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Density and maturity of peritumoral tertiary lymphoid
structures in oesophageal squamous cell carcinoma predicts
patient survival and response to immune checkpoint inhibitors
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BACKGROUND: Tertiary lymphoid structures (TLSs) are ectopic lymphoid aggregates in non-lymphoid tissues, which are associated
with improved prognosis in some cancer types. This study aimed to investigate the clinical significance of TLSs in oesophageal
cancer (EC).
METHODS: In a series of 316 EC surgical specimens from two different institutes, we evaluated the density and maturity of
peritumoral TLSs using haematoxylin/eosin, immunohistochemistry, and multiplex immunofluorescence staining. We analysed the
association between TLSs and clinicopathological parameters. The clinical significance of TLSs was further evaluated in a different
cohort of 34 patients with recurrent EC treated with anti-PD-1 antibody.
RESULTS: Tumours with high TLS density predominantly consisted of matured TLSs. High TLS density was significantly associated
with less advanced tumour stage, absence of lymphatic/vascular invasion, better serum nutrition parameters (neutrophils count,
albumin, neutrophil-to-lymphocyte ratio, and prognostic nutritional index), and prolonged survival. This survival trend was more
remarkable in cases with matured TLSs, which represented an increased population of CD138+ plasma cells. In the second EC
cohort, TLS density predicted the clinical response to anti-PD-1 antibody and patient survival.
CONCLUSION: The density and maturity of peritumoral TLSs are useful parameters for predicting long-term survival and response
to anti-PD-1 antibody treatment in EC patients.
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INTRODUCTION
Oesophageal cancer (EC) is a common malignant gastrointestinal
disease, and the sixth leading cause of cancer-related death
worldwide [1]. Despite the development of multimodal treat-
ments, including combinations of surgery, chemotherapy, and
radiotherapy [2–6], EC still has an unsatisfactory prognosis. The
limited efficacy of conventional treatment strategies has
prompted the development of novel treatments for EC, including
with immune checkpoint inhibitors (ICI) [7, 8].
The recent development of ICI for several cancer types

highlights the importance of the tumour immune microenviron-
ment [9, 10]. Research has demonstrated that immune cells
infiltrating the tumour microenvironment (TME) play important
roles in the antitumor responses and clinical outcomes. Notably,
tumour-specific T lymphocytes, known as tumour-infiltrating T
lymphocytes (TILs), are reportedly associated with better
prognosis in several cancer types [11–13]. We previously
demonstrated that TILs have clinical impacts on treatment
efficacy and survival in EC patients [9]. On the other hand, the

clinical significance of other infiltrates in the TME of EC remains
unclear.
Tertiary lymphoid structures (TLSs) are ectopic lymphoid

formations that develop in non-lymphoid tissue with chronic
inflammatory disorders [14, 15]. They are also expressed in
cancers, particularly inflammatory-related cancers, as structured
aggregates of immune cells, which show an organisation similar to
secondary lymphoid organs [16, 17]. They are considered a
possible facilitator of the influx of immune cells into the tumour
site, and have attracted interest as a potential means of improving
antitumor immunity. Previous studies show that the presence and
maturity of TLSs are correlated with tumour progression or
prognosis, and can predict responses to chemotherapy or
immunotherapy in several tumours [18–22]. However, these
relationships have not been studied in EC.
In this study, we aimed to assess the expression and maturity of

peritumoral TLSs in EC, by performing hematoxylin/eosin (H&E)
staining and immunohistochemistry (IHC). We also analysed the
cell profile of TLSs by multiplex immunofluorescence (IF) staining.
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METHODS
Patients and samples
This study enrolled a total of 316 consecutive patients with oesophageal
squamous cell carcinoma who underwent esophagectomy at two
institutions, Osaka University Hospital and Osaka International Cancer
Institute, from January 2001 to December 2017. All patients underwent
curative surgical resection without preoperative chemotherapy or (chemo-)
radiotherapy. This study also included a different cohort of 34 EC patients
who received anti-PD-1 antibody as a second- or later-line treatment for
postoperative recurrence at Osaka University Hospital from June 2014 to
September 2021. All participants gave informed consent, and the study
procedures were approved by the Institutional Review Board of Osaka
University Hospital (No. 20056).
The patients’ clinicopathological information was collected from the

