
ARTICLE OPEN

Molecular profiling of a bladder cancer with very high tumour
mutational burden
Manuel Scimeca1, Julia Bischof2, Rita Bonfiglio1, Elisabetta Nale 2, Valerio Iacovelli3, Marco Carilli3, Matteo Vittori3,
Massimiliano Agostini 1, Valentina Rovella4, Francesca Servadei 1, Erica Giacobbi1, Eleonora Candi 1, Yufang Shi5, Gerry Melino1,
Alessandro Mauriello 1✉ and Pierluigi Bove3✉

© The Author(s) 2024

The increasing incidence of urothelial bladder cancer is a notable global concern, as evidenced by the epidemiological data in
terms of frequency, distribution, as well as mortality rates. Although numerous molecular alterations have been linked to the
occurrence and progression of bladder cancer, currently there is a limited knowledge on the molecular signature able of accurately
predicting clinical outcomes. In this report, we present a case of a pT3b high-grade infiltrating urothelial carcinoma with areas of
squamous differentiation characterized by very high tumor mutational burden (TMB), with up-regulations of immune checkpoints.
The high TMB, along with elevated expressions of PD-L1, PD-L2, and PD1, underscores the rationale for developing a personalized
immunotherapy focused on the use of immune-checkpoint inhibitors. Additionally, molecular analysis revealed somatic mutations
in several other cancer-related genes, including TP53, TP63 and NOTCH3. Mutations of TP53 and TP63 genes provide mechanistic
insights on the molecular mechanisms underlying disease development and progression. Notably, the above-mentioned mutations
and the elevated hypoxia score make the targeting of p53 and/or hypoxia related pathways a plausible personalized medicine
option for this bladder cancer, particularly in combination with immunotherapy. Our data suggest a requirement for molecular
profiling in bladder cancer to possibly select appropriate immune-checkpoint therapy.
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INTRODUCTION
The incidence of urothelial bladder cancer represents a significant
global concern, with ever alarming epidemiological data, high-
lighting its relevance in terms of frequency, distribution, and
mortality rates. According to the current statistics, there were over
550,000 new cases and 220,000 deaths of bladder cancer
worldwide in 2020, with a substantial impact on public health
[1]. Epidemiological analysis reveals significant variations in
incidence rates geographically with higher incidence in Europe
and North America [2], emphasizing the importance of a detailed
assessment of urothelial bladder carcinoma distribution to adopt
targeted preventive and therapeutic strategies. From the pathol-
ogy perspective, urothelial bladder cancer present the most
frequent histological type; more rare are the other type such as
squamous cell carcinoma, adenocarcinoma and neuroendocrine
neoplasms [3, 4].
Recently, the integration of molecular analysis has significantly

enriched our understanding of bladder cancer, enabling the
identification of predictive and prognostic biomarkers. Mutations
in the TP53 gene [5–7] and amplifications of the ERBB2 gene
[8–10] have been shown to influence treatment response and
prognosis. For instance, patients with specific mutations may have
greater benefit from targeted therapies, paving the way for a more

