
Che et al. Cell Discovery            (2021) 7:80 Cell Discovery
https://doi.org/10.1038/s41421-021-00312-y www.nature.com/celldisc

ART ICLE Open Ac ce s s

A single-cell atlas of liver metastases of colorectal
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Abstract
Metastasis is the primary cause of cancer-related mortality in colorectal cancer (CRC) patients. How to improve
therapeutic options for patients with metastatic CRC is the core question for CRC treatment. However, the complexity
and diversity of stromal context of the tumor microenvironment (TME) in liver metastases of CRC have not been fully
understood, and the influence of stromal cells on response to chemotherapy is unclear. Here we performed an in-
depth analysis of the transcriptional landscape of primary CRC, matched liver metastases and blood at single-cell
resolution, and a systematic examination of transcriptional changes and phenotypic alterations of the TME in response
to preoperative chemotherapy (PC). Based on 111,292 single-cell transcriptomes, our study reveals that TME of
treatment-naïve tumors is characterized by the higher abundance of less-activated B cells and higher heterogeneity of
tumor-associated macrophages (TAMs). By contrast, in tumors treated with PC, we found activation of B cells, lower
diversity of TAMs with immature and less activated phenotype, lower abundance of both dysfunctional T cells and
ECM-remodeling cancer-associated fibroblasts, and an accumulation of myofibroblasts. Our study provides a
foundation for future investigation of the cellular mechanisms underlying liver metastasis of CRC and its response to
PC, and opens up new possibilities for the development of therapeutic strategies for CRC.

Introduction
Metastasis is the primary cause of cancer-related mor-

tality in colorectal cancer (CRC) patients1,2. The 5-year
survival rate of CRC patients at the advanced stage (stage
IV) is only about 12%3. In CRC, liver is the most frequent
site of metastases. For the patients of metastases of col-
orectal cancer (mCRC), surgical resection of both primary
and metastases is the best option for curative treatment4–8.

However, mainly for the size, number, and location of liver
metastases, only a minority of patients is suitable for
upfront surgery (~20%)9,10. Moreover, even after resection,
due to the latent disseminated tumor cells after surgery,
relapse is very common (occurs in 75% of patients)2,11,12.
Thus, surgery in combination with chemotherapy and/or
immunotherapy become an accepted standard of care for
CRC patients with liver metastases.
Preoperative chemotherapy (PC) aims at reducing

tumor load, which may reduce the risk of local relapse
and converting patients with initially unresectable mCRC
to resectable liver metastases13,14. Nevertheless, despite
theoretical benefit and randomized trail demonstra-
tions15, whether the patients undergoing chemotherapy
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and resection have long-term benefit is still questionable.
How to provide optimal treatment for CRC patients with
liver metastasis remains a pivotal issue.
Understanding the complex cellular and phenotypic

diversity within the tumor microenvironment (TME) may
pave the way for the development of effective treatment
for cancer, especially in metastatic disease. Recently,
single-cell RNA sequencing greatly contributes to our
understanding of TME in many cancers, including mela-
noma16–18, head and neck cancer19, hepatocellular carci-
noma20,21, lung carcinoma22–24, breast carcinoma25–28,
kidney cancer29, and basal cell carcinoma30. In CRC,
single-cell genomic31,32, transcriptomic33–36, and epige-
nomic analyses36 have provided insights into intra-tumor
genomic diversity and inter-tumor difference. Despite
recent advances in our understanding of CRC, the cellular
milieu of liver metastases and their primary counterparts
are still poorly understood. How TME responds to che-
motherapy in primary tumor and their corresponding
liver metastases is largely unexplored.
In this study, we established a landscape of TME of liver

metastases of CRC based on 111,292 single cells, and
uncovered the transcriptional changes and phenotypic
alteration of TME in response to chemotherapy. We
found that PC may promote the activation of B cells, drive
down the diversity of tumor-associated macrophages
(TAMs), recruit more immature TAMs, MHClow TAMs
and myofibroblast, and decrease the abundance of dys-
functional T cells and ECM-remodeling cancer-associated
fibroblasts (CAFs). We also find the key ligand-receptor
(LR)-based cellular interactions in the cellular milieu of
tumors treated with PC and treatment-naïve tumors, in
both primary and the metastases of CRC. Taken together,
we established a single-cell atlas of TME in both primary
CRC and matched liver metastases with or without che-
motherapy. This resource provides a foundation to
investigate the cellular mechanisms of liver metastasis and
therapeutic response, and facilitate the development of
novel treatment for mCRC.

Results
Single-cell analysis of TME of liver metastases of colorectal
cancer
To gain a better understanding of TME, and investigate

how TME responds to PC in liver metastases of CRC, we
performed scRNA-seq of 15 samples from three sites
(primary CRC, matched liver metastases, and blood) of six
CRC patients with liver metastases (Supplementary Table
S1). While patients COL15, COL17, and COL18 had been
treated with PC, the others were treatment naïve. All
patients were classified as microsatellite-stable (MSS) with
invasive adenocarcinomas and late-stage (IV) disease.
Detailed information is available in Materials and Meth-
ods and Supplementary Table S1.

Viable single cells were sorted and used for droplet-
based scRNA-seq. After quality control (see Materials
and Methods section), we obtained transcriptome data
for 111,292 single cells from primary CRC (n= 6), mat-
ched liver metastases (n= 6), and peripheral blood
mononuclear cells (PBMCs) (n= 3) (Supplementary
Table S2). Then we clustered single cells using
shared nearest neighbor clustering based on significant
principal components, and visualized cell clusters using
t-distributed stochastic neighbor embedding (t-SNE)
(Fig. 1a; Materials and Methods section). The major cell
populations (including T cells/natural killer (NK) cells,
B/plasma cells, CAFs, endothelial, and myeloid cells)
were annotated with canonical marker genes (Fig. 1b).
Treatment state and tissue origin are mapped in Fig. 1c
(also see Supplementary Fig. S1a); selected representative
markers of each cell type are presented in Fig. 1d, e and
Supplementary Fig. S1b.
To characterize the ecosystems of primary and meta-

static CRC tumors, and better understand how TME
responds to PC in liver metastases of CRC, we focused on
major cell types of TME (T/NK cells, B cells, Myeloid
cells, CAFs, and epithelial cells (EPCs)). For each com-
partment, we re-centered, scaled, normalized, and re-
clustered the data. Ultimately, we obtained 28 myeloid
clusters (6 dendritic cells, 18 TAMs, 1 monocytes, 2
myeloid-derived suppressor-like cells (MDSCs-like) and 1
mast cells), 16 B cell clusters, 10 mesenchymal cell clus-
ters (1 endothelial, 6 CAFs, and 3 myofibroblasts), 11 EPC
clusters and 39T/NK cell clusters. Each cluster was
composed of cells from different patients; and for each
cluster, the distribution of cells with different tissue ori-
gins or with different treatment status was distinct.

PC promotes the activation of B cells in the primary CRC
First, we investigated how PC influenced the ability of B

cells. In our single-cell data, B cells were relatively more
abundant in primary CRC (account for 0.1% of all stromal
cells in primary CRC), but depleted significantly in liver
metastases (account for 0.01% of all stromal cells in liver
metastases) (Fig. 2a). Sub-clustering of B cells revealed
16 subpopulations (Fig. 2b). Among them, 14 clusters
were mature B cells (with nine subsets from tumor lesion
and five clusters from peripheral blood, Fig. 2b), which are
characterized by highly expression of CD20 (MS4A1).
While cluster three represents plasma cells characterized
by highly abundant immunoglobulin (IGHG1, IGHG2,
IGHG3, IGHG4, and IGHA2), cluster 15 represents
plasmablasts, characterized by upregulation of immu-
noglobulin and cell proliferation markers (e.g., MKI67,
CDC20, CDKN3, and CCNB2) (Supplementary Table S3).
Since there were few B cells infiltrated in the liver