clinical database and pathological reports of each institution. Haematolo-
gical findings and indices were based on preoperative data. As serum
nutrition parameters, the neutrophil-to-lymphocyte ratio (NLR) and
prognostic nutrition index (PNI) were calculated as previously described:
NLR= total neutrophil count (/mm3)/total lymphocyte count (/mm3);
PNI= 10 × serum albumin (g/dL)+ 0.005 × total lymphocyte count
(/mm3) [23, 24]. Tumour staging was performed according to the eighth
edition of the Union for International Cancer Control TNM classification
system [25]. The standard nivolumab regimen was intravenous adminis-
tration of 240mg nivolumab, every 14 days [7]. Responses to ICI therapy
were assessed as best overall response according to Response Evaluation
Criteria in Solid Tumours (RECIST), version 1.1 [26].
Formalin-fixed paraffin-embedded surgical specimens were collected

from all patients, and serial 4-µm-thick sections were prepared for H&E,
IHC, and multiplex IF staining [27–29]. The sample blocks containing the
deepest portion of tumour tissue were used.

Immunohistochemistry
All slides were manually processed. Sections were deparaffinized in xylene,
placed in citric acid-based retrieval buffer (pH 6.0), and heated at 110 °C for
15min in a pressure cooker, according to the manufacturer’s protocol. The
slides were washed in distilled water, treated with 3% H2O2 for 20min,
washed three times in 0.1% Triton X-100/PBS, and then blocked using 1.5%
serum solution/PBS. Antibodies were diluted in PBS. Samples were
incubated with primary antibodies overnight at 4 °C, washed three times,
incubated with secondary antibodies for 20min at room temperature, and
then washed three times. Detection was performed using an avidin-
biotinylated enzyme complex kit (Vectastain ABC Kit, PK6100, Vector,
Newark, USA) and 3ʹ-3-diaminobenzidine (DAB) substrate (Wako, Japan),
following the manufacturer’s protocol. Slides were counterstained with
hematoxylin, washed, dehydrated with ethanol, and mounted. The primary
antibodies were CD21 (2G9, NCL-L-CD21-2G9; Leica Biosystems, Germany),
CD23 (SP23, ab16702; Abcam, Cambridge, UK), PD-1 (NAT105, ab52587;
Abcam, Cambridge, UK) and the secondary antibodies were horse anti-
mouse IgG (BA-2000; Vector, Newark, USA) and goat anti-rabbit IgG (BA-
1000; Vector, Newark, USA). The serum-blocking solutions were horse (S-
2000; Vector, Newark, USA) and goat (S-1000; Vector, Newark, USA).

Pathological evaluation of TLS expression and maturity
To assess TLS expression, we identified dense lymphatic aggregates in the
whole tumour area and counted their numbers in H&E-stained sections. For
quantitative evaluation, we scanned whole slides, and regarded the
peritumoral region as the range within 1000 µm from the boundary of the
tumour nest—which is where TLSs were exclusively formed in our
preliminary experiment. The area of each peritumoral region was measured
using a digital microscopy system (BZ-X710; Keyence, Osaka, Japan) and its
dedicated analytical software (BZ-H3A; Keyence, Osaka, Japan). We defined
TLS density by calculating the number of TLSs per mm2 in the peritumoral
region, as the standardisation of pathological expression.
To assess TLS maturity, serial sections were stained with H&E and IHC for

CD21 and CD23 (markers of follicular dendritic cells and germinal centres,
respectively). Samples from each case were evaluated based on both the
morphological features and the combination of molecular signals,
according to the previously reported methods [21, 30]. We classified each
TLS into three maturation categories, as follows: early TLSs (E-TLSs), vague
dense lymphocytic aggregations lacking CD21 or CD23 signals; primary
follicle-like TLSs (PFL-TLSs), definite round- or oval-shaped clusters of small
lymphocytes with CD21 signals but not CD23 signals; secondary follicle-like
TLSs (SFL-TLSs), follicles with a definite germinal centre formation
comprising large lymphocytes with clear cytoplasm, and having both

CD21 and CD23 signals. For each case, we defined the density and
proportion of each maturation category.

