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Abstract

Medullary thyroid carcinoma (MTC) is a rare neuroendocrine malignancy derived from parafollicular cells (C cells) of the
thyroid. Here we presented a comprehensive multi-omics landscape of 102 MTCs through whole-exome sequencing,
RNA sequencing, DNA methylation array, proteomic and phosphoproteomic profiling. Integrated analyses identified
BRAF and NFT as novel driver genes in addition to the well-characterized RET and RAS proto-oncogenes. Proteome-
based stratification of MTCs revealed three molecularly heterogeneous subtypes named as: (1) Metabolic, (2) Basal and
(3) Mesenchymal, which are distinct in genetic drivers, epigenetic modification profiles, clinicopathologic factors and
clinical outcomes. Furthermore, we explored putative therapeutic targets of each proteomic subtype, and found that
two tenascin family members TNC/TNXB might serve as potential prognostic biomarkers for MTC. Collectively, our

resource for future investigation on this malignancy.

study expands the knowledge of MTC biology and therapeutic vulnerabilities, which may serve as an important

Introduction

Medullary thyroid cancer (MTC) is a rare neuroendo-
crine malignancy originating from parafollicular cells (C
cells) of the thyroid. Although MTC comprises < 3% of all
thyroid neoplasms, it is disproportionally responsible for
~13% of mortalities"”. Compared with differentiated
thyroid cancer, MTC usually shows a more aggressive
clinical course and a stronger inherited tendency.
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Approximately 25% of MTCs occur in a hereditary form
as multiple endocrine neoplasia type 2A (MEN2A),
MEN2B or familial MTC (FMTC, a variant of MEN2A),
virtually all of which are caused by germline mutations in
the RET proto-oncogene. On the other hand, the
remaining ~75% of MTCs exhibit a sporadic pattern, with
half of which harbor somatic RET alterations followed by
mutually exclusive RAS mutations®. However, there is still
a paucity of knowledge regarding MTC genome, with RET
and RAS being the only commonly recognized driver
genes up to date*. Thus, the “dark matter” MTC samples
without any previously known driver events, albeit at a
low proportion, require a deeper investigation.

Despite a favorable outcome at early stage, advanced
MTCs are incurable with limited treatment options.
Chemotherapy and radiotherapy seem to offer little
clinical benefit, while two Food and Drug Administration
(FDA)-approved agents, vandetanib and cabozantinib,
bring moderate responses with significant toxicities®.
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Recently, selective RET inhibitors pralsetinib (BLU-667)
and selpercatinib (LOXO-292) have achieved an
impressive efficacy in RET-altered tumors®’. However,
RET-wild-type MTCs are not included in their indica-
tions and moreover, acquired resistance to these two
drugs can also emerge in RET-mutant cases®”. Thus,
endeavors to develop more precise strategies are still in
urgent need, for which clarifying the connections
between genetic alterations and tumor phenotypes is a
major focus. Proteogenomics are now increasingly used
to decipher comprehensive landscape from genotype to
phenotype in different cancers'®'’. Unfortunately, there
is still a lack of multi-omics studies of MTC up to now,
resulting in a paucity of available data for further
research.

In recent years, Fudan University Shanghai Cancer
Center has made a massive effort to establish a large
biobank of samples from MTC patients in collaboration
with tertiary hospitals in the Oriental Thyroid Tumor
Specialist Alliance (OTTA) consortium. In the present
study, based on this large Chinese multicenter platform,
we performed a comprehensive genomic, transcriptomic,
epigenomic, proteomic and phosphoproteomic analyses
for a large number of patients diagnosed with this rare
malignancy. Collectively, our study provides a systematic
multi-omics resource of MTC that leads to functional
insights of genomic aberrations and facilitates exploration
of proteogenomics-based treatment.