metastases in our dataset, we mainly focused on B cells in
the primary CRC. In primary tumor, B cells were separated
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Fig. 1 Single-cell atlas of primary CRC and liver metastases. a Overview of the workflow for single-cell transcriptome profiling of cells in primary
CRC, matched liver metastases, and blood. b t-SNE plot showing the transcriptome landscape of 111,292 stromal cells from six CRC patients with liver
metastasis. Colors indicate cell types. c t-SNE plot showing stromal cells colored according to tissue origins (top) and treatment status (bottom).
d Heat map showing differential expression of the top expressed genes in each cluster. For each cluster, the top 10 genes and their relative expression
are shown. MPs, mononuclear phagocytes; pDCs, plasmacytoid dendritic cells. e t-SNE plots showing typical markers of each major cell type.
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Fig. 2 scRNA-seq of B cells reveals distinct subpopulation composition in tumors treated with PC or treatment-naïve. a Boxplot comparing
the frequency of B cells between the primary CRC and liver metastases. Each dot represents the percentage of B cells from one sample. P value was
calculated using Wilcoxon rank-sum test, **P < 0.01. b t-SNE plot of scRNA-seq profile from 7454 B cells separated into 16 subtypes. Cells are colored
according to different cell types. c t-SNE plot of scRNA-seq profiles of B cells in the primary CRC. Cells are colored according to treatment status
(treated with PC or without PC). d Boxplots showing the percentage of each B cell subcluster in untreated and treated samples in the primary CRC.
The plot shows that B01, B04, B08, B09, and B12 are enriched in tumors treated with PC, whereas B00, B11, B02, and B06 are prevalent in untreated
tumors. e Volcano plot showing DEGs between B cells enriched in tumors treated with PC and B cells prevalent in untreated tumors. Each red dot
denotes an individual gene with adjusted P value < 0.05 and fold change ≥1.5 (two-sided moderated t-test with limma). f Box plots showing the
expression of IGHG1, IGHG3, IGHG4, and IGHA1 in PC-treated and treatment-naïve tumors. g Heat map showing the relative expression of MHC
molecules in each B cell subtype. h GO analysis for upregulated genes (top) and downregulated genes (bottom) with P < 0.05 in tumors treated with
PC vs without PC. Pathways related to immune activation are colored by red; pathways related to inflammation are colored by blue. i The FACS
results showing the abundance of activated B (CD86+HLA-DR+CD19+) cells in CRC patients treated with or without PC. j Boxplot showing the levels
of the B cell signature in samples from pretreated colorectal cancer patients in the dataset GSE12246, adjuvant chemotherapy86. k The Kaplan–Meier
overall survival curves of TCGA COAD patients grouped by different expression levels of signature genes of activated B cells enriched in PC-treated
tumors. Patients involved in this analysis include MSI-high, MSI-low, and MSS patients. Patients separated by high- (n= 133) or low-level (n= 133) B
cell gene signature exhibit different overall survival (P= 0.05). l Overall survival curves of TCGA COAD patients. Only MSS patients were involved in
the analysis. P= 0.034.
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into different subgroups, the B cell populations from tumor
treated with PC were quite distinct from that in treatment-
naïve tumors (Fig. 2c, d). We found that clusters 0, 2, 6, and
11 were enriched specifically in treatment-naïve tumors,
whereas clusters 1, 4, 9, 8, and 12 were almost exclusively
present in treated tumors (Fig. 2c, d).
On closer examination of the two groups, we found

that they have distinct phenotypes (Supplementary Table
S3). Untreated tumors-derived B cells exhibit a naïve and
inflammatory phenotype, with cluster 6 expressing IgD
(IGHD), cluster 0 expressing immature B cell marker
VPREB3 and cluster 2 expressing inflammatory transcrip-
tion factor NF-κB (NFKBIA), lipid molecules (e.g., APOE
and APOC1), and cytokines (e.g., AREG), whereas B cells
derived from treated tumors (clusters 1, 4, 9, 8, and 12)
show an activated immune activation phenotype with
the upregulation of immunocostimulatory molecules (e.g.,
CD82, CD83, and CLECL) and MHC molecules (e.g., HLA-
DRA, HLA-DRB5) (Supplementary Table S3). Gene ontol-
ogy (GO) analysis also confirms that upregulated genes
associated with treated tumors are enriched in antigen
processing and presentation (Supplementary Fig. S2a).
Compared with B cells in untreated tumors, higher

expression of immunoglobulin, such as IGLC3, JCHAIN,
IGHG1, IGHG3, IGHG4, and IGHA1, were observed in
treated tumors (Fig. 2e, f and Supplementary Fig. S2b, Table
S5), implying that class switch recombination (CSR, also
known as isotype switching) may occur after PC. Moreover,
the expression of MHC molecules (such as HLA-A, HLA-
DQB1, HLA-DQA2, and HLA-DRB1) was also elevated in
treated tumors (Fig. 2g). In line with these results, GO
analysis showed that genes highly expressed in B cells in
tumors treated with PC were enriched in immune
activation-related signaling pathways or processes, includ-
ing immune response-activating cell surface receptor sig-
naling pathways, antigen processing and presentation, and
T cell co-stimulation (Fig. 2h). In contrast, genes highly
expressed in B cells in treatment-naïve tumors were enri-
ched in the response to reactive oxygen species, a general
feature of inflammation. Thus, these results support that
the phenotype of B cells in treatment-naïve tumors is
associated with inflammation. On the contrary, in treated
tumors, PC treatment promoted the activation and the
generation of class-switched antibodies in B cells. To vali-
date the results and evaluate the clinical significance of the
B cell signature obtained in this study, we solidified our
findings using further experiments and also the published
data from human clinical study. Flow cytometry verified
that treated tumors presented a striking increase in acti-
vated B cells (Fig. 2i and Supplementary Fig. S2d). Repre-
sentative multiplex immunofluorescence assay showed that
activated B cells (HLA-DR+CD80+CD19+ B cells) were
densely localized in tertiary lymphoid structures (TLSs) in
treated patient, with only a few activated B cells localized in

treatment-naïve patient (Supplementary Fig. S2c). The
published data set of patients treated with chemotherapy
also validated that the signature of B cells was enriched in
cohorts of patients with favorable prognosis (Fig. 2j).
If B cells can contribute to anti-tumor processes, an

effective immune response against tumor progress may be
reflected by the presence of a gene expression signature of
B cell activation. This led us to hypothesize that gene
expression signatures of activated B cells may be corre-
lated with the prognosis of CRC. To test this, we turned to
The Cancer Genome Atlas (TCGA) colon adenocarci-
noma (COAD) clinical data, and found that the gene
signatures of activated B cells were associated with a
good prognosis in CRC patients marginally significantly
(Fig. 2k, n= 266, including microsatellite instability
(MSI)-high, MSI-low and MSS subtype, P= 0.05, Cox
regression). Interestingly, the correlation became more
prominent in MSS tumors (Fig. 2l, n= 174, MSS subtype,
P= 0.034, Cox regression), suggesting that activation of B
cells could be more effective in MSS tumors.
The immunohistochemistry (IHC) results showed that

B cells were densely localized in TLSs in primary CRC
with only a few B cells infiltrated in liver metastases
(Supplementary Fig. S2e), consisted with the observations
in our single-cell RNA analyses (Fig. 2a). However, this
finding needs further investigation in more samples.
Collectively, our data demonstrate that PC promotes the

conversion of B cells from a less activated and inflammatory
state to a more activated state in the primary tumor of CRC
patients with liver metastases, and that the activation of B
cells could be a potential predictor of effective che-
motherapy and good prognosis, especially in patients with
MSS CRC. This was also reported in some recent studies of
tumors treated with immunotherapy37–40.

PC promotes reprogramming of TAMs from high
heterogeneity to immature and less activated phenotypes
Myeloid cells are the key components in TME, with an

important role in tumor progression and metastasis41. We
identified 15,366 myeloid cells, sub-clustered into 28
clusters. Among these myeloid clusters, we designated 18
clusters as TAMs, which displayed various features. In
addition, one cluster of monocytes (M25: FCGR3A), two
clusters of MDSCs-like (M02 and M16), six clusters of
DCs, including CD1C+ DCs (M07 and M10: CD1C),
cross-presenting DCs (M21: CLEC9A), pDCs (M17 and
M27: LILRA4) and LAMP3+ DCs (M22: LAMP3)21, and
one cluster of mast cells (M05: TPSAB1) were identified.
The expression of marker genes for the major lineages of
myeloid cells was presented in Supplementary Fig. S3a.
While TAMs and DCs were enriched in both primary
tumor and liver metastases, monocytes and MDSCs-like
cells were prevalent in blood and mast cells were mainly
enriched in primary CRC (Fig. 3a, b).
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Fig. 3 (See legend on next page.)
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M02 and M16 enriched the signature of MDSCs42,43.
Consistent with the results reported by Zhang et al.21,
S100A family genes are highly expressed, including
S100A12, S100A9, S100A8, together with FCN1 and
VCAN, but MHC I and MHC II molecules tend to be
lowly expressed (Supplementary Table S3).
Macrophages commonly function as phagocytic cells,

which can be activated and display varying phenotypes in
response to different stimulations44,45. For the diversity and
plasticity of TAMs, their heterogeneity and impacts on
tumor progression remain largely uncharacterized46. In this
study, we identified a total of 18 clusters of TAMs, among
which three (M08, M15, and M24) were undefined clusters,
which may represent low-quality clusters and were not
included in further analyses. In TAMs, with no clear deli-
neation between the phenotypes of M1 and M2. The M1
and M2 gene signatures are positively correlated in our
TAM compartment (Supplementary Fig. S3b), indicating
that TAMs were more complex than the classical M1/M2
model, consistent with previous studies21,27,47–49. Based on
the transcription state and expressed genes of TAMs, we
identified various signature genes and classified TAMs into
four major TAM subsets (Fig. 3c).
The first subset, including clusters 0, 12, and 13, were

classified as MHClow TAMs. MHClow TAMs exhibited
weak capacity of antigen presentation and immune acti-
vation, with low expression of MHC I and MHC II genes
(e.g., HLA-A, HLA-C, HLA-DRA, and HLA-DRB1) and
immune-costimulatory genes (e.g., CD80 and CD86).
Cluster 12, classified as IL1B+MHClow TAMs, was char-
acterized by upregulation of a large number of inflam-
matory and chemokine genes (e.g., IL1B, IL6, S100A9,
S100A8, CXCL8, CXCL3, and CXCL1) which involved in
recruiting and regulating immune cells. Cluster 12 was
present in the primary CRC of treatment-naïve patients
(Fig. 3c, right panel, 3d). Cluster 0 (THBS1+MHClow