Multiplex immunofluorescence staining
The experimental process of specimen preparation was the same as for a
single IHC. Primary antigen retrieval was performed using High pH Target
Retrieval Solution (DAKO, Glostrup, Denmark). The primary antibodies were
anti-CD1c (mouse monoclonal, clone OTI2F4; Abcam, Cambridge, UK), anti-
CD4 (mouse monoclonal, clone 4B12; Invitrogen, Waltham, USA), anti-CD8
(mouse monoclonal, clone C8/144b; DAKO, Glostrup, Denmark), anti-CD19
(mouse monoclonal, clone LE-CD19; Invitrogen, Waltham, USA), anti-CD21
(rabbit monoclonal, clone SP32; Abcam, Cambridge, UK), and anti-CD138
(mouse monoclonal, clone MI15; DAKO, Glostrup, Denmark). For secondary
detection, we used a horseradish peroxidase-labelled detection system
(EnVision plus; DAKO, Glostrup, Denmark) as a catalyst for fluorophore-
conjugated tyramide. Antigen stripping was performed using Immunoac-
tive Retrieval Buffer (pH 6; Matsunami Glass, Osaka, Japan). Tyramide signal
amplification was performed using Opal fluorophore reagents (Akoya
Biosciences, Marlboro, USA); Opal 520, Opal 540, Opal 570, Opal 620, Opal
650, and Opal 690 were used for CD1c, CD4, CD8, CD19, CD21, and CD138,
respectively. DAPI counterstaining was performed using Spectral DAPI
solution (Akoya Biosciences, Marlboro, USA).

Quantitative imaging analyses
For each TLS, co-localised signals were detected, and tissue images
(669 × 500 µm in size) were captured into multispectral images using an
automated pathology imaging system (Vectra 3.0; Perkin Elmer, Waltham,
USA). The number of fluorescent-positive cells was counted using
automated analytical software (InForm; Perkin Elmer, Waltham, USA), with
the appropriate programmed cell-count algorithm [10]. We determined the
expression pattern of CD1c+ dendritic cells, CD4+ T lymphocytes, CD8+ T
lymphocytes, CD19+ B lymphocytes, CD21+ follicular dendritic cells, and
CD138+ plasma cells. We acquired all the cell-count data with any
molecular signals, and calculated both the density and proportion of each
signal in a field for quantitative analysis.

Statistical analysis
We analysed relationships between clinicopathological characteristics
using the chi-square test or Fisher’s exact test for categorical variables.
Continuous variables are expressed as median and range, and were
analysed using the Mann–Whitney U test. For survival analysis, the
Kaplan–Meier method was used to evaluate the survival time distribution,
the log-rank test for comparisons, and a Cox proportional hazard model for
computing the hazard ratio (HR) and univariate/multivariate analysis. The
prognostic variables that showed a significant association in univariate
analysis were included in multivariate analysis. P < 0.05 was considered to
indicate statistical significance. All P values were two-sided. Statistical
analyses and data descriptions were performed using JMP Pro software
(version 16.2.0; SAS Institute Inc., Cary, USA).

