CDDpress

ARTICLE

www.nature.com/cddis

W) Check for updates

High-confidence cancer patient stratification through
multiomics investigation of DNA repair disorders

Garik V. Mkrtchyan'*, Alexander Veviorskiy>, Evgeny Izumchenko®, Anastasia Shneyderman?, Frank W. Pun?, Ivan V. Ozerov?,

Alex Aliper?, Alex Zhavoronkov

© The Author(s) 2022

2 and Morten Scheibye-Knudsen

1

Multiple cancer types have limited targeted therapeutic options, in part due to incomplete understanding of the molecular
processes underlying tumorigenesis and significant intra- and inter-tumor heterogeneity. Identification of novel molecular
biomarkers stratifying cancer patients with different survival outcomes may provide new opportunities for target discovery and
subsequent development of tailored therapies. Here, we applied the artificial intelligence-driven PandaOmics platform (https://
pandaomics.com/) to explore gene expression changes in rare DNA repair-deficient disorders and identify novel cancer targets. Our
analysis revealed that CEP135, a scaffolding protein associated with early centriole biogenesis, is commonly downregulated in DNA
repair diseases with high cancer predisposition. Further screening of survival data in 33 cancers available at TCGA database
identified sarcoma as a cancer type where lower survival was significantly associated with high CEP135 expression. Stratification of
cancer patients based on CEP135 expression enabled us to examine therapeutic targets that could be used for the improvement of
existing therapies against sarcoma. The latter was based on application of the PandaOmics target-ID algorithm coupled with in vitro
studies that revealed polo-like kinase 1 (PLK1) as a potential therapeutic candidate in sarcoma patients with high CEP135 levels and
poor survival. While further target validation is required, this study demonstrated the potential of in silico-based studies for a rapid

biomarker discovery and target characterization.
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INTRODUCTION

Maintenance of genomic integrity has a pivotal role in preventing
the development of age-associated diseases such as cancer and
neurodegeneration. Exposure of somatic cells to multiple endo-
genous and exogenous stressors results in the accumulation of
unrepaired DNA lesions and rearrangements, leading to overall
genome instability, that is a hallmark of cellular transformation
and cancer progression [1, 2]. Molecular mechanisms underlying
this condition include alterations in the DNA repair machinery,
replication stress, altered transcriptional responses and changes in
cell cycle regulation [3-5]. Multiple types of solid and bone
marrow malignancies display distinct defects in certain pathways
of the DNA damage response (DDR), and several therapeutic
strategies targeting repair mechanisms have been previously
developed and validated in clinical settings [6, 7]. For example,
higher levels of genome instability are seen in breast cancer cells
carrying mutations in BRCA genes, which play a critical role in
double-stranded breaks repair. BRCA-deficient cells with defective
homologous recombination, rely on more error-prone non-
homologous end joining repair and are sensitive to PARP
inhibitors, providing a strategy for selectively inducing synthetic
lethality in cancer cells [8]. Additionally, defects in DNA mismatch
repair genes MLH1 and MSH2, associated with a subset of

colorectal tumors with microsatellite instability, may lead to
abundant mutation-derived neoantigens that trigger a robust
immune response to checkpoint inhibitors therapy [9, 10]. Bone
marrow-derived cancers are also characterized by mutations in
key DNA damage response and DNA repair genes. For instance,
mutations in ATM, a key gene for DDR activation, and TP53 have
frequently been detected in several types of lymphomas [11, 12].

Importantly, several premature aging diseases caused by
genetic impairments in DNA repair machinery are also associated
with increased cancer risks [13, 14]. For example, inherited
mutations in the ATM lead to ataxia-telangiectasia (A-T), a rare
premature aging disease with features of neurodegeneration and
increased risks of developing lymphomas and various solid
malignancies, including breast and digestive tract cancers
[14-17]. Another example includes Nijmegen Breakage syndrome
(NBS), where mutations in NBS1 gene, a member of the MRE11-
RAD50-NBS1 (MRN) complex serving as sensor of DNA damage,
lead to immunodeficiency and higher risk of developing cancer
[13, 18-22]. Furthermore, mutations in the RecQL DNA helicase
WRN may lead to Werner syndrome, evidenced by increased
incidence of cardiovascular diseases and cancer development, in
particular sarcomas, skin and thyroid malignancies. While heritable
diseases with impaired DNA repair function are characterized by a
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significant genetic and phenotypic variability between each other
[13, 14], increased cancer risk is a clinical phenotype shared across
multiple DNA repair disorders. Since not all patients with DNA
repair disorders develop malignant diseases, identification of
altered “cancer-prone” genes associated with tumorigenic pro-
cesses could, therefore, lead to the discovery of novel cancer risk
stratification biomarkers and subsequent therapeutic targets.

