dictated by positive family history and breast
density [86, 89]. Such approaches are not powered to assess the
effects of varying screening approaches on stage at detection nor
breast cancer mortality, but most crucially, they rely on relatively
simplistic determinations of relative risk. Prospective clinical trials
are not evaluating such approaches, rather, more nuanced
methods for estimating risk.
Overall, currently available epidemiological evaluations or

retrospective clinical estimations of breast cancer screening
guided by individualised risk are insufficient to inform the utility
of risk-stratified screening.

Prospective cohort studies
Three notable cohort studies are currently exploring multiple
aspects pertaining to the feasibility and acceptability of persona-
lised risk assessment in the general population: specifically, the
Personalised RISk-based MAmma screening study (PRISMA), the
Karolinska Mammography Project for Risk Prediction of Breast
Cancer (KARMA) and the Predicting the Risk of Cancer at
Screening study (PROCAS).
PRISMA is a Dutch collaboration between institutions including

Radboud UMC Nijmegen and the North, East, West and South
Screening Programmes. In 2014, PRISMA started recruiting
asymptomatic women aged 50–75 years in the general population
eligible for the national screening programme for data collection
via questionnaires, blood and saliva samples and mammograms
for assessing breast density. It has a target of 90,000 women with
regards to risk factor questionnaire data collection and imaging,
and 27,000 blood samples. It aims to not only develop risk
prediction models as a fulcrum for investigating risk-based
screening strategies but undertake a robust assessment of the
acceptability of risk-based screening from ethical, psychological,
legal and logistical perspectives. Outputs from PRISMA thus far
include multi-cohort qualitative research incorporating indivi-
duals from KARMA and PROCAS, which identified a preference
for risk-tailored assessment results communication (e.g. letters for
below average and average risk, face-to-face appointments for
higher risk), the need for standardised risk assessments within
national policies and detailed information needs for women in
different European countries [90, 91].
The KARMA prospective screening cohort is developing an

extensive resource of banked biological, mammogram and
lifestyle/clinical factor information from over 70,000 women [92].
Its aims include identification of novel circulating risk markers,
genetic risk factors and imaging protocols, assessment of high-
throughput breast density measurement, trials of pharmacological
prevention therapies such as lower-dose anti-oestrogen therapy
and risk communication as well as the development of new risk
prediction models with an evaluation of how these could be
implemented within screening routines. Notable outputs include
the CAD2Y model, which integrates mammographic features such
as computer-detected microcalcifications with ‘clinical’ factors for
short-term risk prediction [93], risk estimation integrating mam-
mographic density and polygenic risk [48, 94], and contributions
to the identification and understanding of genomic breast cancer
risk by multi-centre consortia [95–98].
The PROCAS 2 study began in 2015 following PROCAS 1, which

recruited over 50,000 women eligible for screening mammogra-
phy at the Great Manchester NHS Breast Screening Programme.
Lifestyle, reproductive history and other clinical informations were
collected via questionnaires, with imaging assessment of mam-
mographic density and DNA obtained for polygenic risk analysis
[99]. Numerous studies have been undertaken within the remit of
PROCAS, such as the evaluation of Tyrer–Cuzick and Gail risk
prediction models in a screening population, the predictive
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impact of the inclusion of mammographic density [68] and/or
polygenic risk score components into these [30, 100], extensive
assessment of risk feedback and perception [101–103] and
probing associations between ethnicity and mammographic
density [99]. PROCAS outputs have been central to supporting
the feasibility of population-based breast cancer risk assessment
[101, 104], including identifying no major psychological harms of
providing 10-year risk estimates from different forms of risk
algorithms [103].

Prospective evaluations and trials of risk-stratified screening
Prospective clinical studies and ideally randomised trials should
evaluate risk-based screening practices in terms of outcomes,
balance of harms and benefits, cost-effectiveness and accept-
ability. Several key studies are underway [105–108], including
NCT04359420 [108]. This is a non-randomised, counterbalanced
study across seven screening sites in the United Kingdom, in
which women on an invitation to the NHS Breast Screening
Programme will either be offered the standard programme or the
additional invitation to use BC-Predict, an automated system for
offering a breast cancer risk assessment (to include question-
naires, breast density measurement and polygenic risk) on an
invitation to screen [108]. Its aims include assessing risk
assessment uptake after offer, uptake of risk consultation,
chemoprevention or additional mammography, as well as risks
of potential cancer worry, anxiety or health service costs [108].
Many others do not strictly seek to evaluate the outcomes of
screening intensity/eligibility decisions based on individualised
risk estimation. Indeed, some are also exploring how best to
communicate personal risk (e.g. PROSPR/PCIPS 3, NCT01879189),
promote breast screening uptake based on risk factor-specific
educational materials (e.g. NCT00416975) or identify optimal
imaging modalities for women at specific levels of predicted risk
(e.g. NCT00003736).
The Women Informed to Screen Depending on Measures of risk