RESULTS
The expression and maturity of tumour-associated TLSs in EC
Evaluation of the presence and localisation of tumour-associated
TLSs in EC revealed that most TLSs were formed in peritumoral
regions, and there were no dense lymphocytic aggregates in the
intratumoral regions (Fig. 1a). TLSs rarely existed near adjacent
normal epithelium, and exhibited low-density and small lymphatic
clusters around intraepithelial neoplasia. We assessed the TLS
density around adjacent normal, dysplastic, and tumoral epithe-
lium in several pT1 cases (Supplementary Fig. S1A). The TLS
density (/mm2, [range]) in normal, dysplasia, and tumour lesion
were 0.058 [0–0.12], 0.10 [0–0.41] and 0.36 [0.091–1.70], respec-
tively. Evaluation of TLS surrounding dysplasia lesions by H&E
staining and IHC of CD8, PD-1, CD21 and CD23 were shown in
Supplementary Fig. S1B as representative images; matured TLSs
were found to existed beneath the dysplasia lesion with the
accumulation of TILs expressing CD8 or PD-1 in both TLSs and
dysplasia area. Based on these findings, we decided to focus on
TLSs in the peritumoral regions for analysis, as described above. In
IHC pathology, clusters of CD21+ cells were detected inside of
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Fig. 1 Evaluation of peritumoral tertiary lymphoid structure (TLS) according to density and maturity by hematoxylin/eosin (H&E)
staining and immunohistochemistry (IHC) of CD21 and CD23. a Representative sections for counting peritumoral TLSs (arrowheads) within
peritumoral regions. b Representative images of TLSs in each maturation category as evaluated by H&E and IHC. Early TLSs (E-TLSs) are vague
dense lymphocytic aggregations without CD21 or CD23 signals. Primary follicle-like TLSs (PFL-TLSs) are definite round- or oval-shaped clusters
of small lymphocytes with CD21 signals, but no CD23 signals. Secondary follicle-like TLSs (SFL-TLSs) are follicles with a definite germinal centre
formation, comprising large lymphocytes with clear cytoplasm, and having both CD21 and CD23 signals. c Distribution of TLS density and
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density. Red lines and the numbers next to them show median values. e, f TLS density according to pT (e) and pStage (f). Scale bars:
a= 500 µm; b= 100 µm. Comparisons were made by Mann–Whitney U test.
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PFL-TLSs and SFL-TLSs but not E-TLSs, and CD23+ cells further
inside, as germinal centres, only of SFL-TLSs (Fig. 1b). We identified
peritumoral TLSs in 90.8% of all cases—including E-TLSs in 74.7%,
PFL-TLSs in 54.1%, and SFL-TLSs in 64.9%.
Next, we assessed the distribution of peritumoral TLS density

and proportion in each maturation category (Fig. 1c). All cases
were classified into two groups—TLS high versus TLS low—using
the median total TLS density (0.325/mm2) as the cut-off value.
Compared to the TLS low group, the TLS high group had a
significantly lower proportion of immature E-TLSs, and a higher
proportion of matured PFL-TLSs and SFL-TLSs (Fig. 1d). We also
found that greater progression of pT or pStage was associated
with lower peritumoral TLS density (Fig. 1e, f).

Relationship between TLS expression and clinicopathological
parameters
The baseline characteristics of all cases are summarised in
Supplementary Table S1. We performed a comparison of
clinicopathological characteristics according to TLS density
(Table 1). Compared to the TLS high group, the TLS low group
was significantly associated with advanced tumour status,
including pT2–4 (29.1 vs. 68.3%, P < 0.0001), pN1–3 (38.0 vs.
56.3%, P= 0.0016), pStage III/IV (49.4 vs. 75.3%, P < 0.0001),
lymphatic positivity (50.6 vs. 66.5%, P= 0.0060) and vascular
invasion (34.2 vs. 63.3%, P < 0.0001). Additionally, compared to the
TLS low group, the TLS high group was associated with
significantly better serum nutrition parameters, including serum
neutrophil counts (3058 vs. 3674 per mm3, P < 0.0001), serum
albumin (4.0 vs. 3.9, P= 0.0059), NLR (1.89 vs. 2.58, P < 0.0001), and
PNI (48.3 vs. 45.8, P= 0.0013), presumably reflecting the systemic
immune response. Serum lymphocyte counts tended to be higher
in the TLS high group; however, it was not statistically significant
(1577 vs. 1452 per mm3, P= 0.097).