Results
Patient cohort

Based on the criteria listed in Supplementary Fig. S1 and
Materials and Methods, our final study cohort included
102 MTC patients from five Chinese tertiary hospitals in
the OTTA consortium. For the entire cohort, the median
age at initial surgery was 50 years old and there were no
apparent discrepancies between two genders (male: 51%;
female: 49%). Twenty-five patients (24.5%) were classified
as MEN2A (n =23, including FMTC) or MEN2B (n = 2)
based on family history, clinical manifestation, and
germline RET mutations (see below). During the follow-
up period, 25 (24.5%) and 54 (52.9%) patients experienced
structural recurrence/persistent disease (SR/SPD) or bio-
chemical recurrence/persistent disease (BcR/BcPD),
respectively. A total of 15 (14.7%) patients initially had or
eventually developed into advanced disease (including
both locally advanced disease or distant metastasis).
Detailed patient information is summarized in Supple-
mentary Table S1.

Overview of the proteogenomic profiling of Chinese MTCs

In total, whole-exome sequencing (WES) was per-
formed on matched tumor—normal (blood or normal
thyroid tissue) pairs from all 102 patients in our cohort,
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while global proteomics and RNA sequencing (RNA-Seq)
were performed on tumor samples from 102 and 101
patients, respectively. Due to the small volume of most
MTC tumors (especially those < 1 cm), 78 and 74 patients
had sufficient DNA and protein for methylation and
phosphoproteomic analyses, respectively (Fig. la; Sup-
plementary Fig. S2 and Table S4). As revealed by the
ESTIMATE algorithm'?, high tumor purity was predicted
with a median value of 91.5%, and no observable batch
effects were detected across the five contributing centers
in principal component analyses (Fig. 1b—d). Sample
correlation analysis across the cohort exhibited greater
consistency for RNA-Seq data than proteomic and
phosphoproteomic data, while global proteomic data
outperformed RNA-Seq data in predicting protein com-
plexes in the CORUM database (Fig. le, f). These results
illustrated that protein-level regulation could better
reflect tumor heterogeneity and gene function compared
with transcriptomic profiles.

Similar to previous studies , we observed a weak
consistency between protein and mRNA abundance with
sample-wise and gene-wise median Spearman’s correla-
tion being 0.39 and 0.19, respectively. At the gene level,
43% (m=2775) and 1% (n=83) of the 6454
mRNA-protein pairs displayed significant positive
(Spearman’s coefficient >0, Benjamini-Hochberg false
discovery rate (FDR)<0.05) and negative (Spearman’s
coefficient <0, FDR<0.05) correlations, respectively
(Fig. 1g; Supplementary Table S2). Enrichment analyses
showed that genes involved in metabolism-related path-
ways had stronger correlations, while those involved in
oxidative phosphorylation and mRNA/protein processing
(including spliceosome, ribosome, proteasome, RNA
transport and protein export), mostly featured by the
formation of large protein complexes, revealed poorer
relevance (Fig. 1h), which was consistent with prior
reports of other malignancies'”. At the sample level,
mRNA-protein correlations tended to decline with the
increase of TNM staging, indicating overall stronger post-
transcriptional regulations in aggressive tumors (Fig. 1i).