TAMs) was prevalent in liver (Fig. 3c, right panel), with
high expression of THBS1, MARCO and genes promoting
the proliferation of EPCs and angiogenesis, such as
EREG, AREG, and VEGFA, which could stimulate tumor
growth and progression. Cluster 13 (MARCO+ MHClow

TAMs), mainly derived from liver-resident Kupffer cells
(the tissue-resident macrophages of liver), may exert a

tolerogenic or immune inhibitory function in liver
metastases through MARCO, VSIG4, and CD163.
The second subset, including clusters 6, 9, 14, 18, and

19, were classified as lipid-associated macrophages
(LAMs), which were characterized by upregulation of
genes involved in lipid metabolism (e.g., APOC1, APOE,
and LPL), extracellular matrix (ECM) degradation (e.g.,
MMP7, MMP9, and SPRAC) and complement activation
(e.g., C1QA, C1QB, and C2). They also highly expressed
TREM2 (encoding lipid receptor) and LGALS3 (associated
with immune suppression), which were recently found to
be associated with metabolic diseases50. Among the sub-
set, cluster 6 and cluster 9 showed higher expression
levels of matrix metalloproteinases (MMPs) compared to
other clusters. GO analysis of upregulated genes in each
cluster demonstrated that they were enriched in neu-
trophil activation and degranulation (Supplementary Fig.
S3c). In the primary CRC, LAMs were mainly present in
treatment-naïve tumors, however, they were shared in
liver metastases from both treated and untreated patients
(Fig. 3c, right panel, 3d).
The third subset, including clusters 4 and 11, was

enriched for genes involved in the regulation of myeloid
leukocyte differentiation. They were prevalent in tumors
treated with PC (Fig. 3c, right panel, 3d). With high
expression of FOS, cluster 4, mainly from liver metastases,
may be monocyte-derived, which could differentiate
into macrophage27. In addition to the canonical myeloid
marker gene CD33, cluster 11 also exhibited high
expression of CD4, which is typically expressed by
monocytes and involved in triggering cytokine expression
and the differentiation of monocytes into functional
mature macrophages27,51,52. Moreover, MHC genes tend
to be expressed at a higher level in cluster 11 cells than
cluster 4, suggesting that cluster 11 cells are more mature
and activated than the latter. Thus, we classify this subset
as monocyte-derived immature TAMs.
The fourth subset, including clusters 20 and 23, is

immune-regulatory TAMs characterized by the upregu-
lation of immune-suppressive genes, such as CD274,
CCL2, IL10, and TGFB2, and are prevalent in primary
CRC in treatment-naïve tumors (Fig. 3c, right panel).
Strikingly, both of the two clusters exhibited the high

(see figure on previous page)
Fig. 3 The phenotypic heterogeneity of myeloid cells. a t-SNE plot showing a total of 15,366 myeloid cells, separated into 28 subtypes. b Cells are
colored according to tissue origins (top) and treatment status (bottom). c Left, heat map showing normalized expression (z-score) of function-associated
genes in TAM subsets. Black boxes highlight the prominent patterns defining TAM subtypes. Right, bar plot showing the tissue origin and treatment
status of each TAM subtype. d Bottom, based on the annotation and classification above, bar plots depicting cell numbers of each cell type in tumors
with or without PC treatment are shown. Top, pie charts showing the proportions of different TAM subsets within different tissues (the primary CRC, liver
metastases). e Boxplot comparing the frequency of immature TAMs in treated and treatment-naïve patients both in primary CRC and liver metastases.
Wilcoxon rank-sum test was used for statistical analysis. f Overall survival curves of TCGA COAD patients (Cox regression). We identified an M11 TAM
signature composed of 26 genes that showed significantly increased expression in M11 vs other TAM clusters. g Immunofluorescence analysis showing
M11 (S100B+MMP122+CD68+) cell numbers in tumors treated with or without PC. h Boxplot showing the levels of M11 signature in pretreated samples
from the human colorectal cancer dataset GSE12246, adjuvant chemotherapy86.
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expression of MHC and co-stimulating genes, a signature
of immune activation and anti-tumor activities. Together,
we uncovered “double-agent” immune regulatory TAMs
with co-expression of both immune activated and
immune suppressive genes, which indicate complex
interactions between anti-tumor and pro-tumor activities.
In addition to the four subsets described above, there

are three more clusters, M01, M03, and M26, that cannot
be classified into the abovementioned four subsets. Genes
highly expressed in these three clusters are associated
with different biological processes and cellular functions.
M26 (MKI67+ TAMs) is marked with high expression of
genes involved in cell proliferation (e.g., MKI67, Supple-
mentary Table S3). In addition to EGF andMACRO, heat-
shock genes are also highly expressed in M01. M03
(CXCL10+ TAMs) highly expressed genes involved in
response to interferon-gamma (GBP1, STAT1, IFITM3,
and PARP14) and cellular response to zinc ion (MT2A,
MT1X, and MT1F). Many phenotypes of TAMs are
associated with the prognosis in CRC patients. The gene
signatures of M12 and M20 are associated with good
prognosis (P= 0.019 and P= 0.038, respectively), whereas
the gene signature of M06 is associated with poor prog-
nosis (P= 0.02) (Supplementary Fig. S3d).
TAMs from treatment-naïve tumors and

chemotherapy-treated tumors exhibited distinct pheno-
types in both primary tumor and liver metastases. In the
primary CRC, TAMs in untreated tumors showed higher
heterogeneity, however, they presented distinct pheno-
types compared with TAMs in tumors treated with PC
(Fig. 3d). Focusing on the treatment state, we identified
some clusters shared between treated and untreated
tumors, such as MKI67+ TAMs (M26). However, imma-
ture TAMs (M04, M11) and MHClow TAMs (M00,
THBS1+MHClow TAMs) were largely specific to treated
tumors (Fig. 3c, e). Instead, clusters of more activated
TAMs (MHChigh TAMs, M20 and M23), MMPs+ LAMs
(M06 and M09), pro-inflammatory TAMs (IL1B+MHClow

TAMs, M12), immune-suppressive TAMs (CXCL10+

TAMs, M03) and HSPH1+ TAMs (M01) were specific to
treatment-naïve tumors (Fig. 3c, right panel, d). To
quantify the heterogeneity of TAMs, we used Shannon’s
Entropy to measure the diversity of TAMs phenotypes
(see Materials and Methods section). The diversity of
TAMs in untreated tumors (y= 2.81) is ~1.78 times of
that of TAMs in tumors treated with PC (y= 1.58). In
conclusion, PC promotes the reprogramming of TAMs
from highly heterogeneity to immature and less activated
phenotypes in primary tumors.
Concordant with observations in primary tumors,

TAM populations with heterogeneous phenotypes were
present in both treated and untreated tumors in liver
metastases, including LAMs (M06, M09, M14, M18, and
M19) and MKI67+ TAMs (M26). In contrast, MHClow

TAMs (M00, M13) and immature TAMs (M04, M11)
were dominantly enriched in tumors treated with PC
(Fig. 3d, e), while immune-suppressive TAMs (M03,
CXCL10+ TAMs) and HSP+ TAMs (M01) were enriched
in treatment-naïve tumors (Fig. 3d). Importantly, we
found that the gene signature of M11 is associated with
good prognosis marginally significantly (P= 0.088, Cox
regression, Fig. 3f) in TCGA COAD patients within MSS
subtype (n= 174), however, it shows little correlation with
outcomes in MSI CRC patients, suggesting the infiltration
of M11 could be a potential predictor of good prognosis
in MSS CRC. Immunofluorescence analysis verified that
the M11 (S100B+MMP12+CD68+ TAMs) cells were
relatively more enriched in treated tumors (Fig. 3g and
Supplementary Fig. S3f). Published dataset of patients
treated with chemotherapy also validated that the
expression of signature genes of M11 was much higher in
the group with favorable prognosis (Fig. 3h). Trajectory
analysis of myeloid cells showed that DCs and monocytes
located at the origins of the trajectory axis, whereas TAMs
were mainly enriched in the middle and differentiated
ends (Supplementary Fig. S3g).
TAMs from tumors treated with PC are distinct from

those in treatment-naïve tumors (Supplementary Fig. S3e)
at the transcriptome level. In the niche of treatment-naïve
tumors, TAMs from the primary CRC were enriched for
genes involved in processes of neutrophil activation,
response to IFN-γ and fibroblast proliferation (Supple-
mentary Fig. S3e), indicating its proinflammatory phe-
notype53. TAMs from liver metastases were enriched for
genes associated with antigen processing and presenta-
tion, neutrophil activation, and response to IFN-γ. In the
ecosystem of treated tumors, TAMs in primary tumors
were characterized by upregulated genes involved in the
regulation of protein targeting to endoplasmic reticulum
and RNA catabolic progress, while in the metastatic sites,
TAMs were enriched for genes regulating myeloid leu-
kocyte chemotaxis and migration, which might account
for the aggregation of monocyte-like TAMs in this lesion.
In general, our results showed that PC suppressed the

diversity of TAMs. After PC treatment, the majority of
infiltrated TAMs in primary tumors were immature
TAMs and THBS1+MHClow TAMs, while more TAMs
aggregated in liver metastases tended to be immature and
less activated. Thus, chemotherapy facilitates the repro-
gramming of TAMs from high heterogeneity to immature
and less activated phenotypes.