personalized approach to bladder cancer management. These
molecular-based evidence facilitated the identification of distinct
subgroups, each with varying prognostic implications [3, 11, 12].
Molecular subgroups, based on gene expression, exhibit enrich-
ment for specific immunohistochemical phenotypes, distinct
genetic profile, as well as immunological patterns. Luminal-
papillary subtype shows a higher frequency of FGFR3 mutations,
while luminal-unstable basal-squamous, or neuroendocrine-like
subtypes are more prone to show TP53 mutations. From a
therapeutic standpoint, deregulation of DNA damage repair genes
or ERCC2 seems to be correlated with a more positive outcome
when treated with cisplatin [13]. Additionally, mutations, ampli-
fications, and fusions involving FGFR3 may be associated with
responsiveness to therapy targeting FGFR [14, 15]. The in-depth
analysis of molecular features in the context of urothelial bladder
cancer reveals additional crucial details for more accurate and
personalized disease management. Among the relevant molecular
parameters, Tumor Mutational Burden (TMB) [16], chromosomal
instability [17], and the expression of immune checkpoints play a
central role in patient stratification and in defining therapeutic
options. TMB, measured as the total number of genetic mutations
in the genome of a tumor cell, has emerged as a predictive
indicator of response to immunotherapies. Patients with high TMB
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are more likely to benefit from therapies based on immune
checkpoint inhibition, such as anti-PD-1/PD-L1 antibodies [18]. In
the context of bladder cancer, TMB evaluation can provide
valuable insights into the potential success of specific immu-
notherapies [16]. Furthermore, the analysis of immune checkpoint
expression, particularly PD-1 and PD-L1, adds crucial information
about the immune status of the tumor and its ability to evade the
immune system’s response. Bladder tumors expressing high levels
of PD-L1 can be ideal targets for immunotherapy, with the
potential to enhance the immune response against tumor cells.
The integration of TMB, chromosomal instability, and immune
checkpoint expression in the molecular analysis of bladder cancer
significantly enhances our understanding of the disease. These
molecular parameters not only offer more precise diagnostic
information but also guide therapeutic choices, opening new
perspectives in the personalization of urinary bladder cancer
management.
However, at the current state of the art, there is no molecular

signature capable of accurately predicting the clinical outcome of
urothelial bladder cancers.
In this case report, we describe a case of urothelial bladder

cancer with uncommon genomic characteristics. These include a
very high TMB, numerous somatic mutations in cancer-related
genes, and up-regulation of immune checkpoints, demonstrating
the importance of a multi-omics analysis in bladder cancer
patients.

CASE PRESENTATION AND DISCUSSION
An 83-year-old female patient with a urothelial neoformation of
80 × 75 × 50mm allowed histological investigations which classi-
fied the lesions as high-grade infiltrating urothelial carcinoma with
areas of squamous differentiation, as demonstrated by p40
positivity in immunohistochemistry. The neoplasia infiltrated the
wall throughout its thickness, as well as the peri-vesical adipose
tissue. Extensively ulcerated areas with associated necrosis were
observed. No metastatic lymph nodes were detected. According
to the TNM classification, the tumor was staged as pT3b. In
addition to p40, immunohistochemical analysis showed a
significant positivity for GATA3 or p63. The absence of

p16 staining ruled out the involvement of HPV infection in the
carcinogenesis.
Multi-omics investigations revealed a very high TMB (Fig. 1A),

no microsatellite instability (Fig. 1B) and low chromosomal copy
number heterogeneity (Fig. 1C). Large chromosomal amplifica-
tions (>90% of the chromosome arm) in 1q, 2p, 3q, 7q and
deletions in 8p, 9q and 17p (Fig. 1D), recently associated to the
metastatic potential of uroepithelial tumors [19], have been
identified. As compared to the control cohort, the TMB value
showed more than a 5-fold increase over the average value
(Fig. 1A). TMB has currently considered as a reliable biomarker
capable of predicting the response to immune checkpoint
inhibitor therapies, mainly anti PD-L1 approaches, in several solid
tumors [20–24].
The gene expression analysis also reveals up-regulations of the

immune checkpoints PD-L1, PD-L2 and PD1 (PD-1: log2FC= 1.67,
PD-L1: log2FC= 4 and PD-L2: log2FC= 2.86) in the analyzed
bladder lesion as compared to both normal counterpart and the
background cohort of 66 cancer lesions (Fig. 2A). No deregulation
of expression was observed for CTLA-4 (Fig. 2A). The concurrent
high values of TMB, along with elevated expressions of PD-L1, PD-
L2, and PD1, offer clinical evidence for supporting the develop-
ment of tailored therapies based on immune checkpoint inhibitors
[25]. Currently, immunotherapy is a suitable initial treatment for
individuals with advanced bladder carcinoma who cannot be
treated with chemotherapy using platinum, independently of their
immune-checkpoints expression profile [26]. Additionally, for
cisplatin-ineligible patientsbut exhibiting high immune-
checkpoints expression, immunotherapy could be contemplated
as a first-line strategy [27]. More commonly, immunotherapies in
bladder cancer are contemplated as second-line strategy for cases
with no response, resistance to platinum and were not treated
before with immunotherapy [26]. In this scenario, the use of
individualized genetic profiles of tumors, as highlighted in this
report, will persist in guiding the development of more tailored
treatments that are not only better tolerated but also potentially
more cost-effective when compared to classical chemotherapy.
Whilst the selection of specific immune checkpoint inhibitors
remains a topic of debate, significant advantages can be gained
from a more detailed molecular profiling analysis of the tumor. As