(WISDOM) trial is a preference-tolerant randomised trial of a risk-
based screening algorithm versus standard screening practice in
the United States that started in 2016 [105]. Absolute breast
cancer risk estimates are generated using the BCSC model [49],
modified by a polygenic risk score incorporating 96 SNPs using
Bayesian principles [105] and testing for nine high- or moderate-
risk genes (BRCA1, BRCA2, TP53, STK11, PTEN, CHD1, ATM, PALB2
and CHEK2). Predicted risks at 5 years and age dictate the
screening strategy. For those aged 40–49 years: women with a
5-year risk of <1.3% are not being offered screening, those with a
5-year risk of 1.3% or greater are undergoing biennial mammo-
graphy, whilst women with extremely dense breasts or who are
carriers of ATM/PALB2/CHEK2 mutations without a positive family
history are undergoing annual mammography. For women aged
50–74 years, all are undergoing biennial mammography unless
they are carriers of ATM/PALB2/CHEK2mutations without a positive
family history in which case they receive annual mammography.
Regardless of age group, annual mammography with adjunct MRI
is being deployed in carriers of BRCA1/BRCA2/TP53/PTEN/STK11/
CDH1 mutations regardless of family history, carriers of ATM/
PALB2/CHEK2 mutations with a positive family history, those who
had chest irradiation between the ages of 10–30 years or have a
5-year breast cancer risk of at least 6%. With target recruitment of
100,000 women, it has been projected that 75% of women aged
40–49 years will be allocated to ‘no screening’, whereas 91% of
women aged 50–74 years will undergo biennial mammography
[105]. The primary endpoints are non-inferiority to standard
screening regarding the number of late-stage breast cancers
diagnosed (>stage IIB), and rates of recall and breast biopsy.
Secondary endpoints include the rate of stage IIB and interval
cancers, recall rates, rates of DCIS diagnosis, rates of chemopre-
vention use, cancer incidence rate, PROMIS anxiety score and rates
of systemic therapy use between arms. Importantly, the design is

inherently adaptive so that risk assessment methodology and
screening strategies are adjustable in line with future evidence
under a ‘continuous improvement’ framework [18].
The population-based Tailored Breast Screening Trial

(NCT02619123) was initiated in Italy in 2013, and is randomising
pre-menopausal women aged 44 years and older to invitation to
‘tailored screening’ or an active comparator [107]. The target
recruitment is 33,200 women and the estimated study completion
date will be early 2022. In the tailored arm, those with BI-RADS
grade C–D breast density receive annual mammogram invitations
until age 50 years and then standard population screening; those
with lower density breasts are invited 2-yearly until age 50 years
and then standard population screening. In the active comparator
arm, women are invited to annual mammography until age 50
years, followed by usual population screening. The primary
outcome measures are the difference in cumulative interval
cancers between arms (also by density group) and the cumulative
incidence of >T2 or node-positive breast cancers by arms (also by
density group). Secondary endpoints include a comparison of
false-positive rates between arms, the cumulative incidence of all
breast cancer cases and attendance to screening. However, the
ramifications of this trial on clinical practice may be limited, due to
the basis for stratification (dense versus non-dense breasts), the
small divergences in screening strategy (annual or biennial
mammography) and the short period in which the screening
intensity will be altered.
The other key trial is My Personalized Breast Screening

(NCT03672331); an international study seeking to recruit 85,000
women aged 40–70 years, in which screening strategy in the
experimental arm will be dictated by risk assessment incorporat-
ing age, family history, previous benign breast disease, hormone/
reproductive history and a polygenic risk score. Specifically,
women with one or no first-degree relatives with breast or
ovarian cancer will utilise the MammoRisk® model, otherwise, the
Tyrer–Cuzick model will be used (see above). No data regarding
the proprietary MammoRisk® algorithm structure itself or results of
performance evaluation is accessible on the owning company’s
website (https://www.predilife.com/en/home-2/, accessed 1
November 2020) or identifiable on Medline, although studies of
acceptability/ease of software use are available [109, 110]. In the
comparator arm, women will be screened with mammography,
tomosynthesis or MRI in accordance with extant national guide-
lines, whereas in the active arm, an estimated 5-year risk will
inform mammography and/or tomosynthesis screening every 1 to
4 years (with or without ultrasound depending on breast density).
The trial has a non-inferiority design and the primary outcome is
the incidence of stage >II breast cancers for the risk-stratified arm.
Secondary outcome measures include a superiority analysis
regarding the incidence rate of stage >II cancers, rates of false
positives and benign biopsies, subject anxiety, health-related
quality of life according to the EQ-5D and cumulative breast
cancer diagnosis rates.
Overall, three key randomised trials are underway to assess the

outcomes associated with different screening intervals, starting
age, or imaging modalities based on individualised risk assess-
ment, although there is diversity in the robustness of the risk
assessment mechanism. The initial results from these trials are
likely to emerge within the next 3 years, and it is notable that the
largest and most comprehensive is adaptable [105], in that newer
methods of risk assessment or amended screening strategies can
be incorporated should novel evidence emerge.