Prognostic impact of TLS expression and maturity in EC
patients
Figure 2 presents the survival curves of progression-free survival
(PFS) in the TLS high and TLS low groups. Among all TLSs, the TLS
high group had a significantly longer PFS compared to the TLS low
group (2-year PFS of 81.1% vs. 48.9%, P < 0.0001). Regarding TLS
maturity, the largest survival difference between the two groups was
observed among SFL-TLSs (2-year PFS of 81.1% vs. 48.8%,
P < 0.0001), followed by PFL-TLSs (2-year PFS of 79.9% vs. 50.0%,
P < 0.0001), while no difference was observed among E-TLSs (2-year
PFS of 65.2% vs. 65.0%, P= 0.24) (Fig. 2a–d). In terms of the
prognostic impact of TLSs according to pathological stages,
compared to the TLS low group, the TLS high group was associated
with significantly prolonged PFS in Stage II (HR= 2.27, 95%
CI= 1.10–4.68, P= 0.022) and Stage III–IV (HR= 2.30, 95% CI=
1.42–3.72, P= 0.0004), but not Stage I (HR= 1.58, 95%
CI= 0.70–3.58, P= 0.27) (Fig. 2e–g). The PFS data classified by TLS
density according to pT and pN are shown in Supplementary Fig. S2.
Univariate analysis revealed that PFS was significantly asso-

ciated with age, location, histological differentiation, pT, pN, pM,
lymphatic invasion, vascular invasion and TLS density (Table 2).
Multivariate analysis showed that PFS was significantly associated
with TLS density (HR= 2.31, 95% CI= 1.55–3.46, P < 0.0001), pT
(HR= 2.22, 95% CI= 1.46–3.37, P= 0.0002), pN (HR= 2.23, 95%
CI= 1.52–3.27, P < 0.0001), tumour location (HR= 2.09, 95%
CI= 1.37–3.21, P= 0.0007), and histological differentiation (HR=
1.72, 95%CI= 1.11–2.66, P= 0.014) (Table 2). Similar results were
obtained in univariate and multivariate analysis for overall survival
(Supplementary Fig. S3 and Supplementary Table S2).

Cellular composition of peritumoral TLSs per their maturity as
assessed by multiplex IF
We used multiplex IF to further assess cellular composition in a
total of 345 peritumoral TLSs (74 E-TLSs, 118 PFL-TLSs, and 153

SFL-TLSs) from 70 cases, according to their maturation categories.
Figure 3a shows representative pictures of multiplex IF for each
antibody, and the merged images, according to TLS maturation
categories. With increasing maturity of peritumoral TLSs, the total
positive cell count per high-power field (HPF) gradually increased.
The median count (range) was 681.5 (115–4197) in E-TLSs, 1546.5
(207–4496) in PFL-TLSs, and 2427 (350–6072) in SFL-TLSs (Fig. 3b).
In addition, the proportion of component cell types differed
among the different maturation categories (Fig. 3c). With
increasing maturity of peritumoral TLSs, the proportion of CD8+

T lymphocytes decreased, while the proportion of CD21+ follicular
dendritic cells obviously increased. Notably, the proportion of
CD138+ plasma cells was significantly associated with TLS

Table 1. Clinicopathological characteristics according to density of
tertiary lymphoid structures (TLSs).

Characteristics TLS high
group
(n= 158)

TLS low
group
(n= 158)

P value

Age in years, median
(range), y

67 (44–90) 69 (43–90) 0.25

Sex 1.00

Male 128 (81.1) 127 (80.4)

Female 30 (19.0) 31 (19.6)

Tumour location 0.18

Ut 23 (14.6) 33 (20.9)

Mt/Lt 135 (85.4) 125 (79.1)

Histological differentiation
(SCC)

0.43

Well/moderate 138 (87.3) 132 (83.5)

Poor/others 20 (12.7) 26 (16.5)

pT <0.0001

T1 112 (70.9) 50 (31.7)

T2–4 46 (29.1) 108 (68.3)

pN 0.0016

N0 98 (62.0) 69 (43.7)

N1–3 60 (38.0) 89 (56.3)

pM 0.17

M0 154 (97.5) 148 (93.7)

M1 4 (2.5) 10 (6.3)

pStage <0.0001

Stage I/II 80 (50.6) 39 (24.7)

Stage III/IV 78 (49.4) 119 (75.3)