Fig. 1 Mutational analysis of an infiltrating urothelial bladder cancer. A The patient is high TMB as compared to the average cohort (n= 66)
of urothelial bladder cancer patients (TMB patient: 70.6). B The bladder cancer does not exhibit microsatellite instability (MSS). C Graphs
display stable chromosome with very low chromosomal copy number heterogeneity. D Large chromosomal amplifications in 1q, 2p, 3q, 7q
and deletions in 8p, 9q and 17p arm.
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new agents, including the use of antibody-drug conjugates like,
continue to be developed and tested, offering plausible perspec-
tive to increase bladder cancer treatment options [28–30].
Mutational analysis of our case revealed distinct somatic

variations in several cancer related genes (Table 1) such as TP53,
TP63, NOTCH3, CDKN2A, CDKN2B, MTAP (see Supplementary
Fig. 1).
The mutations reported herein in both TP53 and TP63 genes can

provide new insights into the underlying mechanisms involved in
the development and progression of the disease. TP53, a major
onco-suppressor transcription factor, with its family members, is
able to directly regulate cell cycle progression [31, 32], metabolic
changes [33, 34] and cell death [7] thus preventing the formation of
tumors including urothelial bladder cancer [35, 36]. Tumors with
mutations in TP53 gene often exhibit accelerated progression, show
limited responsiveness to anticancer treatments, such as che-
motherapy, and are associated with an unfavorable prognosis
[37, 38]. TP63, belonging to the p53 gene family together with p73,
encodes different proteins capable of either activating p53-
responsive genes or acting as a dominant-negative factor against
p53 [39]. p63 shows a vital function in the typical development and

upkeep of the human urothelium [40]. However, regarding bladder
carcinoma, the impact of mutations in the p63 gene remains
controversial for the scanty information available. While certain
studies have reported a decrease in muscle-invasive tumors [41],
others have shown persistent, retained expression associated
with biological aggressiveness, implying a possible involvement
in tumor progression [42]. However, the prospect of better
understanding the role of p53 and p63 in cancer progression
emerges as a potential appealing future strategy for several solid
cancers [43].
Dysregulation of Notch3 has been associated with numerous

cancers [44, 45], impacting tumor aggressiveness, maintenance,
and resistance to chemotherapy [46–48]. In addition, studies
found that NOTCH3 can have a role in orchestrating antitumoral
activity by inducing the expression of PD-1 [49, 50]. According to
this, mutations in NOTCH3 could be related to the high immune-
checkpoint expression observed in our urothelial bladder cancer
thus facilitating immune cancer escape. Notably, Notch3 plays a
role in regulating p53 at a post-transcriptional level, thereby
regulating Cyclin-G1 expression [51]. In more specific terms, the
reduction of Cyclin-G1 in cells Notch3 knockdown leads to a
substantial increase in p53 protein expression. Consequently, the
accumulated p53 in Notch3-depleted cells triggers an over-
expression of miR-221, resulting in enhanced p53 stability. In this
context, mutations in the NOTCH3 gene may contribute to the
dysregulation of p53/p63 molecules as described below. The
increasing understanding of the role of the NOTCH family in
cancer has heightened interest in targeting Notch molecules
therapeutically. This interest extends to both single-agent
approaches and multimolecular-targeted strategies. Recent inves-
tigation on Notch signaling has led to the emergence of more
specific therapeutic strategies for inhibiting Notch, including for
example: (i) inhibition of the nuclear transcriptional Notch
coactivator (ii) neutralization with monoclonal antibodies, or