PC decreases the abundance of ECM-remodeling CAFs, but
promotes the accumulation of myofibroblast
In our study, 1383 CAFs were detected and classified

into nine clusters. Notably, CAFs were significantly
more abundant in primary CRC than in liver metastatic
tumors (Fig. 4a). Based on the gene expression profile, we
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Fig. 4 Compositions and phenotypes of CAFs and EPCs in primary CRC and liver metastases. a The percentage of CAFs in six primary CRC and
six matched liver metastasis samples from six CRC patients with liver metastatic disease. Each dot represents one sample. *P= 0.031, two-sided
Wilcoxon rank-sum test. b t-SNE plot showing a total of 1383 fibroblasts that can be separated into nine subtypes. Cells are colored according to
different cell types (left), tissue origins (right, top), and treatment status (right, bottom). c Heat map showing the selected marker genes in each
cluster. Relative expression was defined as the gene-wise (row) z-score of normalized UMI counts across CAF subtypes (column). d Box plots showing
the percentage of each CAF subtype in primary CRC tumors treated with or without PC. Wilcoxon rank-sum test was used for statistical analysis. e GO
analyses of genes that are differentially expressed between CAFs from tumors treated with PC and those from treatment-naïve tumors. Benjamini-
Hochberg-corrected P values < 0.01. f Reclustering of EPCAM+ cells, colored according to clusters, sample origins, tissue origins, and treatment status.
g t-SNE plots showing representative marker genes of EPCs. h GO analysis of genes that are differentially expressed between primary CRC and liver
metastases in malignant cells. Selected GO terms with Benjamini-Hochberg-corrected P values < 0.05 (one-sided Fisher’s exact test).
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classified CAFs into three major subsets, including
secretory CAFs (clusters 0, 1, 6, and 7), ECM-remodeling
CAFs (clusters 2 and 8) and contractile CAFs (clusters 3,
4, and 5) (Fig. 4b, c). Secretory CAFs highly express
secretory proteins, such as various growth factors (e.g.,
IGF1, PDGFD, FGF7, and VEGFB) that mediate angio-
genesis and cancer cell proliferation, some signal mole-
cules (e.g., BMP4 and WNT2B) that are able to maintain
cancer stem cell niche, complements (e.g., C1S and C3)
and chemokines (e.g., CCL2, CXCL12, and CXCL14) that
regulate tumor immunity and inflammation. The ECM-
remodeling CAFs highly express ECM proteins (such as
ECM collagens and fibronectin), and are strongly asso-
ciated with a fibrotic matrix (Fig. 4c). They also express a
large number of ECM proteases, which alter ECM
structure and assist tumor angiogenesis and metastasis54.
The contractile CAFs are enriched for genes involved in
the regulation of cell contraction (Fig. 4c), suggesting
some distinct phenotypes. CAFs have numerous potential
cellular sources. Cluster 4 exhibits myofibroblastic nature,
as suggested by the upregulation of myofibroblast markers
(e.g., ACTA2 and TAGLN) and genes involved in myo-
genesis (e.g., MYH11, PLN, and CNN1)54,55. Cluster 5,
highly expressing pericyte-associated markers (e.g., RGS5
and CSPG4), largely originate from pericytes54. Cluster 3
exhibits upregulated expression of genes involved in stress
response (e.g., JUN, BAG3, and HSPA2) and is only pre-
sent in liver metastases, suggesting that they may be
triggered as adaptation to TME.
CAFs derived from treated and untreated tumors

exhibited distinct phenotypes (Fig. 4b, right panel). ECM-
remodeling CAFs were prevalent in the primary CRC in
treatment-naïve tumors (Fig. 4d), whereas contractile
CAFs were more prevalent in tumors treated with PC
both in primary tumors (cluster 4) and liver metastases
(cluster 3 and cluster 5). Secretory CAFs were observed in
the primary CRC, and were mainly enriched in treated
tumors (except cluster 0) (Fig. 4d). Comparison of the
CAFs from treatment-naïve tumors and treated tumors
showed that CAFs from treatment-naïve tumors were
strongly enriched for genes involved in processes of ECM
organization and collagen metabolism (Fig. 4e), whereas
CAFs in tumors treated with PC were significantly enri-
ched for pathways involved in regulating muscle cell dif-
ferentiation, immune system (T cell activation) and EPC
proliferation (Fig. 4e). As we know, ECM remodeling is an
important feature of CAFs common to progressive
tumors and promotes metastasis56. The observations here
indicate that PC suppresses ECM remodeling by CAFs,
but promotes accumulation of myofibroblasts and diverse
secretory CAFs in metastases of CRC.
Trajectory analysis of CAFs showed that the secretory

CAFs, ECM-remodeling CAFs and contractile CAFs were
enriched in branch 1, branch 2, and branch 3, respectively,

confirming phenotypic distinction of the three subsets
(Supplementary Fig. S3h). In addition, the pseudotime
developmental trajectory showed that the secretory CAFs
were considered as an earlier developed subtype. Con-
tractile CAFs were highly enriched in the end of the tra-
jectory axis, implying that they may be developed at the
late stage of CAFs.

EPCAM+ EPCs in TME
EPCAM+ EPCs were classified into 11 clusters, and

were colored according to different clusters, sample ori-
gins, tissue origins, and treatment status (Fig. 4f, g). We
confirmed that the EPCs were malignant by inferring
chromosomal copy-number variations (CNVs) based on
transcriptomes (see Materials and Methods section).
Consistent with previous studies19,57, malignant cells
show a patient-specific gene expression pattern. Inter-
estingly, for each patient, malignant cells from different
tissue origins (the primary CRC and the matched liver
metastases) cluster together, reflecting that they have
common origins (Fig. 4f, top right). After treated with
chemotherapy, only a few EPCs were present in treated
patients (mainly from COL15, see Fig. 4f) in our dataset.
When comparing the transcriptomes of malignant cells in
primary tumors and liver metastases, we noticed that a
series of genes was especially expressed in the malignant
cells of primary CRC but were absent in liver metastases.
GO enrichment analysis revealed that these genes are
enriched in immune-related processes, such as neutrophil
activation involved in immune response, response to
tumor necrosis factor (TNF), myeloid leukocyte migra-
tion, and granulocyte chemotaxis (Fig. 4h, top panel). This
result suggests that cancer cells in the TME of liver
metastases might present reduced immunogenicity, which
allows them to easily escape immune detection.

PC reduces CD8+ dysfunctional T cells
Here, we also identified different phenotypes of T cells

(Fig. 5a), including naïve T cells (TN), central memory
T cells (TCM), intraepithelial lymphocytes (IELs), tissue-
resident memory T cells (TRM)/effector memory T cells
(TEM), recently activated effector memory T cells (TEMRA),
dysfunctional or “exhausted” T cells (TEX), TH17-like cells,
CXCL13+ TH1-like cells, MKI67+ T cells, and regulatory
T cells (Tregs). Within these sub-populations, TN, TCM, and
TEMRA cells were mainly enriched in blood; IELs were most
exclusively present in primary cancer; TEX cells and TRM

cells were present both in primary and liver metastasis. The
treatment state and tissue origin are mapped in Supple-
mentary Fig. S4a. The annotation was confirmed by the
expression of canonical markers (Supplementary Fig. S4b, c
and Materials and Methods section).
In addition, we also identified two MKI67+CD8+ T cell

populations (T36 and T24) (Fig. 5a). Closer examination
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of these two clusters revealed that cluster 36 was pre-
valent in the liver metastases (Fig. 5b, 96% in liver and 4%
in the primary CRC), whereas cluster 24 was enriched in
both the primary CRC and the liver (53% in CRC and 45%
in liver), indicating that primary CRC and liver metastases
share cluster 24, while the liver metastases have their
specific T cells characterized by high proliferation activity
(T36). To identify differences of these two subpopulations

of T cells, we detected differentially expressed genes
(DEGs) between T24 and T36, expressed by more than
10% cells, with the P value less than 1%, log2-fold change
more than l. The results revealed that heat-shock protein,
such as HSP90AA1, HSPA6, HSPA1A, HSPA1B, and
DNAJA4, and some molecular chaperones (e.g., BAG3
and HSPB1) were greatly upregulated in cluster 36
(Fig. 5b). GO analysis showed that cluster 36 was mainly