13,14

Landscape of driver mutations in Chinese MTCs

Due to the inherited nature of MEN2, we first analyzed
the genomic profiling of 102 paired normal specimens
(blood or normal thyroid tissue) to identify hereditary
MTCs. A total of 25 patients (24.5%) were regarded as
MEN?2 based on the presence of pathogenic germline RET
alterations, with the majority (60%) clustering at codon
634 (Fig. 2a, b). In addition to 23 MEN2A patients
(including FMTC), two cases harboring germline
RETM8T mutation (FUSCC-75, FUSCC-80) were classi-
fied as MEN2B due to evidence of mucosal neuroma
accompanied with either pheochromocytoma (PHEO) or
marfanoid body habitus (Supplementary Table S1).
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Fig. 1 Proteogenomic summary of the study. a Schematic overview of the experimental design and number of samples for WES, RNA-Seq, DNA
methylation array, proteomics and phosphoproteomics analyses. b Histogram showing tumor purity of samples (median: 91.5%) in our study cohort,
as estimated by ESTIMATE algorithm using RNA-Seq data. ¢, d Principal-component analysis plots of RNA-Seq (c) and global proteome (d) data across
the five contributing centers in our study. e Density plots showing the distribution of inter-sample Pearson'’s correlation coefficient (a given tumor vs
others) of RNA-Seq (red line), global proteome (green line) and phosphoproteome data (blue line) across samples in our study cohort, respectively.
f Area under the receiver operating characteristic curves (AUROC) for prediction of all 4274 protein complex members recorded in the CORUM
database (version 3.0) using 54,162,592 RNA-RNA pairs in RNA-Seq data (blue line) and 21,822,921 protein—protein pairs in global proteome data (red
line). g Histogram showing gene-wise mRNA-protein Spearman’s correlations among the 6454 mRNA-protein pairs. h KEGG pathway enrichment for
higher or lower gene-wise mRNA-protein correlations (Benjamini—-Hochberg FDR < 0.05). i Comparison of sample-wise mRNA-protein correlations
across tumors with different TNM staging. P-values are calculated with ANOVA test. For the boxplot: line in the box indicates the median; box borders
correspond with the first and third quartiles (25th and 75th percentiles); whiskers extend 1.5 times the interquartile range; outlier data are shown as
dots. See also Supplementary Tables S1, S2.

On the other hand, the remaining 77 individuals were
confirmed to be sporadic after excluding MEN2-related
syndromes, family history and germline RET aberrations.
Somatic mutations, called with a strict criterion (Materials
and Methods), were then manually reviewed to identify
putative driver alterations for these sporadic cases.
Among them, somatic RET (52/77) and HRAS (12/77)
mutations occurred in most cases, with M918T and Q61
being the most common hotspots of the two genes,
respectively (Supplementary Table S3). Besides, there was
striking mutual exclusivity between RET and RAS muta-
tions (including both HRAS and KRAS, Fisher’s exact test,
P =1.37e-08), corroborating their role as the most

dominant drivers in sporadic MTC (Fig. 2a; Supplemen-
tary Table S3).

Combining hereditary and sporadic forms together,
RET mutations were responsible for 75.5% of carcino-
genesis in the whole series. Among various mutants, the
RETM*'8T mutation portended elevated tumor aggres-
siveness, including a greater number of metastatic lymph
nodes, more advanced TNM staging and a poorer struc-
tural recurrence-free survival (SRFS) (Fig. 2c—e).

Previous reports have suggested that MTC lacks com-
monly recognized mutated driver genes beyond RET and
RAS* In our study, two non-hotspot BRAF mutations
(p.G469A and p.T599dup, variant allele frequency
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Fig. S3 and Tables S3, S4.
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Fig. 2 Landscape of driver mutations in the Chinese MTC cohort and their clinicopathologic and downstream Molecular Implications.

a Profiles of putative driver mutations and associated clinicopathologic features of all the 102 MTC patients. b Lollipop plot showing locations of
somatic and germline RET mutations within the protein sequence. c-e Comparison of metastatic lymph node counts (c, Student’s t-test), SRFS (d, log-
rank test) and TNM staging (e, Fisher's exact test) and between RET M918T-mutated, RET non-M918T-mutated and RET wild-type tumors. For the
boxplot in ¢: line in the box indicates the median; box borders correspond with the first and third quartiles (25th and 75th percentiles); whiskers
extend 1.5 times the interquartile range; outlier data are shown as dots. f Heatmap showing BRAF scores and proteomic profiles of 25 related genes
across all the 102 MTC tumors. Tumors are arranged in descending order based on BRAF score, and the locations of two BRAF-mutated tumors are
annotated. Protein abundances were displayed in this heatmap after normalization by row Z-score. g Scatter plots showing relative NFT mRNA

abundance (FPKM, x-axis) and protein level (manifested as log,-transformed XIC peak area, y-axis) of all available tumors. See also Supplementary