Identification of therapeutic targets is a crucial step of the drug
discovery process. Erroneous targets selected at the early stage of
drug development may result in a costly drug discovery program
and failed clinical trials. While development of the automated
approaches for drug target discovery is critical for maximizing the
success rate, it still remains a challenging task due to a number of
limitations, such as complexity of the data, batch effects and
others. While these challenges cannot be resolved by the
traditional methods, such as gene expression arrays, artificial
intelligence (Al)-driven approaches have recently demonstrated
their efficacy in this setting across multiple diseases including
embryonic-fetal transition [23] and muscle aging [24]. Advanced
pathway analysis and Al algorithms applied to multiomics data are
capable of identifying novel targets and biomarkers even when
the prior evidence is insufficient, especially when it comes to the
most frequently available dynamic omics data including gene
expression and proteomics [25-27] as well as not as abundant
data types such as phosphorylome [28] and even microbiome [29].
Moreover, Al has also been successfully applied to already existing
targets where crystal structures are not available [30].

In the current paper, we applied a three-tier approach where (1)
knowledge about diseases with cancer prevalence enabled (2)
identification of biomarker genes and (3) subsequent discovery of
possible therapeutic targets (Fig. 1). We took advantage of the
cancer-prone phenotype overlapping between diverse DNA repair
diseases with discrete phenotypic prevalence (neurodegeneration,
immunodeficiency and cardiovascular disease), and applied
differential gene expression analysis driven by Al-based PandaO-
mics platform to identify those genes that are commonly
perturbed among selected diseases and that could be associated
with cancer progression. The most significantly dysregulated gene
CEP135 was further discovered to be used as a novel biomarker
that stratifies sarcoma patients with better and poor survival
outcomes among the TCGA database of 33 various cancer types

revealed gene candidates that could be used as targets for drug
discovery for more efficient elimination of cancer cells in sarcoma
patients with high expression of CEP135 and lower survival
probability.

RESULTS

Phenotype-based clusterization identified DNA repair
diseases with high cancer predisposition

In order to select diseases for subsequent gene expression
analysis and identification of the novel cancer biomarkers, we
performed hierarchical clustering based on the analysis of
common clinical phenotypes that are prevalent in multiple DNA
repair diseases (Fig. 2A). Notably, we found three major disease
clusters covering diverse phenotypes. The first cluster contains
DNA repair diseases sharing neurodegeneration as the most
prevalent feature (Fig. 2A, marked in red). Specifically, spinocer-
ebellar ataxia with axonal neuropathy (SCAN1) and mutations in
tyrosyl-DNA  phosphodiesterase 1 (TDP1) gene; ataxia-
telangiectasia-like disorder 1 with mutations in MRE11A gene;
Cockayne syndrome carrying mutations in ERCC6 gene, and ten
other conditions have been identified as diseases where neuronal
function in brain is the primary target. Among these diseases,
xeroderma pigmentosum has been shown to be associated with
skin, oral and oropharyngeal cancers [31], while ataxia-
telangiectasia patients displayed development of both solid
tumors and more noticeable cancers of blood and lymphoid
origin [15]. The second cluster corresponds to diseases with
microcephaly, short stature and immunodeficiency as the main
clinical phenotypes (Fig. 2A, marked in green). Increased
frequency of cancer (both hematopoietic and solid malignancies)
in this group was observed in patients with Nijmegen breakage
syndrome caused by mutations in NBS1 [32]. The third group
comprises of DNA repair disorders possessing considerable
progeroid features, such as cardiovascular disease, and cancer
prevalence (Fig. 2A, marked in purple). The type of malignancies
across these clusters varies depending on gene mutation and
syndrome. For instance, xeroderma pigmentosum groups B, E, F,
G, V have been sub-clustered together and are known to be
predisposed to skin cancer. Interestingly, Werner syndrome with
mutations in the WRN gene has also been identified in the third
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Fig. 1 Schematic representation of the PandaOmics application for a rapid biomarker discovery and target characterization in cancer.