Fig. 5 Cell subpopulations in the T cell compartment. a t-SNE plot showing a total of 86,803 cells classified into T/NK cell subtypes. b Bar plot
exhibiting the distribution of T24 and T36 cells across different tissues (left). Volcano plot showing DEGs between the T24 and T36 clusters (middle).
Each red/blue dot denotes an individual gene with fold change ≥ 2 and adjusted P value < 0.01 (two-sided moderated t-test with limma). GO analysis
of DEGs between T24 and T36 (right). Selected GO terms with Benjamini-Hochberg-corrected P values < 0.05 (one-sided Fisher’s exact test) are
shown. Bottom, based on the annotation and classification above, bar plots depicting cell numbers of each subtype of CD8+ T cells (c) and CD4+

T cells (d) in tumors with or without PC treatment are shown. Top, pie charts showing the proportions of different T cell subtypes within different
tissues (the primary CRC, liver metastases, and blood). Left, frequencies of CD8+ dysfunctional T cells (e) and Tregs (f) in primary CRC and liver
metastases with or without PC treatment are shown, respectively. Wilcoxon rank-sum test was used for statistical analysis. *P < 0.05. Developmental
trajectory analysis of CD8+ T cells (e) and CD4+ T cells (f). Cells are colored according to the treatment states. g The FACS results showing the ratio of
PD-1+CD8+ T cells to CD8+ T cells in liver metastases of CRC patients treated with or without PC.
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enriched for genes involved in protein folding and
response to stress (e.g., temperature stimulus, heat,
topologically incorrect protein), suggesting that they may
be activated as adaptation to TME.
Many studies revealed that chemotherapy could impact

on T cell diversity. For example, chemotherapy could
increase tumor-infiltrating lymphocyte infiltration and
decrease Treg accumulation and proliferation in CRC
patients58,59. Comparing the cellular diversity of T cells in
treatment-naïve tumors and tumors treated with PC, we
found that most subsets of CD4+ T cells were shared in
chemotherapy-treated and untreated tumors, however,
the phenotypes of CD8+ T cells were significantly dif-
ferent (Fig. 5c, d).
In treatment-naïve tumors, different types of CD8+

T cells were present in the primary tumor, including
effector T cells and exhausted T cells, while in the
metastatic sites, for the CD8+ T cells, only dysfunctional
or exhausted T cells were accumulated (Fig. 5c). Most
significantly, PC inhibited the accumulation of dysfunc-
tional T cells both in the niches of primary CRC and liver
metastases (Fig. 5e). This was validated by flow cytometry
(Fig. 5g and Supplementary Fig. S4d) and immuno-
fluorescence analyses (Supplementary Fig. S5). Consistent
with previous studies58,59, chemotherapy decreased the
accumulation of Tregs in the primary CRC, but in liver
metastases, the abundance of Tregs were comparable
between treated and untreated tumors (Fig. 5f). The dif-
ferentiation trajectories of CD8+ and CD4+ T cells
(Fig. 5e, f and Supplementary Fig. S4e, f) also confirmed
that the CD8+ dysfunctional T cells were most prevalent
in treatment-naïve tumors, whereas the Tregs were shared
in treated and untreated tumors. Dysfunctional CD8+

T cells are characterized by a loss of classical CD8 T
effector function, such as cytotoxicity. The suppression of
CD8+ dysfunctional T cells after chemotherapy may
imply the reinvigoration of T cells.

Cell–cell crosstalks within the TME in primary CRC and liver
metastases
TME is a complex ecosystem. Cellular crosstalks

determine tumor biology and response to therapies60. In
order to systematically map cellular interactions especially
those between different immune cells and mesenchymal
cells in the TME of the primary CRC and metastases, and
to investigate the potential cellular communications
which contribute to cancer progression, metastasis, and
immune evasion, we used CellPhoneDB v2.0.6 to study
the crosstalks between stromal cells in TME. To visualize
the crosstalks between different cells types, a chord dia-
gram was built using the circlize package61 in R.
First, we provided a landscape of crosstalks within

major stromal cell types both in the niche of the primary
CRC and the liver metastases. Then based on each cell

type annotated above, we investigated intercellular com-
munications in tumors treated with PC and untreated
tumors. Selected LR pairs are summarized in Fig. 6, and
the full list of results that were unique to different TME is
available in Supplementary Table S4.
The crosstalk profiling of major stromal cells revealed

that TAMs have the broadest crosstalks with other cells,
both in the niches of primary CRC and liver metastases
(Supplementary Fig. S6a, b). They display a rich LR pro-
file, broadly communicating with mesenchymal com-
partment (CAFs and endothelial cells) and immune
compartment (including T cells, NK cells, mast cells, DCs,
and TAMs) in both the primary and liver metastases
(Supplementary Fig. S6a). Comparison of the interactions
in the primary CRC and liver metastases revealed that
TAMs in the primary CRC communicate more frequently
with CAFs than those in liver metastases. EPCs commu-
nicate more densely in the primary CRC, especially with
TAMs, CAFs, and endothelial cells (Supplementary Fig.
S6a), whereas the crosstalk between TAMs and DCs was
greatly increased in the metastatic niche when compared
with that in primary CRC (Supplementary Fig. S6a, b).
Based on the results above, we further specified key

cellular interactions between cell subpopulations. The
crosstalks between different subtypes of TAMs are
most abundant in the TME, compared with other cell
types. In addition, the crosstalks between subpopula-
tions of DCs, CAFs, TAMs, dysfunctional T cells, and
endothelial cells are relatively more frequent, whereas
immune cells, such as B cells, plasma cells, other T cell
subtypes (including TEM, TRM, TEMRA, and Tregs), NK
cells and mast cells communicate less in TME (Sup-
plementary Fig. S6c).
Moreover, compared with other T cell subtypes, we

observed that MKI67+CD8+ T cells and TEX display a
rich LR profile (Supplementary Fig. S6c), and commu-
nicate densely with mesenchymal compartment (CAFs
and endothelial cells) and immune compartment, indi-
cating their immune-modulating functions. Both
MKI67+CD8+ T cells and MKI67+ TAMs display a rich
LR profile, implying that cells with high proliferative
activity may communicate more with other cell types.

Cell–cell communications in the niches of tumors treated
with or without PC
Whether PC can reprogram the interactions within

stromal cells is still unclear. To investigate the effects of
chemotherapy on TME of liver metastases of CRC, we
further compared cell–cell interaction networks between
PC-treated and untreated tumors both in primary and
metastatic sites.
Our data have revealed that the phenotypes of TAMs

are highly heterogeneous, and the dysfunctional T cells
and ECM-remodeling CAFs are enriched in the primary
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CRC of treatment-naïve tumors, while in the micro-
environment of primary tumors treated with PC, che-
motherapy promotes the activation of B cells and
increases the abundance of immature and less activated
TAMs and myofibroblasts.
The LR map showed that communications related to

immune regulation were more frequent and broader in
tumors treated with PC (Fig. 6a). In niches of treatment-
naïve primary tumors, non-PC enriched TAMs (MHChigh

TAMs (M20 and M23), MHClow inflammatory TAMs
(M12)) and MKI67+ TAMs (M26) expressed T cell
immune checkpoint ligand CD86, and interacted with
dysfunctional T cells and Tregs, directly inhibiting T cell
function62,63 through LR pair CD86–CTLA4 (Fig. 6a, left).
However, in the microenvironment of primary tumors
treated with PC, the interactions involved in immune
modulation were denser. For instance, PC-enriched
TAMs expressed T cell immune checkpoint ligands
CD86 and CD80, interacting with dysfunctional T cells
and MKI67+ T cells through LR pair CD28–CD86,
CD86–CTLA4, and CD80–CTLA4. Moreover, they
mediate the release of chemokines CCL20 and CXCL16,
recruiting CXCR3+CD8+ T cells, CCR6+ T cells, and

CXCR6+ T cells through CCR6–CCL20, CXCR3–CCL20,
and CXCR6–CXCL16 interactions (Fig. 6a, right).
Moreover, PC promoted the activation of B cells. In the

niche of primary tumors treated with PC, B cells, MKI67+

T cells (T24) and dysfunctional T cells expressed HLA-F,
and/or HLA-DPB1, interacting with PC-enriched TAMs
through HLA-F–LILRB2 and HLA-DPB1–NRG1 inter-
action (Fig. 6a, right). Importantly, a subtype of PC-
enriched TAMs (M0) also expressed NRG1 and immu-
nomodulatory gene LILRB2, broadly interacting with
DCs, TEMA and other TAMs through HLA-F–LILRB2 and
HLA-DPB1–NRG1 interactions (Fig. 6a, right). This
implies the role of M0 involved in immune regulation.
Compared with the untreated tumors, the Notch sig-

naling was exclusively activated in tumors treated with PC.
The LR map in tumors treated with PC showed that
myofibroblasts highly expressed JAG1, interacting with
Notch receptors (NOTCH2, NOTCH3, and NOTCH4) on
themselves and endothelial cells (Fig. 6a, right). Notch
signaling regulates myofibroblast phenotype, tissue fibro-
sis64, and macrophage differentiation and functions65. In
contrast, in the treatment-naïve tumors, we identified pro-
angiogenic interactions among ECM-remodeling CAFs,