RET wild-type Months after surgery

(VAF) > 40%) were separately detected in two sporadic
cases absent of other potential drivers (Fig. 2a; Supple-
mentary Fig. S3a, b and Table S3), both of which have
been reported as oncogenic drivers in other cancers'®~°,
Furthermore, to investigate the similarity of downstream
signaling between the two non-hotspot BRAF mutants
and the hotspot BRAF"*°°F mutation, we calculated BRAF
scores”’ with shared genes from our global proteomic
data. Notably, despite an intermediate BRAF score of the
BRAFS**A_mutated tumor, the BRAF™*°%P_mutated
tumor lay at the forefront of the cohort (Fig. 2f; Supple-
mentary Table S4). This observation is in accordance with
previous findings that the T599dup mutant strongly
activates the downstream signaling resembling its neigh-
boring hotspot mutation V600E'®, while G469A, a class II
BRAF mutation, leads to a moderate kinase activityzz.
Therefore, albeit at a low frequency, BRAF is identified as

a novel mutated gene in MTC that may act as a potential
driver.

In our cohort, we also noticed a unique MTC case
(FUSCC-24) with concomitant neurofibromatosis type 1
(NF1), a multi-system genetic disorder caused by
pathogenic alterations in a tumor suppressor gene
NF1* (Supplementary Fig. S3c). Meanwhile, this 61-
year-old male patient also developed a coexisting
malignant peripheral nerve sheath tumor (MPNST) in
the neck, a malignancy arising from the malignant
transformation of neurofibroma, which ultimately
caused his death (Supplementary Fig. S3d). For his MTC
tumor, despite the lack of previously reported MTC-
related alterations, a de novo (acquired in embryo
development, causing genetic mosaicism) frameshift
mutation c.3338delT in the NFI gene was detected with
a VAF as high as 76.1%, strongly suggestive of a driver
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event (Supplementary Fig. S3e and Table S3). Interest-
ingly, this frameshift deletion was also a truncating
mutation that turned the codon 1113 into a premature

stop codon (UUG — UGA, p.L1113*) (Supplementary
Fig. S3f). Nonsense-mediated mRNA decay (NMD) and
related protein truncation of tumor suppressor genes
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Fig. 3 Proteomic subtyping of MTC and their clinical, genomic and epigenomic Correlations. a Unsupervised clustering based on the relative
abundance of 891 proteins identifies three MTC subtypes: Metabolic (n = 33), Basal (n = 36), and Mesenchymal (n = 33). Clinicopathologic
characteristics, prognostic features and driver mutations are annotated above the heatmap with details shown at the bottom. Each column
represents a patient sample and rows indicate proteins. Protein abundances were displayed in this heatmap after normalization by row Z-score.
b Pathway-level analysis of each proteomic subtype shows relative pathway activity (represented as t-value) of cancer hallmark gene sets derived
from gene set variation analysis (GSVA). Benjamini-Hochberg FDR values are annotated as follows: ***FDR < 0.001, **FDR < 0.01, *FDR < 0.05.

c Differential protein abundance of basal factors and eukaryotic initiation factor (EIF) complex members across the three proteomic clusters. The
horizontal bars represent the log,-transformed FC value of protein abundance between Basal tumors and the other samples. The length of horizontal
bars represents the size of log,FC (a longer bar corresponds to a larger log,FC), while the color scale of the heatmap represents the expression of
these proteins in the three subtypes (a deeper color represents a higher protein abundance), which was calculated using the Z-score-transformed
average protein abundance within each subtype. d Abundance of signature protein families (including collagens, laminins, thrombospondins,
integrins, fibronectins and others) involved in the KEGG pathway ECM-Receptor Interaction across the three proteomic subtypes. The value of each
protein was calculated using the Z-score-transformed average protein abundance within each subtype. e Bar plots showing the proportion of three
proteomic subtypes in RETV"®T-mutant, RET“***-mutant and RAS-mutant tumors. P-values are calculated with Fisher's exact test, *P < 0.05.