Gene expression signatures have been examined in DNA repair diseases with high cancer predisposition (1), followed by the analysis of the
most significantly perturbed genes as potential biomarkers stratifying cancer patients based on their survival rates (2). The group of patients
with low survival outcomes have been further used for identification of potential therapeutic candidates for cancer treatment via PandaOmics
Target ID approach (3). Data types used to generate target hypotheses included: omics-, text-, key opinion leaders (KOLs) and funding- based
scores (see materials and methods section as well as the user manual (https://insilico.com/pandaomics/help).
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Fig. 2 Identification of common gene expression signatures among DNA repair diseases with cancer-prone phenotype. A Hierarchical
clustering of DNA repair diseases with selected three diseases for gene expression analysis (Ataxia-Telangiectasia, Nijmegen Breakage
syndrome and Werner syndrome). B, C Visualization of top 10 perturbed genes among three diseases on a volcano plot and heatmap (LFC—
log-fold-changes). D Gene expression changes of CEP135 gene between disease and control samples for all analyzed datasets (ns—not
significant, *p-value < 0.05, ***p-value < 0.001, two-tailed Mann-Whitney test).

mechanisms, WRN protein is known to play a critical role in
regulating multiple DNA damage response pathways, in particular
double-strand break repair. Werner syndrome patients develop
sarcoma, skin cancers and other types of solid tumors. Notably
despite the marked phenotypical differences both NBS1, ATM and
WRN are critically involved in double-strand break repair. By
comparing these three diseases we, therefore, hypothesize that
we can discover pathways important for tumorigenesis while
excluding other phenotypical characteristics. Hence, ataxia-telan-
giectasia, Nijmegen breakage syndrome and Werner syndrome
have been selected for further analysis (Fig. 2A).

CEP135 expression is perturbed in DNA repair diseases

To identify cancer-related pathways in these diseases, we analyzed
changes in gene expression profiles using the PandaOmics
platform. Comparison of transcriptomics signatures in disease
and healthy samples revealed genes that are commonly either up-
or downregulated in fibroblast cells derived from ataxia-telan-
giectasia, Nijmegen breakage syndrome and Werner syndrome
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patients (Fig. 2B). Genes associated with cell cycle progression and
cytokinesis including CEP192, PAXIP1, CNTRL were identified as
significantly perturbed among the top ten selected hits (Fig. 2C).
Notably, CEP135 was the most downregulated gene with a similar
pattern of expression across the three DNA repair diseases (Fig. 2D),
suggesting that it may be associated with the shared cancer
phenotype. Notably, CEP135 is involved in regulating centriole
assembly and centrosome biogenesis [33]. Thus, downregulation
of CEP135 together with other identified hits (Fig. 2C) may
contribute to cell cycle dysregulation in DNA repair diseases
[34-38]. On the other hand, alterations in this gene were also
shown to be associated with centrosome amplification, which
commonly occurs in cancer cells [39]. Based on these observa-
tions, quantification of CEP135 in individual cells has recently been
proposed as a screening approach for tracking centrosome
abnormalities during tumor progression [40]. We therefore
hypothesized that CEP135 could be further used as a predictive
biomarker to stratify patients into subgroups with different
survival outcomes.
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Fig. 3 Survival analysis of cancer patients. A Survival analysis for top 10 genes among all available TCGA cancers. Results are presented on a
heatmap and colored according to significance of the survival analysis. Red boxes correspond to significant differences in survival
(p-value < 0.05, log-rank test) between groups of patients with high and low expression of analyzed gene, blue boxes denote non-significant
changes. B Survival analysis for CEP135 is presented on a Kaplan-Meier plot for TCGA-SARC (Sarcoma), TCGA-LGG (Brain Lower Grade Glioma)

and TCGA-BLCA (Bladder Urothelial Carcinoma) cancers.