Fig. 6 Cell–cell interaction networks in primary tumors and liver metastases of CRC. a Dot plot depicting the selected LR interactions enriched
in treatment-naïve (left) and PC-treated (right) primary CRC tumors. Color intensity corresponds to the mean of average expression; dot size indicates
the P values. Scales are shown on the right. b Dot plot depicting the selected LR interactions enriched in treatment-naïve tumors (left) and tumors
treated with PC (right) in liver metastases. Two colors (red and black) are used to distinguish the cellular origin of each ligand/receptor.
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non-PC-enriched TAMs, EPCs, and endothelial cells.
MHChigh TAMs (M20 and M23) and inflammatory TAMs
(M12) highly expressed pro-angiogenic factor vascular
endothelial growth factor A (VEGFA), activating and
recruiting ECM-remodeling CAFs and endothelial cells
that might generate vascular networks in the micro-
environment though NPR2–VEGFA66,67 (Fig. 6a, left).
EPCs also expressed VEGFA, interacting with endothelial
cells and ECM-remodeling CAFs through NRP1–VEGFA
and NRP2–VEGFA in the primary CRC (Fig. 6a). Notably,
among TAMs, high expression of VEGFA was found in
inflammatory MHClow TAMs (M12), which interacted
with LAMs (M14, M18, and M19), MHChigh TAMs (M20
and M23), and MKI67+ TAMs (M26) through the
NPR2–VEGFA interaction (Fig. 6a, left).
In addition, in tumors treated with PC, we found that

endothelial cells densely communicated with other cells in
the primary tumors. They express ACKR1 (DARC),
broadly interacting with T cells (Supplementary Fig. S6d),
DCs, myofibroblasts and TAMs through CCL5–ACKR1,
CXCL8–ACKR1, CXCL1–ACKR1, and CCL17–ACKR1
interactions (Fig. 6a, right). ACKR1 plays a crucial role in
regulating leukocyte recruitment68, and high expression
of ACKR1 inhibits tumor growth, neovascularization, and
metastasis69. In contrast, in untreated tumors, endothelial
cells expressed immunosuppressive gene LGALS9, com-
municating with MKI67+ T cells (T36), MHChigh TAMs
(M20 and M23) and dysfunctional T cells through the
LGALS9–HAVCR2 interaction (Fig. 6a, left).
In liver metastases, chemotherapy promotes the abun-

dance of DCs and myofibroblasts, but decreases the dys-
functional T cells. Both in tumors treated with and without
PC, LAMP3+ DCs express CD86, CD274 (PDL1) and
LGALS9, interacting with dysfunctional T cells, MKI67+

T cells and Tregs through CTLA4–CD86, PDCD1–CD274,
and LGALS9–HAVCR2 interactions (Fig. 6b). However, in
untreated tumors, LAMP3+ DCs further expressed CCL19
and CXCL10, recruiting CCR3+ Tregs, dysfunctional
T cells and MKI67+ T cells through CXCR3–CCL19 and
CXCR3–CXCL10 interactions (Fig. 6b, left).
In tumors treated with PC, in line with the observations in

primary tumors, Notch signaling was also activated in liver
metastases after chemotherapy (Fig. 6b, left). Importantly,
TNF signaling was uniquely present in tumors treated with
PC. MKI67+ T cells (T36) expressed TNF and TNFSF14,
broadly interacting with immune cells (DCs and TAMs)
and non-immune cells (CAFs) though TNF–TNFRSF1A,
TNF–TNFRSF1B, and TNFSF14–TNFRSF14 interactions
(Fig. 6b, right), which can positively regulate T cell response
and contribute to the function of effector T cells as reported
in previous studies34,70.
Compared with tumors after treatment, in treatment-

naïve tumors, cross-presenting DCs expressed DPP4,
interacting with TAMs through CXCL2–DPP4,

CXCL10–DPP4, and CCL3L3–DPP4 interactions
(Fig. 6b, left). DPP4 (also known as CD26) has been
showed to be positively correlated with distant metas-
tasis in CRC71, and CRC patients with high expression
of DPP4 showed significantly worse overall survival71. In
addition, cross-presenting DCs also interacted with
TAMs through LGALS9–HAVCR2, implying their roles
in immunosuppression.
In summary, our LR interaction map highlights that

ACKR1, Notch signaling and molecules mediating
immune regulation may contribute to the reprogramming
of TME after PC treatment.

Discussion
How to improve therapeutic options for patients with

metastatic CRC is a core question for CRC treatment. In
this study, we performed a single-cell profiling of primary
CRC and their matched liver metastases with 111,292
cells, providing a fundamental and comprehensive
understanding of cellular composition in TME of liver
metastases of CRC. More importantly, for the first time,
we provided a dynamic and comprehensive LR interaction
mapping in stromal cells to illustrate how PC reprograms
the TME of both primary CRC and matched liver
metastases in CRC patients.
We find that B cells mainly exist in primary CRC.

Importantly, our results indicate that PC may stimulate
the activation of B cells. B cells in tumors treated with PC
are characterized by high expression of Ig molecules (IgG
and IgA) and MHC class II molecules, downregulation of
naïve (e.g., VPREB3) and inflammatory markers (e.g.,
NFKBIA). Upregulation of IgG and IgA indicate that they
undergo CSR, a key process in B cell activation and
transformation into plasma cells when they are stimulated
by antigens. The activation of B cells has also been found
in the scenario of cancer immunotherapy37–40. Further-
more, we identified a gene signature of activated B cells
and found that it is positively correlated with overall
survival in the TCGA COAD cohort, especially in MSS
subtype (Fig. 2i, j). Thus, our results suggest that the
infiltration of the switched, activated B cells may play an
important role in antitumor response, and that they could
be a potential predictor of effective chemotherapy and
good prognosis of CRC.
In this study, we classified TAMs into four major het-

erogeneous subclasses based on gene expression profiles
(Fig. 3c). In the primary niche of treatment-naïve tumors,
our results showed that hyper-inflammatory TAMs,
MMPshigh TAMs, and MHChigh TAMs are prevalent in
the primary CRC, whereas the abundance and diversity of
TAMs decrease significantly after treatment with PC.
According to previous studies, MHChigh TAMs are more
likely to be activated TAMs, which are distributed in
peritumor regions and contribute to tumor invasion and
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metastasis, resulting in shorter survival72,73. In addition,
TAMs play a dominant role in tumor inflammation by
facilitating angiogenesis and promoting tumor growth
and metastasis74–77. The subset of inflammatory TAMs
exhibit a strong inflammatory phenotype and may sig-
nificantly contribute to tumor progression. Taken toge-
ther, TAMs in TME of treatment-naïve tumors may
promote tumor development. In contrast, characteristics
of TAMs in tumors treated with PC are quite different.
We found that immature and less activated TAMs are
more enriched in treated tumors. Especially, the gene
signature of immature TAMs (M11) is associated with
better prognosis in MSS cohort. According to recent
studies, high TAM density is closely correlated with poor
survival in many cancers78,79. However, TAMs-targeted
therapy has not been effective yet, which may be ham-
pered by TAM heterogeneity and elusive molecular phe-
notypes. Our study provides a full-scale illustration of
TAM composition and molecular characteristics, which is

an important foundation and resource for TAMs-targeted
therapy research to inhibit and cure metastatic CRC. Our
results also reveal that PC suppresses the abundance of
dysfunctional T cells and ECM-remodeling CAFs, and
induces the generation of myofibroblasts. The accumu-
lation of myofibroblasts indicates tissue injury and fibrosis
related to chemotherapy.
Therefore, based on the phenotypic alteration that we

observed in the primary CRC treated with or without PC,
we deduced that chemotherapy destroys tumor cells,
which releases tumor antigens and activates immune
microenvironment (Fig. 7), including B cell maturation
and antibody generation. Moreover, chemotherapy redu-
ces the diversity of TAMs and remodels the character-
istics of TAMs, converting inflammatory TAMs into an
immature and less activated phenotype. However, the
TME of liver metastasis is clearly different. The number of
B cells in the liver metastasis shows a significant reduc-
tion, which might be a cause for the feasibility of liver

Fig. 7 Diagram illustrating the reprogramming of TME in response to PC. The reprogramming of TME in response to PC. Top, schematic
diagram of the reprogramming of TME in treatment-naïve (left) and treated (right) tumor in the primary CRC. Bottom, schematic diagram of the
reprogramming of TME in treatment-naïve (left) and treated (right) tumor in liver metastases.
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metastasis of CRC. Similar to the situation of primary
CRC, myofibroblasts are aggregated in response to che-
motherapy, which leads to fibrosis of liver metastases.
Taken together, this atlas provides a fundamental

reference for future studies of the complex cellular and
phenotypic diversity within TME of both primary CRC
and liver metastases. Our systematic investigation of
transcriptional changes and phenotypic alteration in TME
at single-cell level may provide valuable insight into our
understanding of therapeutic outcome. This may open up
new possibilities to develop or improve therapeutic stra-
tegies for CRC.