f Frequency of SCNA in the three proteomic subtypes. Representative subtype-specific SCNAs and contained genes whose SCNA-revealed cis-effect
on their cognate proteins were annotated. g Histograms comparing the global DNA methylation level of CpG island (left panel) and CpG shore (right
panel) regions between proteomic subtypes. Height of the column represents the mean value of DNA methylation level of all samples in the
corresponding proteomic subtype, and the error bar represents the 95% confidence interval. P-values are calculated with Student's t-test.

h Representative enriched pathways based on genes overlapping with CNA gain (red) or loss (blue) regions in each proteomic subtype. i Dot plots
visualizing representative enriched KEGG pathways based on cognate genes of differentially methylated sites in each proteomic subtype. j Bar plots
comparing the proportion of patients with TNM staging (left panel) and BcR/BcPD (right panel) between proteomic subtypes. P-values are calculated
with Pearson’s x° test. k Kaplan-Meier survival curves for SRFS of the three proteomic subtypes. See also Supplementary Fig. S4 and Tables S5-S7.
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are thought to be important mechanisms of truncating
mutation-directed cancer initiation and evolution®*.
Consistently, these downstream truncating effects of
this NFI p.L1113* mutation were laterally confirmed by
our RNA-Seq and proteomic data, in which this sample
revealed the lowest NFI mRNA level and undetectable
protein abundance (Fig. 2g), further supporting its
pathogenic role. Taken together, our study identifies an
NF1 truncating mutation as a putative driver of MTC
oncogenesis by multi-omics data integration.

In summary, combining multi-platform data from WES,
RNA-Seq and global proteomics, we confirmed the
dominant role of RET and RAS mutations in MTC and
identified potential driver alterations (BRAF, NFI) that
were mutually exclusive to RET and RAS. Ultimately, we
have identified putative cancer drivers in 93/102 MTCs
(91.2%) in our cohort, reducing the proportion of “dark
matter” cases from 18.3% in a previous study to 8.8% in
our present work®. It is also worth noting that these
driver genes in our cohort are all highlighted in the
genomic profiles of pheochromocytoma and para-
ganglioma in a The Cancer Genome Atlas (TCGA)
study®®, suggesting a degree of etiological similarity in
these neural crest-derived neuroendocrine tumors.

Proteomic profiling delineates molecular subtypes of MTC
with genomic, epigenomic and clinical heterogeneity

To provide insight into molecular commonalities and
heterogeneities of MTC tumors, we then sought to derive
a subtype classification of Chinese MTCs based on global
proteomic data. Among the 102 MTC tumors, unsu-
pervised clustering identified three proteomic clusters

with distinct molecular features (Materials and Methods;
Fig. 3a; Supplementary Table S5).

To be specific, Cluster-I (32.4% of all tumors) was
characterized by enrichment of multiple pathways rele-
vant to cellular metabolism, and was thereby named as the
Metabolic subtype (Fig. 3b). Cluster-1I, constituting 35.3%
of tumors, showed elevated protein level of basal factors,
such as CD44, KRT5, KRT6B, KRT6C, and KRT14.
Moreover, protein-specific elevation of eukaryotic trans-
lation initiation (EIF) complex and cytoskeleton members
indicated higher translational activity in this subtype
(Fig. 3b, c). Taken together, Cluster-1I was classified as the
Basal subtype. On the other hand, Cluster-III (32.4% of all
tumors) was named as the Mesenchymal subtype, as
it was featured by predominant upregulation of extra-
cellular matrix (ECM)-associated proteins and pathways
(Fig. 3b, d).