CEP135 stratifies sarcoma patients with poor prognosis

To study whether CEP135 expression could be used as a
biomarker capable of stratifying cancer patients with different
outcomes, we performed survival analysis for thirty-three cancer
types from TCGA dataset. Notably, nine of the ten genes that were
found to be substantially perturbed in DNA repair diseases (Fig. 2C),
were able to significantly stratify patients with at least three
cancer types each based on their survival probability (Fig. 3A).
Specifically, CEP135 was able to stratify patients with urothelial
bladder carcinoma (BLCA), low-grade glioma (LGG), and sarcoma
(SARC) cancers (Fig. 3A, B), with the most significant effect
obtained in patients with LGG malignancies. Patients with high
expression of CEP135 have a significantly lower survival compared
to cases with low CEP135 levels (Fig. 3B). However, due to the
difficulties in obtaining a tissue sample from brain cancers, CEP135
might be more suitable as a prognostic biomarker, rather than a
predictive indicator of patients’ response to treatment. Interest-
ingly, BLCA patients show an opposite trend, where high
expression of CEP135 corresponds to better survival outcome.
Notably, levels of CEP135 in sarcoma significantly defined patients
with high and low survival outcomes based on the obtained p-
value (Fig. 3B). CEP135 may, therefore, be potentially used as a
predictive biomarker for sarcoma patients with poor survival,
allowing the development of more tailored therapies for patients
with unfavored clinical outcomes. As such, we next aimed to

SPRINGER NATURE

analyze the group of sarcoma patients with high expression of
CEP135 and lower survival outcomes in the context of target
discovery.

PLK1 is a potential target in sarcoma patients

For novel target identification we have applied Pandaomics-based
Target ID algorithm to compare differences between the
transcriptomic data derived from sarcoma patients with low
survival and high expression of CEP135 and non-tumorous tissue
samples. Among the list of top twenty predicted targets, several
known genes were identified that play a role in cancer cell survival
and apoptosis including TP53, CCNE1, FEN1, STAT3 and others
(Fig. 4A). Notably, polo-like kinase 1 (PLK1), one of the crucial
enzymes associated with cell cycle division and cytokinesis, has
been identified as one of the top hits (Fig. 4A). Importantly, similar
results have been obtained when comparison between two
groups of sarcoma patients with high and low expression of
CEP135 has been performed (data not shown). These groups have
further been used to investigate differences on the pathway
activation level (Fig. 4B) using the iPANDA algorithm [41] A
specific signaling pathway named “Regulation of PLK1 Activity at
G2-M Transition” (R-HSA-2565942) was among the 5% of most
significantly upregulated pathways in sarcoma patients with poor
health outcome (Fig. 4B). Notably, according to the pathway
network topology, CEP135 is an important upstream regulator of

Cell Death and Disease (2022)13:999
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PLK1-mediated phosphorylation of the key players of G2-M
checkpoint (Fig. 4B, nodes circled in red). Activation of PLK1 and
upregulation of the PLK1-mediated signaling pathway in sarcoma
patients could, therefore, be due to the high expression of
CEP135, an associated upstream PLK1 regulator. Experimental
verification was further performed by siRNA-based genetic
silencing of identified targets in human osteosarcoma U20s cells
(Fig. 4Q). In total, five genes have been selected (TP53, FEN1, PLKT1,
CDK2, and PCNA) and cell nuclei have been quantified 48 h after
transfection. Out of five targets, only knockdown of PLK1 showed
significant reduction in cell growth (Fig. 4C), posing PLK1 as a
promising target for a subset of sarcoma patients with high
CEP135 expression and poor survival rates.