Health economic evaluations of stratified screening
Economic simulations of risk-stratified breast screening have
modelled the clinical outcomes and cost-effectiveness of a range
of scenarios in health systems such as the United Kingdom’s NHS
Breast Screening Programme [16, 111], the United States
[112, 113], Germany [114, 115], the Netherlands [116] and China
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[117]. Models have evaluated the stratification of screening
intensity based on classical risk factors such as family history,
class of breast density, age or relative risk based on polygenic risk
scores. Across models, analytical approaches have been com-
pared, e.g. relative numbers of breast cancer deaths avoided, rates
of overdiagnosis, incremental costs or incremental quality-
adjusted life-years and incremental cost-effectiveness ratios.
Whilst it appears that such modelling does lend support to the

general concept of altering screening practices on the basis of risk
to strike a more favourable balance of benefits (reduction in breast
cancer deaths) and harms (overdiagnosis and unnecessary
treatment) or to formulate a more cost-effective approach, a
cohesive narrative regarding a particular algorithm-informed
strategy is difficult to synthesise. Table 4 summarises the
approaches and key results from such studies. These existing
studies may diverge from real-world practice in terms of the
ascertainment of individual risk (in terms of nuance and approach)
or may be limited by incomplete information on risk distributions
in the target population.
More simplistic estimations of relative risk on a small number of

covariates tend to be used as the stratification mechanism, such as
‘positive family history’ or breast density category, or use blunter
approaches to ascertain ‘high-risk’ women, such as the relative risk
of 2.0 or greater. Multivariable risk assessment seeks to offer more
nuanced estimations of risk, which are not recapitulated in many
studies. Modelling the implementation of a polygenic risk
assessment to inform relative risk may be limited by the relatively
small absolute contribution that genetic factors may play in the
majority of women that do not have high- or medium-penetrant
mutations. As some studies have highlighted, the lack of data on
the true distribution of risk groups in the target population as a
whole limits their assessment of the impact of risk-based
screening practices in a health system.
The approaches to and thresholds used to risk-stratify screening

appear to differ between studies. Some seek to find the
economically optimal screening interval or starting age for
screening in cohorts simulated as having set risk levels, or even
have intensified screening with additional imaging modalities as
one pathway in their models. Few compare existing age-based
methods with risk-stratified approaches in the same target
population, and fewer evaluate a more robust view of risk-
adapted screening, namely not offering screening to those at the
lowest risk. Furthermore, the direct comparator in some studies is
‘no screening’ rather than an evaluation of transitioning from age-
based screening to truly risk-adapted screening.

Qualitative research
In order to accept screening strategies tailored to individual risk,
women need to be able to access and comprehend accurate risk
estimations [118–120], and indeed, many women are interested to
understand and discuss their risk [90, 101, 102, 121, 122]. Risk
communication and risk perception are multifaceted and complex
[119], yet it is striking that as few as 10% of women have accurate
perceptions of personal risk with an otherwise roughly even split
between under- and over-estimators [123, 124]. The variable use
of absolute and relative risks can have major influences on
screening intentions or in some cases be misleading [125].
A growing body of qualitative research has synthesised

evidence from focus groups, semi-structured interviews and other
methodologies regarding stakeholder views on the implementa-
tion and acceptability of risk-stratified screening [90, 126–136].
Particularly key considerations are those pertaining to commu-
nication of risk and risk-based pathways across languages and
cultural groups [127], socioeconomic groups and those that have
lower engagement with preventive healthcare. Generally, percep-
tions of risk-based screening appear to be favourable, whether
based on genetic risk [133, 137] or other factors. Whilst it felt to be
acceptable in principle by many women, the evidence base used

to support these approaches needs clear articulation to secure
buy-in [126] and reasons for heterogeneous policies for different
groups need to be transparent [126]. Importantly, perceptions of
risk stratification as a euphemism for service funding reductions
may arise [128], and there should be cognisance of anxiety around
self-directed risk assessment if used, such as via websites or apps
[138] (albeit, at low levels) [134].