The proteomic subtypes displayed differences in genetic
and epigenetic patterns. (i) RET™**T-driven tumors were
enriched in the Mesenchymal subtype, especially when
compared with the Metabolic subtype (42.4% vs 18.2%,
P =0.030, Fisher’s exact test). Conversely, RAS mutations
occurred more frequently in the Metabolic subtype
(Metabolic vs Mesenchymal, 27.3% vs 3.0%, P =0.013,
Fisher’s exact test) (Fig. 3e). (ii) With regard to somatic
copy number alteration (SCNA), the Metabolic subtype
revealed the highest level of genome instability, while on
the other hand, the Basal subtype had a relatively stable
genome with significantly fewer copy number changes
than other clusters (Fig. 3f; Supplementary Table S6). (iii)
At the epigenomic level, the Mesenchymal subgroup
might reveal a relatively higher level of DNA methylation
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(Fig. 3g). In addition, pathway enrichment analyses
revealed concordant regulation trends at the SCNA,
methylation and phosphoproteomic levels (i.e., Focal
Adhesion in the Mesenchymal subtype; Fig. 3h, i; Sup-
plementary Fig. S4). These results above indicated that
mutations, copy number changes and epigenetic mod-
ifications may together participate in the determination of
MTC phenotypes.

The proteomic subtypes also differed in clin-
icopathologic and prognostic characteristics. Compared
with the Basal subtype, the Mesenchymal subtype
revealed a more advanced TNM staging (P = 0.005),
increased likelihood of BcR/BcPD (P=0.035), and a
compromised SRFS (P=0.005), possibly representing a
group of more aggressive tumors (Fig. 3j, k; Supplemen-
tary Table S7). By contrast, the Metabolic subtype
appeared to show an intermediated degree of malignancy
across the three subtypes.

Taken together, these discrepancies across the pro-
teomic subtypes prompt us to further drill down into their
respective multi-omics profiles that may reveal the tumor
heterogeneity of MTC at a deeper level (details of each
subtype are summarized in Table 1).

Upregulated targets of multiple approved or

Heavier burden of lymph node metastasis;
investigational TKls

Higher prevalence of RETY?'8T mutation

More advanced TNM staging;

Hereditary MTC: 12.1%
RET (all variants, 81.8%)
Activated STAT3 signaling;

Mesenchymal
Poorer prognosis
Relatively higher

Median

Activated oncogenic pathways, enhanced cell cycle
signaling and HRD signature as hallmarks of the Metabolic
subtype

We then dissected the multi-omics portraits of each
subtype to explore their distinct biological hallmarks.
Among the three clusters, single-sample gene set
enrichment analysis (ssGSEA) based on global proteomic
data revealed enhanced MAPK signaling activities in the
Metabolic subtype (Supplementary Fig. S5). As shown in
Fig. 4a, this subtype had increased level of multiple pro-
teins not only in the classical ERK cascade, but also in the
alternative JNK/p38 cascade. Meanwhile, we also
observed elevated phosphorylation levels at serine 16 and
46 sites on STMN1, which is an important member of the
MAPK pathway (Fig. 4b). In addition, tumors in this
subgroup also exhibited a higher PI3K-Akt-mTOR activ-
ity with elevated abundance of proteins belonging to this
pathway or those involved in both PI3K/Akt/mTOR and
MAPK signaling pathways (Fig. 4a). Notably, prior studies
have demonstrated the value of mTOR and/or RAF/MEK
inhibition in certain MTC cell lines or patients®*°,
Altogether, these results suggested that stronger activa-
tion of MAPK and PI3K/Akt/mTOR pathways may be an
important biological feature of Metabolic tumors, which
warrants further validation for their therapeutic values.

In addition, activated cell cycle signaling might be
another hallmark of this subtype. With regard to genomic
aberrations, CCND1 gains (encoding cyclin D1) were
noted in 21.2% of Metabolic tumors versus in only 7.3% of
other subtypes (P =0.041), while a higher frequency of

Intermediate prevalence of RAS or RETV18T

Higher degree of neuroendocrine

Basal

Hereditary MTC: 30.6%
Better prognosis

RET (all variants, 83.3%)
mutation

Relatively stable genome
Median

differentiation

Intermediate TNM staging and prognosis between the other two Earlier TNM staging;

Higher prevalence of RAS mutation

Highest level of chromosomal instability;
Enrichment of CNV losses/deletions in DDR genes
Enhanced cell cycle signaling;

Hereditary MTC: 30.3%
Higher HRD score

RET (all variants, 60.6%)