DISCUSSION

It takes over 10 years to bring a drug to the market, the process
costs close to $2 Billion US dollars and fails over 90% of the time.
Most of the failures transpire in early preclinical research where
targets are discovered and tested in experimental models and in
Phase Il clinical studies in humans where efficacy of the drug is
tested in humans primarily testing the disease hypothesis, target
choice, biomarker selection, and clinical trial design. On average
over 66% of the Phase Il studies fail. Target discovery is the most
important and critical step in drug discovery and development [42].
Hence, target discovery and target choice for preclinical research is
usually performed by the human experts relying on very different
philosophies. These philosophies may include evidence from
multiple animal studies published in high-profile peer-reviewed
journals, targets found using large amounts of clinical data, genetic
mutation-driven targets, gene or protein expression-derived targets
and many other approaches. There is no single correct method to
identify a target and the balance between novelty and confidence.
Here, we decided to utilize the PandaOmics platform, which
integrates multiple target discovery approaches based on different
data types including text and multiomics, and implements multiple
Al and bioinformatics algorithms.

The approach utilized in the current study demonstrates how Al-
powered PandaOmics analysis of gene expression signatures in
cancer-associated diseases could lead to identification of novel
biomarkers for specific cancer patient subgroups and detection of
related therapeutic targets. The efficiency of the PandaOmics
platform has recently been shown for prediction of novel age-
associated targets for drug discovery purposes [43]. Importantly, its
capabilities for target discovery cover both analysis across multiple
types of diseases as well as in depth characterization of key
molecular players driving the progression of a specific disease [44].
This includes, for instance, the identification of cyclin-dependent
kinase 20 (CDK20) as a novel target in hepatocellular carcinoma and
generation of potent CDK20 inhibitors using the generative
chemistry platform Chemistry42 coupled with subsequent in vitro
explorations [30, 45]. Another example refers to the prompt discovery
of potent inhibitors against discoidin domain receptor 1 (DDR1)
kinase including de novo small molecule design, synthesis and in vivo
validation [46]. Analysis of multiomics-based data and application of
PandaOmics has been further highlighted for acceleration of
advancements in treatment of Duchenne muscular dystrophy [47].
In this regard, the possibilities for Al-driven target discovery became
broadly unleashed for remarkably faster progression of discovered
hits into clinical trials. This particularly includes combining datasets
derived from various platforms and step-by-step characterization and
categorization of predicted targets in the context of disease, novelty
and druggability. Such comprehensive integration of multiple data
sources as well as the analyses of various outputs for the specific
research task confers PandaOmics platform a number of advantages,
compared to the other online platforms for biomarker and target
discovery, such as ToPP [48]. Similar to PandaOmics, ToPP may
perform mutliomics-based examination of the various data sources
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including but not limited to transcriptome, proteome and epigen-
ome for tumor prognostic studies. Furthermore, ToPP may also be
used for the biomarker-based survival analyses across TCGA datasets
applying either publicly available or private data with the possibility
of input customization and output parameters including charts,
thresholds, patients selection criteria, etc. While ToPP and other
available platforms [QIAGEN IPA, https://www.giagen.com/), Meta-
Core (https://clarivate.com/metacore), Elsevier's Pathway Studio
(https://www.pathwaystudio.com/) and Genevestigator (https://
genevestigator.com/)] greatly expands the ability to perform big
data analyses, PandaOmics provides a broader scale of analytical
capabilities, due to integration of the pathway interpretation and
activity analysis, target drugability report, using grant and funding
data sources and Al application. One of the unique features of
PandaOmics target discovery platform is the validation pipeline used
to estimate the performance of the models. To this end, we
developed a Time Machine approach, where we trained the
computational models using data published before a certain time
point and validated the model outputs by their ability to predict
those targets that came into the focus of the pharmaceutical industry
after this time point. The power of PandaOmics has, therefore, been
redirected in our case into target discovery in cancer research due to
the absence of appropriate biomarkers, specific molecular targets
driving tumor progression and limitations of existing treatments for
multiple cancer types with different grades [49-52].