Fig. 2 Expression levels of immune checkpoint and mutational signatures in a bladder cancer patient. A mRNA expression of PD-
1= Programmed cell death protein-1; PD-L1 and PD-L2= Programmed death-ligand 1 and 2; CTLA-4= Cytotoxic T-lymphocyte antigen 4. PD-
L1, PD-L2 and PD1 are highly expressed in tumor tissue compared to normal tissue. Boxplots indicate the values of bladder cancer cohort, and
the red triangle refers to our patient of interest. B Molecular signatures based on global somatic mutation patterns. Analyzed bladder cancer
shows high frequencies of mutational signatures Ref Sig 2+ 13. Boxplots indicate the values of bladder cancer background cohort, and the
red triangle refers to our patient of interest.

Table 1. Main somatic variation in cancer related genes.

GENE DETAILS

CDKN2A Delation

CDKN2B Delation

MTAP Delation

NOTCH3 Asp 2094 Asn (VAF: 29%)

TP53 Lys 139 Asn (VAF: 35.9%)

TP63 Arg 141 his (VAF: 24%)
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receptor decoys, of the ligand–receptor interaction (iii) use small
molecular GSIs to inhibit the proteolytic cleavage/activation of the
receptor [52, 53]. However, at the current state of the art, there are
no clinical trials specifically addressing the use of targeted
therapies in NOTCH3-mutated cancers. Currently, NOTCH3 muta-
tions serve as inclusion eligibility criteria for clinical trials
evaluating the efficacy of the following anti-cancer treatments:
Al101, abemaciclib, carboplatin, cisplatin, and crenigacestat [54].
The molecular characteristics of the clinical case reported here

also include the identification of mutational signatures in bladder
cancers: almost all detected mutations contribute to signatures 2
and 13 (Fig. 2B). These signatures are present in more than 70% of
bladder cancers [55]. Such molecular signatures are commonly
associated with APOBEC-mediated mutagenesis, which is linked to
the activity of base excision repair and DNA replication
machineries [55] opening the possibility for the use of biological
therapies such as ATR inhibitors [56].
The identification of very high hypoxia signature scores

(Fig. 3A), as well as the up-regulation of HIF-1α and MKI67
(Fig. 3A, B), assessed by gene expression analysis, adds another
layer of complexity to the case. Indeed, hypoxia in bladder cancer
is linked the initiation of epithelial-mesenchymal transition, a
biological phenomenon associated to cancer metastasis [57–60],
suppression of apoptosis [61–64], and the advancement of cancer.
Its negative impact on immunotherapy is notable, as it modifies
molecular markers, immune cell movement, and angiogenesis,
leading to immunosuppression via a HIF-1-dependent signature
[65]. Thus, high hypoxia levels are associated with an unfavorable

prognosis in bladder cancer [66]. In this context, hypoxia can
influence the function of p53 in a manner that is dependent on
the specific context [66–70]. In particular, hypoxia might induce
inhibitory interactors of p53, including murine double minute 4
(MDM4) or MDM2, resulting in a lower p53 steady state protein
level. Moreover, HIF-1α plays a role in transcriptionally activating
targets that facilitate the proteasomal elimination of
homeodomain-interacting protein kinase 2 (HIPK2), that normally
should phosphorylate and, hence, activate the function of p53
[71]. As a result, all these concerted actions are able to significantly
reduce the function of p53, that reducing programmed cell death
and allowing tumor cells to grow.
Paradoxically, hypoxia condition can also result in the stabiliza-

tion and activation of p53, leading to enhanced protein steady
state levels which, in turn, allows the activation of secondary
transcriptional target genes able to regulate DNA damage
response, programmed cell death and cell cycle arrest [72].
Interestingly, the extent of p53 stabilization caused by the hypoxic
microenvironment appears to be directly related to the extent
hypoxia, with more pronounced effects observed under condi-
tions of profound compared to mild hypoxia. The presence of
mutations in the TP53 and NOTCH3 genes and the observed high
hypoxia score, targeting p53 and/or hypoxia represent a
personalized medicine option for the profiled bladder cancer.
This could be especially relevant in combination with immu-
notherapy, given the observed high expression levels of PDL-1,
PDL-2, and PD1and high TMB [73, 74].