Materials and Methods
Tumor specimens and patient clinical characteristics
Primary CRC, matched liver metastases and blood

samples were collected from six CRC patients with
metastatic disease. All patients were classified as MSS
with invasive adenocarcinomas and late-stage (IV) disease
(Supplementary Table S1). For each lesion, we collected
the tissue in the core of the tumor after the surgery. Single
cells were isolated from fresh tumor tissues without sur-
face marker pre-selection. All patients underwent curative
intent surgery of synchronous colectomy with liver
resection. In addition, all patients who provided speci-
mens signed an informed consent form and agreed to the
specimens being used for scientific research. Detailed
pathological and clinical information of patients is listed
in Supplementary Table S1. Among the patients, patients
COL15, COL 17, and COL18 were treated with PC, and
the others were treatment naïve. Among patients treated
with PC, patient COL15 received three cycles of CAPEOX
(capecitabine plus oxaliplatin) on weeks 1, 5, and 9.
Patient COL17 received four cycles of CAPEOX on weeks
1, 5, 9, and 13. Patient COL18 received eight cycles of
FOLFOX-Bev (5FU, oxaliplatin, leucovorin with bev-
acizumab), 2 weeks per cycle. Surgery was performed
~1 month after the last chemotherapy treatment in all
three patients. All three patients in this study responded
well to PC with a significant tumor shrinkage. For more
details, please see Supplementary Table S1.

Tumor disaggregation and single-cell collection
Venous blood was collected before surgery in EDTA

anticoagulant tubes and used to isolate PBMC immedi-
ately. Fresh biopsies of the primary CRC and the matched
liver metastases were collected during surgery. Once the
specimens were separated from body, they were processed
for scRNA-seq immediately.

PBMC Isolation
PBMCs were isolated using Ficoll (TBD) solution

according to the manufacturer’s instructions. In brief,
5 mL fresh peripheral blood was layered onto equal Ficoll,

following by centrifugation at 450 × g for 25 min. After
centrifugation, lymphocyte layer remained at the plasma-
Ficoll interface and were carefully transferred to a new
tube and washed twice with phosphate-buffered saline
(PBS, ThermoFisher Scientific). Lymphocyte pellets were
re-suspended with sorting buffer (Hank’s Balanced Salt
Solution (HBSS, ThermoFisher Scientific) with 0.04%
bovine serum albumin (BSA, MRC)) for flow cytometry
analyses.

Tumor Dissociation
The primary CRC and metastatic tumor tissue were

dissociated using MACS® Tumor Dissociation Kit (Mil-
tenyi Biotec). Briefly, Fresh biopsy samples of the primary
and metastatic tumors were washed with Dulbecco’s PBS
(ThermoFisher Scientific), minced into ~1-mm3 pieces,
and enzymatically digested with Human Tumor Dis-
sociation Kit (Miltenyi Biotec) for 60 min on a rotor at
37 °C, according to the manufacturer’s protocol. Cell
suspension was subsequently filtered through a 40-μm
Cell Strainer (BD) and centrifuged for 10min at 400× g.
The supernatant was then removed, pelleted cells were
suspended in red blood cell lysis buffer (Solarbio) and
incubated on ice for 2 min to lyse red blood cells. After
washing with HBSS, the cell pellets were re-suspended in
sorting buffer (HBSS with 0.04% BSA) for flow cytometry
process.

Sorting of viable single cells
A single-cell suspension was stained for viability with

1 μm Calcein AM (ThermoFisher Scientific) and 0.33 μM
TO-PRO-3 iodide (ThermoFisher Scientific) prior to
sorting. Fluorescence-activated cell sorting was performed
on BD Influx (BD Biosciences) using 488 nm (calcein AM,
530/40 filter), 638 nm (TO-PRO-3, 670/30 filter) lasers.
Singlets were captured and doublets were discarded
through forward scatter height and width parameters.
Viable cells were recognized as Calcein AM (high) and
TO-PRO-3 (low) cell cluster. For PBMC sample, only
lymphocyte and monocyte clusters were selected for fur-
ther sorting. Viable single cells were resuspended in HBSS
with 0.04% BSA. Viability was confirmed to be > 90%
using trypan blue (ThermoFisher Scientific) exclusion
prior to scRNA-seq process.

Droplet-based scRNA-seq and library preparation
The scRNA-seq libraries were constructed by using the

Chromium™ Single Cell 3′ Reagent Kits v2 (10× geno-
mics) according to the manufacturer’s instruction. Briefly,
cells were suspended in HBSS with 0.04% BSA at a con-
centration ~1000 cells/μL and appropriate suspension
loading volume were determined by calculating for a
target capture of 8000 cells. Cell suspension of corre-
sponding volume was loaded onto the 10× Chromium
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Single Cell Platform (10× genomics). Generation of gel
beads in emulsion (GEMs), barcoding, GEM-RT clean-up,
complementary DNA amplification and library construc-
tion were all performed according to the manufacturer’s
protocol. Sequencing library quality was checked with
Bioanalyzer (Agilent Bioanalyzer 2100). Library quantifi-
cation was measured using Qubit before pooling. The
final library pool was sequenced on the Illumina NovaSeq
6000 instrument using 150-base-pair paired-end reads.
Sequencing data of individual samples were summarized
in Supplementary Table S2.

Preprocessing of scRNA-seq data analysis
The raw base call (BCL) files were demultiplexed into

FASTQ file by bsl2fastq. Droplet-based sequencing data
were qualified by FastQC software. Then reads were
aligned against GRCh38 human reference genome pro-
vided by Cell Ranger (version 2.0, 10× genomics), unique
molecular identifier (UMI) counts were summarized for
each cell of each gene. The raw UMI count matrices were
converted into a Seurat object by the R package Seurat80

(version 2.3.4) and then filtered to (1) remove cells with a
low number of unique detected genes (< 500); (2) for each
batch, remove cells for which the total number of UMI
(after log10 transformation) was not within the three
standard deviations of the mean; (3) for each batch,
remove cells that showed an unusually high or low
number of genes; (4) discard cells in which the proportion
of the UMI count attributabled to mitochondrial genes
was greater than 15%. Overall, 731 cells were filtered out
in step 1, while step 2 to step 4 removed only a small
number of cells (0.1%). After exclude low-quality cells,
25,121 protein-coding genes across 111,292 single cells
remained for downstream processing.

Identification of cell types and subtypes by dimensional
reduction
After quality control, raw UMI counts were lognorma-

lized using the scale of 10,000. The genes with normalized
expression between 0.0125 and 3, and dispersion > 0.5
were selected as highly variable genes. 1511 highly variable
genes were identified based on dispersion and mean.
“var.to.regress” option UMI’s and percent mitochondrial
content were used to regress out unwanted sources of
variation. The resultants were first summarized by prin-
ciple component analysis. We used the function
FindClusters on 50 principle components with resolution
1.0 to perform the first-round cluster and annotation. The
annotation of each cell cluster was confirmed by the
expression of canonical marker genes. As shown in Sup-
plementary Fig. S1b, EPCs were identified using the
higher expression of EPCAM, and other cell types were
annotated using: T cells (CD3D, CD3G, TRAC), B cells
(CD19, CD79A, and MS4A1), plasma cells (IGHG1,

IGHA1, MZB1, and CD79A), monocytes and macro-
phages (CD68, CD163, CD14, and LYZ), NK Cells
(KLRF1, KLRD1, FGFBP2, and PRF1). CAFs (FAP,
COL1A1, COL3A1, DCN, and ACTA2), endothelial cells
(CLDN5, CDH5, and VMF), pDC (LILRA4 and IL3RA),
and mast cells (TPSAB1, TPSB2, and MS4A2). Then
focusing on each major cell types, the same clustering
protocol was used to identify clusters within the major cell
types aforementioned.
Among T cells, cell clusters were identified using genes

previous reported. Naïve T cells were identified by the
expression of “naïve” marker genes, such as CCR7, SELL,
and LEF1. TRMRA cells were identified by the expression
of cytotoxic markers KLRG1, GZMH, NKG7, and PRF1,
but without upregulation of inhibitory molecules. TH17-
like cells exhibit upregulation of IL23R and IL17A, and
TRM-like cells express markers CD69, IL7R, CXCR4, and
GPR18. TEM clusters were characterized by high expres-
sion of chemokine receptor CXCR4 and mild expression
of cytotoxic molecules (GZMK and IFNG). Tregs are
marked by high expression of FOXP3 and IL2RA.
Moreover, a small subset of T cells were characterized as
IELs based on the highly expressed γδT cell receptors
(TRGC2) and NK cell markers. Furthermore, consistent
with previous results22,34, a subset of follicular helper
T cells (CXCL13+ TH1-like cells) was observed in CD4+

T cells, highly expressing CXCL13 and some inhibitory
molecules (such as CTLA-4).

Pathway enrichment analysis
We used the R package limma81 to identify DEGs

between cells from treatment-naïve tumors and
chemotherapy-treated tumors. The Benjamini-Hochberg
multiple testing correction was applied to estimate
the FDR.
Biological-process GO enrichment (P < 0.01) was per-

formed using clusterProfiler packages (version 3.9.2)82

with a Benjamini–Hochberg multiple testing adjustment.
Gene sets with a FDR-corrected P < 0.01 were considered
to be significantly enriched.

Statistical analysis
All statistical analyses were conducted using R software

(R Foundation for Statistical Computing). Statistical ana-
lysis data were presented as the means ± SEM of three
independent experiments. Comparisons between two
groups of samples were evaluated using Wilcoxon rank-
sum test (Mann–Whitney U-test) for statistical analysis.
*P < 0.05, **P < 0.01, ***P < 0.001.