Specifically, an initial step in our current work included an
analysis of DNA repair disorders because of the known tight
connection between cancer development and genome instability.
Particularly, the DNA damage response is impaired in multiple
cancers with the downregulation of some pathways dictating
sensitivity of cancer cells to DNA-damaging agents while others
are upregulated bestowing resistance to chemo- and radiation
therapy [53]. Notably, we selected distinct DNA repair disorders
where cancer is a shared clinical phenotype using hierarchical
clustering, a correlation analysis that has successfully been applied
before for identification of co-associated aging features [54].
Discovery of the top genes that are significantly perturbed among
cancer-predisposed DNA repair diseases led to our further
investigation of their significance as marker genes considering
that genetic alterations driving cancer progression vary between
individual patients. Since different patients with the same cancer
diagnosis show diverse sensitivity patterns for selected therapy,
biomarker-based stratification would, therefore, allow patients to
benefit the most from advanced tailored therapies [55]. CEP135
was identified as the most significantly perturbed gene among the
studied DNA repair disorders and its expression correlates with the
severity of survival of sarcoma patients where high expression of
CEP135 is associated with poor survival probability. Notably,
observed in our settings downregulation of CEP135 in DNA repair
diseases (Fig. 2D) is likely to be related to the cell cycle alterations
that occur in premature aging, while its elevated expression in
cancer goes in line with the known function of CEP135 in
centrosome biogenesis and associated cancer-related abnormal-
ities, including centrosome amplification and subsequent tumor
progression [39]. Interestingly, such dual roles have been shown
for other genes including the well-characterized function of
transforming growth factor-beta (TGFbeta), which may act as both
a tumor suppressor and oncogene [56, 57]. Collectively, these
results highlight the importance of considering CEP135 as a novel
marker gene for further investigations, since its association with
sarcoma has not been well-characterized. Besides CEP135, current
work provides data for the rest of the top ten genes that
significantly correlate with survival probability among thirty-three
cancer types and could be used by researchers as indications for
novel biomarker discovery and verification.

Importantly, identification of novel targets specifically asso-
ciated with a low probability of survival in sarcoma patients, and
which may act as drivers of tumor progression, is of particular
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interest. PandaOmics-based TargetID revealed hits that may
potentially be considered as putative targets for sarcoma patients.
Among them, PLK1 was selected, and in vitro experiments verified
its contribution to cell survival. Since PLK1 possesses a key role for
centriole duplication and G2/M transition in cell cycle [58, 59],
identification of this kinase in the same signaling cascade together
with CEP135, pathway that was shown by us to be activated in
subgroup of sarcoma with high CEP135 expression, supports PLK1
as a plausible target candidate. Recently, PLK1 was proposed as a
target for the treatment of the five solid tumor types including
soft tissue sarcoma, where application of potent PLK1 inhibitor
showed limited antitumor activity in recruited patients [60].
Presumably poor recruitment strategy was the reason the trial
did not reach its efficacy endpoints. It highlights the significance
of the usage of molecular biomarkers to improve patients’
selection criteria. In this regard, CEP135 could be proposed as a
novel predictive biomarker for sarcoma patient stratification.

In conclusion, our study provides evidence of the possibility of
developing advanced tailored therapies to improve the outcomes
of sarcoma patients. The latter is based on patient stratification
through appropriate marker genes. In this regard, the application
of in silico-based approaches such as PandaOmics may accelerate
this step and subsequent target identification not only for cancer
but also for a broader range of age-associated diseases.

MATERIALS AND METHODS

Hierarchical clustering

Clustering of diseases based on phenotypes was done as previously
described [61]. The prevalence of features was retrieved from published
datasets for each disease and were used as input vectors for agglomerative
hierarchical clustering using uncentered similarity metrics and average
linkage (www.mitodb.com).

Data collection

Gene expression data were collected from publicly available repository
Gene Expression Omnibus (GEO) [62]. Transcriptomics datasets obtained
from fibroblasts and/or induced pluripotent stem cells (iPSCs) included
GSE48761 (10 samples from healthy patients and 10 samples from patients
with Werner syndrome) [63]; GSE94707 (7 samples from healthy patients
and 4 samples from patients with Nijmegen Breakage syndrome) [64];
GSE35347 (6 samples from healthy patients and 3 samples from patients
with Ataxia-Telangiectasia syndrome [65]; GSE152287 (5 samples from
healthy patients and 5 samples from patients with Ataxia-Telangiectasia
syndrome) [66]. TCGA GDC HTSeq — FPKM-UQ expression data from tumor
and adjacent non-tumor tissues were collected from UCSC Xena database
[67]. Gene expression data were uploaded into PandaOmics (https://
insilico.com/pandaomics) and pre-processed according to PandaOmics
pipeline that automatically defines data type (raw counts, normalized gene
expression values or log-transformed gene expression values) and
recommends normalization method for further analysis. Upper-quartile
normalization and log2-transformation were applied for datasets derived
from the GEO database. For cancer datasets derived from UCSC Xena
database only log2-transformation was applied as data were already
normalized.