Lymphatic invasion 0.0060

Negative 78 (49.4) 53 (33.5)

Positive 80 (50.6) 105 (66.5)

Vascular invasion <0.0001

Negative 104 (65.8) 58 (36.7)

Positive 54 (34.2) 100 (63.3)

Lymphocytes in blood,
median (range), /mm3

1577
(482–3286)

1452
(579–3229)

0.097

Neutrophils in blood,
median (range), /mm3

3058
(1099–8062)

3674
(1232–10000)

<0.0001

Serum albumin, median
(range), g/dL

4.0 (2.6–4.9) 3.9 (2.4–4.7) 0.0059

NLR, median (range) 1.89
(0.58–8.43)

2.58
(0.70–12.74)

<0.0001

PNI, median (range) 48.3
(29.5–59.5)

45.8
(26.9–58.8)

0.013

Ut upper thoracic oesophagus, Mt middle thoracic oesophagus, Lt lower
thoracic oesophagus, SCC squamous cell carcinoma, NLR neutrophil-to-
lymphocyte ratio, PNI prognostic nutritional index.
Data presented as n (%) unless noted otherwise.
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maturity (6.6% in E-TLSs, 7.5% in PFL-TLSs, and 13.4% in SFL-TLSs;
P < 0.0001 in PFL-TLSs vs. SFL-TLSs) (Fig. 3d). Supplementary
Fig. S4 shows the detailed distributions of other cells.

Predictive value of TLS status for treatment response and
prognosis of anti-PD-1 antibody therapy in EC patients
We further examined the predictive values of peritumoral TLS in a
different cohort of recurrent EC patients treated with anti-PD-1
antibody monotherapy. The baseline characteristics of these
patients according to TLS density and treatment response to
anti-PD-1 antibodies are summarised in Supplementary Tables S3
and S4, respectively. Figure 4a shows histological images of

peritumoral TLSs in resected specimens of representative cases
(responders versus non-responders). Supplementary Fig. S5
illustrates the overall distribution of TLS density and maturity.
TLS density tended to decrease along with the tumour progres-
sion in ICI-treated cases (Fig. 4b). Remarkably, TLS density was
significantly correlated with clinical response to anti-PD-1 anti-
body therapy, in terms of responders vs. non-responders (0.45 vs.
0.10 per mm2, P= 0.0070), and the four categories of complete
response (0.62/mm2), partial response (0.36/mm2), stable disease
(0.089/mm2), and progressive disease (0.021/mm2) (Fig. 4c, d). The
comparison of TLS maturity in the two group was shown in Fig. 4e.
Survival analysis in this cohort revealed that compared to the TLS

Total TLS

E-TLS PFL-TLS SFL-TLS
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Fig. 2 Survival analysis according to tertiary lymphoid structure (TLS) expression in oesophageal cancer patients. a–d Kaplan–Meier
survival curves for progression-free survival (PFS) in all 316 patients according to the density of total TLSs (a), E-TLSs (b), PFL-TLSs (c), and SFL-
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low group, the TLS high group was associated with significantly
better median PFS (160 vs. 52 days, P= 0.0040) (Fig. 4f). Evaluation
of PD-1+ TILs in the resected specimen of 34 patients with
recurrent EC is shown as a representative image in Supplementary
Fig. S6; the high expression of PD-1+ TILs were observed within or
around tumour with high density of TLSs. The PFS data according
to PD-L1 expression (tumour proportion score; TPS and combined
positive score; CPS) were shown in Supplementary Fig. S7. We
found that the higher expression of PD-L1 (i.e., higher TPS and
CPS) was associated with the favourable PFS although it did not
significantly correlate with response to ICI treatment (Supplemen-
tary Table S4).