CONCLUSION
In the era of 4 P (Predictive, Personalized, Preventive and
Participatory) medicine [75–78], the molecular profiling of single
cancer entity represents a great opportunity for the develop-
ment of patient-tailored therapies. Hence, this case report
highlights the complex molecular landscape of an infiltrating
urothelial bladder cancer characterized by very high TMB. In
particular, multi-omics investigations revealed a peculiar mole-
cular profile including alterations in genes and pathways related
to cancer progression such as immune-checkpoint inhibitors,
hypoxia, TP53, TP63 and NOTCH3. The detailed molecular
characterization of this case emphasizes the potential for
personalized medicine in bladder cancer treatment paving the
way for targeted therapies.

METHODS
Collection of samples
Tumour tissues collection was performed using standardized protocol
aimed at preventing cold ischemia until freezing in liquid nitrogen [79–81].
Hematoxylin and Eosin (H&E) stained serial sections were used for
pathological quality control (QC). Inclusion criteria for tumour samples
collection: tumor content of >=30%; Necrosis <=30%; presence of invasive
tumour cells. Adjacent normal tissues were also collected. Protein lysate
preparation and nucleic acid extraction were performed by using 10mg of
each collected tissue [82–85]. The tissues stay frozen during the entire
process.
For histological and immunohistochemical analysis, serial sections

from formalin-fixed and paraffin-embedded (FFPE) blocks were used
[82, 86–88]. Histological analysis was conducted by two independent
pathologists on H&E-stained slides. Serial sections were used to study
the expression of the main relevant prognostic and predictive
biomarkers of bladder cancer by immunohistochemistry including p63,
p40, p16 and GATA3 [89]. Immunohistochemical reactions were
performed by using the automated Leica Bond IHC platform (Leica
Biosystems, Deer Park, IL) with the following primary antibodies: mouse
monoclonal anti-p63 (clone 7JUL; pre-diluted; Leica Biosystems), mouse
monoclonal anti-p40 (clone BC28; pre-diluted; Leica Biosystems), mouse
monoclonal anti-p16 (clone 6H12; pre-diluted; Leica Biosystems) and
mouse monoclonal anti-GATA3 (clone L50-823; pre-diluted; Leica
Biosystems).

Fig. 3 Cancer hallmark expression signatures. A Very high hypoxia
and proliferation signature scores in a case of urothelial bladder
cancer. B, C Graphs show HIF1α (B) and MKI67 (C) expression in
investigated bladder tumor as compared to both normal tissue and
bladder cancer background cohort. Boxplots indicate the values of
bladder cancer background cohort, and the red triangle refers to our
patient of interest.
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Nucleic acid extraction and quality assessment
As previously described, frozen tissue slices were used for nucleic acid
extraction and quality assessment [35].

Library preparation and NGS sequencing
Libraries for whole genome sequencing (WGS) and whole transcriptome
sequencing were performed as previously described [90, 91].

NGS data processing
To align NGS data, Grch38 genome assembly was used as reference. As
concern the normal samples, the Haplotype Caller from the Genome
Analysis Toolkit (GATK) was used for both identification and annotation of
short genomic variations. WGS somatic variations were called using a
consensus of Mutect2 [92], Strelka [93], Varscan [94] and Somatic Sniper
[95]. Structural variations were called using R packages TitanCNA [96],
DellyCNV and DellyCall [97], as well as Manta [98]. RNA-Seq differential
expression was based on normalized readcount data (TPM: transcripts per
million).

Bioinformatical analyses
Mutational signatures were calculated using the R package Mutational-
Patterns [99–102]. MSI classification was done using R package MSIseq
[103]. Metrices to define chromosomal instability were determined using R
package CINmetrics [104] and CNHplus [105]. Aneuploidy events were
analysed using ASCETS [106]. Aneuploidy event span more than 90% of the
chromosome. Visualization of results was done in IGV [107]. TMB was
calculated as the number of non-synonymous mutations of protein coding
genes divided by exome size in Megabases.

DATA AVAILABILITY
The data will be made available upon reasonable request.
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