Differential expression analysis

Differential analysis has been performed using the limma package for
microarray data. Each dataset has been processed according to standard
protocols.  Obtained gene-wise p-values were corrected by
Benjamini-Hochberg procedure. Common gene expression signatures
among Ataxia-Telangiectasia syndrome, Nijmegen Breakage syndrome and
Werner syndrome were analyzed in the meta-analysis section of PandaO-
mics. Meta-analysis section allows to calculate combined logarithmic fold-
changes (LFC) and Q-values across all used for the analysis gene expression
datasets using minmax normalization for LFC values and stouffer's method
combining p-values with further FDR correction. Accordingly, heatmaps and
a volcano plot have been created for top 10 most significant genes that are
perturbed among all three diseases. Gene expression changes between
disease and control groups were plotted on a box-plot and two-tailed
Mann-Whitney test was used to calculate the statistical significance.

Cell Death and Disease (2022)13:999

G.V. Mkrtchyan et al.

Overall survival analysis and stratification of cancer patients

Survival analysis was prepared in PandaOmics using the KaplanMeierFitter
function from lifelines python package. Median function was applied for
normalized gene expression data and median value for each gene of interest
was used as a threshold for patients’ stratification. Patients with the expression
value of the gene of interest >, =, or < than median value were considered as
patients with “high” or “low” expression of a particular gene, respectively. Log-
rank test was used to calculate the statistical significance. Briefly, 33 TCGA
GDC cancers were applied, and survival analysis was performed for the top
10 significantly perturbed genes identified from differential analysis.
Probability of survival was plotted on a heatmap and colored as red if there
was a significant difference between high and low expression of the gene and
blue if there was no significant difference. Individual survival plots for CEP135
gene were plotted using matplotlib package.

Pandomics TargetID platform for target identification

In silico-based PandaOmics target discovery/scoring approach was applied to
identify novel molecular targets for stratified sarcoma patients. This approach
is based on the combination of multiple scores derived from text and omics
data. Text-based scores are derived from various sources including scientific
publications, grants, patents, clinical trials and the key opinion leaders, and
thus represent how strongly a particular target is associated with a disease.
Specifically, text-based scores contain Attention, Trend, Attention Spike,
Evidence, Grant funding, Funding per Publication, Grant Size, Average Hirsch,
Impact Factor and Credibility attention index scores. For example, Attention
score reflects the total number of the gene of interest, which was mentioned
in the text data described above across all time periods (as both disease-
agnostic and disease-specific). In contrast, omics scores are based on the
differential expression, GWAS studies, somatic and germline mutations,
interactome topology, signaling pathway perturbation analysis algorithms,
knockout/overexpression experiments and more omics-data sources, and thus
represent the target-diseases association according to molecular connections
between proposed target and disease of interest. Omics scores include
thirteen models (Heterogeneous Graph Walk, Matrix Factorization, Inter-
actome Community, Causal inference, Overexpression/Knockout, Mutated/
Disease Sub-modules, Mutations, Pathway, Network Neighbors, Relevance and
Expression) that can be subdivided into classic bioinformatics approaches and
complex Al-based models. For example, the Expression score relies on the
combination of each gene’s fold change difference in disease versus control
samples, the statistical significance of this change, and basal expression in the
disease-relevant tissue. On the other hand, Al-based omics model called
Heterogeneous Graph Walk (HeroWalk) is a guided random walk-based
approach that is applied to a heterogeneous graph. The model learns node
representations and then identifies gene nodes, which are close to the
reference disease node. The “walks” are sampled with a predefined meta-
path, i.e, fixed sequence of node types in a walk, e.g., “gene”-“disease”-"-
gene”. The node degree controls the probability of transition between the
nodes while sampling, following by the SkipGram model [68] that learns the
representation of each node based on the resulting corpus of walks. The
cosine similarity between the specific disease and all genes produces a ranked
list of genes. The top genes from this list are predicted to be promising target
hypotheses. All the models regardless of the particular methodology output
the ranked lists of target hypotheses. Combination of described scores results
in a ranked list of targets proposed for a given disease and can be filtered out
in regard to their novelty, small molecules synthesis availability, availability of
PDB structure and other useful filters. Description of all mentioned scores and
filters is available in the User manual section of PandaOmics (https://
insilico.com/pandaomics/help). For the current study, target ID scoring was
calculated for the comparison between gene expression data for stratified
sarcoma patients with low survival prognosis and high expression of CEP135,
with adjacent non-involved tissue samples free of atypical cells. To identify
novel molecular targets for stratified sarcoma patients, only omics-based
scores were taken into account and used for the composition of the scores for
ranking.Targets that are not druggable by the small molecules and do have
red flags in terms of safety were excluded from the analysis. In other words,
the aim of the target ID scoring was to identify potential target hypotheses for
stratified groups of cancer patients. After filtering, a ranked list of proposed
targets was extracted from PandaOmics and presented as a heatmap.