The phenotypic diversity of TAMs
To quantify the heterogeneity of TAMs, we used

Shannon’s Entropy to measure the diversity of TAMs
phenotypes. For each phenotype, we calculated the
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proportion (p) of cells coming from each phenotype
among all TAM cells. The phenotypic diversity of TAMs
is then calculated based on Shannon’s Entropy:
y ¼ �Pn

n¼1 pðxnÞ log2½pðxnÞ�pðxnÞ is the frequency of
the number of cells with the phenotype n in the niche of
TAMs, and

Pn
n¼1 p xnð Þ ¼ 1.

Estimation of CNVs in cancer cells
The InferCNV package83 was used to detect the CNVs

in EPCAM+ cells and to recognize real cancer cells with
the following parameters: “denoise”, default hidden Mar-
kov model settings, and cutoff = 0.1. The chromosomal
expression patterns were estimated from the moving
averages of 101 genes as the window size and adjusted as
centered values across genes. Two clusters mainly con-
taining non-malignant derived cells were used as the
control group.

Putative interactions between cell types
We used CellPhoneDB v2.0.6 (www.cellphonedb.org) to

study the crosstalk between stromal cells in TME. Cell-
PhoneDB is a repository of curated receptors, ligands, and
their interactions to predict communicating pairs. It
integrates multiple databases and includes subunit
architecture for both ligands and receptors to represent
heteromeric complexes accurately18,84.
In brief, a count file containing gene expression value

and a meta file with the cell type annotation information
were prepared as inputs to the algorithm. Pairwise cell–
cell interaction analyses were performed by CellphoneDB.
In our data, only ligands or receptors expressed in more
than 10% of the given cell subpopulations were con-
sidered as potential candidates. The interactions between
subpopulations were identified as follows. (1) Randomly
permuted the labels of all cells 1000 times, then determine
the mean of the average receptor expression level in a
cluster and the mean of the average ligand expression in
their counterpart clusters. Thus, a null distribution could
be obtained for each LR pair in each pairwise comparison.
(2) Calculate the proportion of the means. If the means
were the same as or higher than the actual mean, a P value
for the likelihood of cell-type specificity of a given LR
complex was obtained. (3) Selected LR pairs that have
significant P values and are biologically relevant. To
visualize the crosstalk between different cells types, a
chord diagram was built using the circlize package61 in R.

Tajectory analysis
We used Monocle285 to construct the cell differ-

entiation trajectories. The dimensionality reduction was
performed with the DDRTree algorithm, using the most
highly variable genes (top 1000) to arrange the cells in
order. Genes which changed along the identified trajec-
tory were identified by performing a likelihood ratio test

using the function “differentialGeneTest” in the monocle
package. The minimum spanning tree on cells was
plotted by the visualization functions “plot_cell_-
trajectory” or “plot_complex_cell_trajectory”. BEAM
tests were performed on the first branch points of the
cell lineage using all default parameters. “Plot_genes_-
branched_pseudotime” function was performed to plot a
couple of genes for each lineage.

TCGA data analysis
The TCGA COAD data were used to evaluate the

correlation between selected gene signatures and patient
survival. The gene expression data were downloaded from
UCSC Xena (http://xena.ucsc.edu/), clinical data were
download from the Genomic Data Common Data Portal
(https://gdc-portal.ncu.nih.gov/). The statistical analysis
was performed by the R package “survival”, the survival
curved were filtered by survfit function. The feature genes
used for B cell signature were based on the differentially
expression genes (FDR < 0.01, FC > 1.5) of the B cells from
tumors treated with PC vs the B cells from treatment-
naïve tumors. The genes used for immature TAMs sig-
nature were DEG among all TAMs subsets.

Multicolor immunohistochemistry (IHC)
Multicolor IHC staining of formalin-fixed, paraffin-

embedded (FFPE) tissue sections was used to confirm the
presence of novel subpopulations, including dysfunc-
tional T cells (PD-1+CD8+CD3+ T cells), M11 TAMs
(S100B+MMP12+CD68+ TAMs), activated B cells (HLA-
DR+CD80+CD19+ B cells), and validate the potential
physical interaction (co-localization) between ACKR1+

endothelial (ACKR1+CD31+ endothelial cells) and
CCL5+ T cells (CCL5+CD8+CD3+ T cells). Multicolor
IHC staining was performed using PANO 7-plex IHC kit
(0004100100, Panovue). Briefly, FFPE tissue sections
(4 μm) were melted at 60 °C for 1 h followed by depar-
affinizing and rehydrating. Heat-mediated antigen
retrieval was performed in citrate acid buffer (pH 6.0)
using microwave incubation. The sections were
blocked with blocking buffer (hydrogen peroxide) for
10 min. The primary antibodies used in the validation of
the novel subpopulations (including dysfunctional
T cells (PD-1+CD8+CD3+ T cells), M11 TAMs
(S100B+MMP12+CD68+ TAMs) and activated B cells
(HLA-DR+CD80+CD19+ B cells)) were: anti-PD-1 (ZM-
0381, Zsbio), anti-CD8 (ZM-0508, Zsbio), anti-CD3
(85061, CST), anti-S100β (ET1610-3, Huabio), anti-
CD68 (ZM-0060, Zsbio), anti-MMP12 (ET1602-42,
Huabio), anti-HLA-DR (97971, CST), anti-CD19
(ET1702-93, Huabio), and anti-CD80 (ET1702-95, Hua-
bio). The primary antibodies used in the validation
of the potential physical interaction (co-localization)
between ACKR1+ endothelial cells and CCL5+ T cells
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were: anti-ACKR1 (137044, abcam), anti-CD31 (ET1608-
48, Huabio), anti-CCL5 (ET1705-70, Huabio), anti-CD8
(ZM-0508, Zsbio), and anti-CD3 (85061, CST). After
successive washes for ~3 times, sections were incubated
for 10 min at room temperature with an anti-rabbit or
anti-mouse horseradish peroxidase-conjugated secondary
antibody (0004100100, Panovue). Each of the antibodies
was connected with one fluorophore to detect antibody
staining. The stained signals were further amplified using
PPD520, PPD540, PPD570, PPD620, PPD650, PPD690,
tyramide signal amplification (TSA) reagents through
incubated with TSA diluent (0004100100, Panovue). To
avoid spectral overlap between the fluorophores used in
each panel, excitation wavelengths used were kept at a
certain distance. Finally, nuclei were stained with DAPI.

Multispectral imaging
The obtain multispectral images, the stained slides were

scanned using the Mantra system (Perkin Elmer), which
captures the fluorescent spectra at 20-nm wavelength
intervals from 420 to 720 nm with identical exposure
time. The scans were combined to build a single stack
image. Images of unstained and single-stained sections
were used to extract the spectrum of autofluorescence of
tissues and each fluorescein, respectively. The extracted
images were further used to establish a spectral library
required for multispectral unmixing by InForm image
analysis software (PerkinElmer). Using this spectral
library, we obtained reconstructed images of sections with
the autofluorescence removed.

Flow cytometry analysis
Tissue samples were disassociated as described above.

CD19+HLA-DR+CD86+ B cells were collected by flow
cytometry. The following antibodies were used: anti-
human CD45 conjugated to PE-cy7 (clone HI30, 304016,
Biolegend), anti-human CD19 conjugated to Brilliant™
Violet 650 (BV650) (clone SJ25C1, 563226, BD Bios-
ciences), anti-human CD3 conjugated to fluorescein iso-
thiocyanate (FITC) (clone UCHT1, 555332, BD
Biosciences), anti-human HLA-DR conjugated to APC
(clone G46-6, 559866, BD Biosciences), and anti-human
CD86 conjugated to PE (clone IT2.2, 555665, BD Bios-
ciences). Anti-CD45 and anti-CD19 were used at 1:40
dilution. Anti-CD3, anti-HLA-DA, and anti-CD86 were
used at 1:10 dilution. Fixable Viability Dye eFluor™ 780
(FVD780) (65-0865-18, ThermoFisher) was used to label
dead cells and was used at 1:1000 dilution. For the
CD8+PD-1+T cells, antibodies used included anti-human
CD3 conjugated to FITC (clone UCHT1, 555332, BD
Biosciences), anti-human CD4 conjugated to Brilliant™
Violet 510 (BV510) (clone SK3, 562970, BD Biosciences),
anti-human CD8 conjugated to Brilliant™ Violet 605
(BV605) (clone SK1, 564116, BD Biosciences), anti-human

PD-1 conjugated to Alexa Fluor®647 (clone MOPC-
21,400130, Biolegend), isotype antibody conjugated to
AF647 (clone MOPC-21, 400130, Biolegend). Anti-CD4,
anti-CD8, anti-PD-1, and two isotype antibodies were
used at 1:40 dilution. Anti-CD3 was used at 1:10 dilution.
Fixable Viability Dye eFluor™ 780 (FVD780) (65-0865-18,
ThermoFisher) was used to label dead cells and was
used at 1:1000 dilution. Data analysis was performed in
FlowJo (V10).
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