DISCUSSION
Genetic, pharmacological and environmental or lifestyle factors
affect breast cancer risk, with heterogeneity encountered in terms
of individual women’s risks and the risks posed by individual
tumours. As one-size-fits-all approaches are increasingly dispar-
aged in breast cancer treatment, detection and prevention under
the auspices of ‘personalised healthcare’ [21], the use of age as the
single precision factor for guiding early detection strategies in
women may be over-reductionist [19–21]. Approximately one-
quarter of all breast cancers are diagnosed in women ineligible for
screening due to age, only around 30% of breast cancers in the
United Kingdom are detected by the triennial UK screening
programme [139] (43% of all breast cancers in the United States
[140]), and current methods may predicate overdiagnosis
[3, 5, 8, 11]. In the United States, 73% of breast cancers in biennial
screeners are detected by mammography, and 78% of breast
cancers are detected by screening in annual screeners [141].
Approaches that tailor screening intensity and personalise
modalities to those that stand most to gain and minimise
unnecessary interventions in those with little to gain require
robust evaluation.
It is relevant to distinguish between the use of genetic, lifestyle

and other factors in tools for long-term risk prediction to guide
imaging strategies over a woman’s ‘screening lifetime’ and
estimating the risk of an underlying cancer being present at the
time of screening. Compared to settings such as lung cancer
screening, where smoking history has the predominant effect on
decision-making and may approach immediate diagnostic rele-
vance, the long-term prediction of breast cancer relies on
appropriate multi-factorial assessment using data points that
have ‘weaker’ effects on risk.
Approaches to risk-stratified screening that have been explored

include altering screening intensity, screening starting age or
screening technology used and therefore a single consensus
definition has not emerged, nor on the optimal form risk-stratified
screening could take. One concern is that a paradigm withholding
access to screening with a sensitive imaging modality in those
deemed ‘low risk’ by a less sensitive predictive model may be
inappropriate. As such, there must be judicious consideration of
whether a ‘screen-only high-risk’ model is ethically, economically
and clinically appropriate in comparison to other models such as
the current effective approach, or those that seek to deliver
screening that is ‘tailored according to risk’, where risk assessment
influences the factors mentioned above without removing women
from the screening pool. It is not yet clear which if any of the
currently available risk models or risk-based strategies deliver on
this concept—ongoing trials and other continued progress in
optimising individualised risk estimation and screening strategy
should begin to deliver clinically informative answers in the
coming years [105–107]. Further, individualised risk estimation
may not only be useful for stratifying screening strategy to reduce
harms but to also reduce the substantial public health burden of
breast cancer, potentially through identifying women at pre-
viously unknown high risk suitable for prevention therapy (e.g.
Anastrozole or Tamoxifen).
Alongside the elucidation of the optimal degree of nuance for

breast screening pathways, it would be essential to explore risk
communication strategies, and continually monitor such programs’
effectiveness both clinically and economically. Another avenue for
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future work will be further assessment of stated preferences, such as
through discrete choice experiments [142, 143] or contingent
valuation studies, and the trade-offs between benefits, risks and
costs in making such preferences in a stratified programme.
Concerns have been raised that risk-stratified screening poses the

danger that many breast cancers may be ‘missed’ by not screening
women believed to be at low risk [84, 144]. However, many such
studies ignore the inherently multivariable nature of the best
performing currently available risk models [30, 47, 50], compare
current age-based screening against a straw man of blunt risk
estimation that is not advocated, and are not powered to identify the
effects on important outcomes such as the proportion of late-stage
cancer detected, or cancer survival. Stratification may lead to changes
in imaging strategy, such as increased use of supplemental MRI,
which randomised trial evidence suggests reduces rates of interval
cancers in women with extremely dense breast tissue [145]. Recent
evidence of supplemental abbreviated MRI in women at average risk
with dense breasts and negative digital tomosynthesis results appears
to increase the prevalent cancer detection rate (up to 27.4 per 1000
women), but the survival benefits are yet to be quantified [146].
Overdiagnosis and overtreatment have been widely acknowl-

edged in prostate cancer screening for years [147–150], yet a
progression towards risk-stratification of screening itself or risk-
guided management of detected neoplasms is far more mature
than in the breast cancer field [149, 151]. The debate around
differing estimates of screening mammography’s benefits and
harms has become increasingly polarised over recent decades
[4, 18, 152–158], with consistent disagreement over the inter-
pretation of decades-old trials, the reliability of specific rando-
mised studies, statistical approaches used to interpret them or
epidemiological studies [11, 158–160]. However, whilst the clearly
prevailing consensus is that screening mammography reduces
breast cancer mortality, whether this can be further improved is a
worthy avenue to explore. Recently, trials have been designed to
provide evidence to inform this. Should their results be positive,
they must be followed by careful consideration of whether the
‘new normal’ would be acceptable to healthcare systems, policy-
makers, clinicians and members of the public.
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