Pathway activation analysis

Analysis of perturbed pathways was performed in PandaOmics using
iPANDA algorithm [41] for comparison between sarcoma patients with
high CEP135 expression vs sarcoma patients with low CEP135 expression
from TCGA-SARC dataset. Reactome signaling pathway graph was used as
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a database for iPANDA algorithm [69]. This method estimates direction and
intensity of a pathway activation using a linear combination of logarithmic
fold-changes, statistical and topological weights applied for each pathway
member gene and described in [41]. As a result, iPANDA's algorithm
output represents how changes in gene expression between case and
control groups affect signaling pathway levels and score for each pathway
is defined as iPANDA score. High values of iPANDA scores correspond to
the upregulation of the pathways, while low values correspond to the
downregulation. Pathway perturbation is represented on a pathway
scheme and each node is colored based on the average LFC values across
the genes in the node.

Cell culture

Human osteosarcoma (U20s) cell line was purchased from ATCC
(HTB96TM). Cells were cultured at 37°C and 5% CO, in 4.5g/L glucose
DMEM-GlutaMAX media (Gibco, 12077549) supplemented with 10% fetal
bovine serum (Sigma-Aldrich, F9665) and 100 U/mL penicillin-streptomycin
(Gibco, 15140163).

siRNA-mediated knockdown of selected hits

Transient knockdown of selected genes of interest with small-interfering
RNAs (siRNA) was performed using Lipofectamine™ RNAIMAX Transfection
Reagent (Invitrogen, 13778150). The following siRNAs were used: silencer
select PLK1 (Thermo Scientific, 4390824), silencer select negative controls
(Thermo Scientific, 4390846, 4390843). TP53, CHK2, PCNA and FEN1 siRNAs
were part of Silencer™ Select Human DNA Damage Response siRNA Library
(Invitrogen, A30089). Briefly, 10 nM siRNAs were incubated with RNAIMAX-
OptiMEM (Gibco, 51985026) mixture for 15 min at RT in the 384-well plate
(Greiner bio-one, 781091). Confluent U20s cells were washed twice with
warm phosphate-buffered saline (PBS), trypsinized and added to the
transfection solution in a density of 2000 cells per well. After 48h
incubation, cells were washed with warm PBS and fixed in 4% PFA (Santa-
Cruz, sc-281692) for 15 min. Cells were washed three times with PBS
followed by permeabilization in 0.1% triton X100-PBS for another 10 min.
Cells were washed again three times with PBS and stained with DAPI
(PanReac AppliChem, A4099) for 10 min. Cells were washed ones with PBS
and stored at +4 °C until the analysis. DAPI nuclei were imaged using Incell
analyzer 2200 high-content microscopy at x20 magpnification.

DATA AVAILABILITY

All data supporting the conclusions of the paper are available in the article and
corresponding figures. GEO and TCGA datasets used in the paper are described in
materials and methods section.
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