DISCUSSION
In this study, we quantitatively and objectively assessed peritu-
moral TLS expression and maturity in preoperatively untreated
resected specimens from a large series of over 300 EC cases from
two institutes. TLS density, which is positively correlated with TLS
maturity, was found to be associated with tumour stage, and with
serum nutrition markers, presumably reflecting the systemic
immune response. Moreover, TLS maturity progression was
associated with an increasing number of constitutive cells,
particularly a remarkable increase of CD138+ plasma cells. TLS
density was identified as an independent prognostic factor in the
primary EC cohort. Remarkably, in a different cohort of patients
with recurrent EC, TLS density in resected specimens from prior
surgery predicted the clinical response to anti-PD-1 antibody and
patient survival. To our knowledge, this is the first to demonstrate

clinical significance of peritumoral TLS in predicting the prognosis
and the efficacy of anti-PD-1 antibody treatment in a large cohort
of EC patients.
The present results elucidated the heterogeneity of TLS

expression, localisation, and maturation in EC. Previous studies
have reported that high expression of TLSs is associated with
tumour stage or favourable prognosis in other cancer types,
including gastric and colorectal cancer [31, 32]. On the other hand,
Ding et al. observed that high peritumoral TLS expression was
correlated with unfavourable patient survival in intrahepatic
cholangiocarcinoma [33]. Regarding maturity, Posch et al. found
that TLS maturation had prognostic value and was a predictive
factor for colorectal cancer recurrence [34]. Deguchi et al. showed
that EC with abundant matured TLSs defined as the presence of
germinal centre (GC-TLSs) showed a better prognosis compared
with those with fewer matured TLSs in cStage III–IV cases treated
with neoadjuvant chemotherapy [35]. In this report, they also
found the association between GC-TLSs and treatment response
to neoadjuvant chemotherapy although the clinical impact of TLSs
remains unclear in EC patients with ICI treatment. In lung cancer,
Silina et al. showed that matured TLSs were associated with a
favourable prognosis, and that the number of matured TLSs
decreased after chemotherapy and radiotherapy [21]. TLS expres-
sion, location, and maturation varies—and may have different
influences on anti-tumour immunity and patient prognosis—
depending on involved organs or cancer types. This study showed
that the expression and maturation of peritumoral TLSs con-
tributed to the anti-tumour effect in EC patients, as shown in other
cancer types.

Table 2. Univariate and multivariate analysis of progression-free survival.

Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age 0.0007 0.011

<68 years 1 [Reference] 1 [Reference]

≥68 years 1.86 (1.30–2.66) 1.60 (1.12–2.29)

Sex 0.27 NA NA

Male 1.30 (0.82–2.08)

Female 1 [Reference]

Location 0.024 0.0007

Ut 1.60 (1.06–2.42) 2.09 (1.37–3.21)

Mt/Lt 1 [Reference] 1 [Reference]

Histological differentiation (SCC) 0.014 0.014

Well/moderate 1 [Reference] 1 [Reference]

Poor/others 1.72 (1.12–2.64) 1.72 (1.11–2.66)

pT <0.0001 0.0002

T1 1 [Reference] 1 [Reference]

T2–4 3.53 (2.41–5.17) 2.22 (1.46–3.37)

pN <0.0001 <0.0001

N0 1 [Reference] 1 [Reference]

N1–3 2.81 (1.95–4.04) 2.23 (1.52–3.27)

pM 0.0026 0.10

M0 1 [Reference] 1 [Reference]

M1 2.71 (1.42–5.17) 1.74 (0.89–3.37)

TLS density <0.0001 <0.0001

High 1 1

Low 3.35 (2.29–4.90) 2.31 (1.55–3.46)

HR hazard ratio, CI confidence interval, NA not applicable, Ut upper thoracic oesophagus, Mt middle thoracic oesophagus, Lt lower thoracic oesophagus, SCC
squamous cell carcinoma.
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The presently observed inverse correlation between peritu-
moral TLS density and tumour progression may suggest several
possible mechanisms. TLS formation might inhibit tumour growth,
which is supported by previous reports demonstrating improved

prognosis in cases with abundant tumour antigen-specific or
active cytotoxic lymphocytes associated with high TLS expression
[36–38]. The accumulations of TILs along with dysplasia-associated
TLSs may indicate that TLSs, formed during the process of
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carcinogenesis, activate antitumor immunity as represented by
the proliferation and infiltration of antigen-specific lymphocytes,
implying that TLSs play an important role of immunosurveillance
against EC carcinogenesis. Another possibility is that tumours
suppress TLS formation, based on previous evidence that TME
formation is suppressed by tumour-derived products, i.e., cancer
antigens, driver gene mutations, etc. [39]. However, these
proposed mechanisms are controversial and must be clarified in
future studies. Intriguingly, the present study revealed a significant
correlation between peritumoral TLS density and host factors,
including age and serum nutritional/immunological indices, which
supports previous reports in gastric cancer [40]. These findings
may imply that relatively young patients with potentially better
nutritional status may have greater antitumor immune response
activation, inducing a larger number of tumour-associated TLSs
[41, 42]. In addition, our findings might support the use of
nutritional and rehabilitative interventions in EC patients who are
likely to suffer from serious weight loss and cachexia due to
tumoral obstruction.
In this study, the TLS high group contained abundant matured

TLSs. Previous reports described that the B cells in matured TLSs
promote tumour-specific antibody production and T-cell activa-
tion, whereas immature TLSs may inhibit immune responses by
producing suppressive molecules [43]. Our present IF results
showed a markedly increased CD138+ plasma cells in matured
TLSs. Plasma cells are specialised for producing antigen-specific
or high-affinity antibodies, and thus play an important role in
humoral immunity. The correlation between tumour-infiltrating
plasma cells and favourable prognosis has been demonstrated
in several cancer types, including EC [36, 44]. Previous
researches also provide evidence of antibody-dependent
tumour cell death mediated by TLSs and surrounding plasma
cells, and its association with favourable survival among cancer
patients treated with ICI [45, 46]. Our results could support these
previous findings, although we did not evaluate the antibody
productivity or antigen specificity of plasma cells. Further studies
are needed to clarify the mechanism of B-cell differentiation
in TLSs.
Our present analyses of the recurrent EC cohort revealed that a

high density of peritumoral TLSs in primary tumours predicted the
response to later treatment with anti-PD-1 antibody, and
subsequent survival, indicating clinical benefit of TLS evaluation
in the initial specimen. Previous studies in other cancer types have
also shown that baseline TLS expression in a pretreatment biopsy
is associated with the outcome of ICI treatment [18–20, 47]. A
possible mechanism explaining these findings could be that
abundant peritumoral TLSs are associated with increased tumour-
associated memory B cells, plasma cells, or PD-1+ immune
infiltrates [48, 49]. The baseline priming of immune cells in TLSs
may promote greater diversity and capacity of tumour-specific
lymphocytes, resulting in enhancing the response to ICI therapy.
Several studies have reported that neoadjuvant chemotherapy or
vaccine therapy promotes TLS formation, supporting the concept
of combination immunotherapy for cancer treatment, including
the combination of ICI with chemotherapy/chemoradiation, which
has been clinically used to treat EC patients [17]. Furthermore,
there have been several preclinical reports of TLS-inducing
interventions in a mouse model [50], which will likely lead to
the future establishment of personalised cancer immunotherapy
strategies via “TLS induction”.
This study has several limitations, including the retrospective

design, the lack of evaluation of how treatments influenced TLS
density/maturity, and the fact that our results were based on
evaluation of only single slide per antibody per case. Moreover,
since our histological evaluation was confined to the TLSs
themselves or the adjacent areas, we did not assess any
interactions between TLSs and other infiltrates throughout the
tumours. Further studies are needed to assess the effecter cells,

such as for the activation/exhaustion profiles, cytokine secretion
capacity, or receptor repertoire.
To conclude, peritumoral TLS density in resected specimens

from EC patients was significantly correlated with serum
nutrition parameters, and was associated with tumour stage
and identified as an independent prognostic factor. Notably,
matured TLS exhibited high proportions of CD138+ plasma cells,
and showed particularly significant clinical relevance. Since TLSs
appear to predict prognosis and clinical efficacy of anti-PD-1
antibody therapy, they could be a useful biomarker for
personalised multimodal treatments, including immunotherapy,
for EC patients.
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