Relatively lower

Metabolic

Highlights of clinical relevance and proteogenomic hallmarks for MTC subtypes.
subtypes

Proteogenomic signature  Activated MAPK and PI3K/Akt/mTOR signaling pathways;

Table 1

Subtype

Heredity

Prognostic relevance
Driver mutation
SCNA

Global DNA
methylation level
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Fig. 4 Proteogenomic insights into the Metabolic subtype reveal activated oncogenic pathways, enhanced cell cycle signaling and HRD
signature. a Heatmap showing the abundance of key proteins in the MAPK pathway and/or PI3K/Akt/mTOR pathway. For each sample, ssGSEA
enrichment score of MAPK- or PI3K-related pathways represents the sample’'s own MAPK or PI3K/Akt/mTOR signature score, which is annotated
above the heatmap with details shown on the left. b Boxplots showing the abundance of STMN1 S16 and S46 phosphosites across the three
proteomic subtypes. For the boxplots: line in the box indicates the median; box borders correspond with the first and third quartiles (25th and 75th
percentiles); whiskers extend 1.5 times the interquartile range; outlier data are shown as dots. ¢ Distribution of CCND1 gains (left panel) and CDKN2A/
CDKN2B losses (right panel) between the Metabolic subtype and other subtypes. d Boxplots showing the abundance of key cell cycle-related
proteins CDK4, CDKN2C, E2F4, PCNA and RB1 across the three proteomic subtypes. P-values are calculated with Student’s t-test. For the boxplots: line
in the box indicates the median; box borders correspond with the first and third quartiles (25th and 75th percentiles); whiskers extend 1.5 times the
interquartile range; outlier data are shown as dots. e Boxplot comparing the E2F activity score across the three proteomic subtypes. P-values are
calculated with Student’s t-test. For the boxplot: line in the box indicates the median; box borders correspond with the first and third quartiles (25th
and 75th percentiles); whiskers extend 1.5 times the interquartile range; outlier data are shown as dots. f Histogram comparing the HRD score across
the three proteomic subtypes. P-values are calculated with Student’s t-test. g Distribution of copy number losses/deletions of common DDR-related
genes in the Metabolic subtype. The 33 Metabolic tumors are arranged in descending order based on HRD score. See also Supplementary Fig. S5 and
Table S8.

CDKN2A/CDKN2B losses (encoding cyclin-dependent
kinase inhibitor 2A/2B) was confirmed (Metabolic vs
others, 24.2% vs 11.6%) (Fig. 4c). At the proteomic level,
upregulation of cell cycle positive regulators CDK4,
PCNA and RB1, and downregulation of negative reg-
ulators CDKN2C and E2F4 were observed, respectively

(Fig. 4d). Consistent with these two independent omics, a
significantly increased E2F activity score, inferred from
the RNA-Seq data, also strongly indicated cell cycle
activation in this subtype (Fig. 4e).

Furthermore, more careful investigation of this subtype
indicated a higher Homologous Recombination Deficiency
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(HRD) score (range: 0-85) (Fig. 4f), representing increased
genomic instability that accords with the results in Fig. 3f.
Despite a lack of BRCAI/BRCA2 pathogenic mutations,
copy number losses/deletions of common DNA damage
repair (DDR)-related genes (CHEK2, MUTYH, TP53,
ATM, BRCA1, MLH1, MGMT) were observed in the vast
majority of HRD-high (HRD score>42, 5/6, 83.3%)
patients in this subtype (Fig. 4g; Supplementary Table S8).

Proteogenomic insight of the Basal subtype indicates a
subset of tumors retaining a higher degree of
neuroendocrine properties

Next, we focused on biological characteristics of the
Basal subtype by leveraging multiplatform data, in which a
clearly enhanced neuroendocrine-related molecular sig-
nature was discovered. For global proteins, 1596 (24%)
were significantly increased and 2203 (33%) were sig-
nificantly decreased in Basal tumors (g < 0.05). The 313
proteins increased by > 2-fold than other subtypes were
enriched in synaptic transmission processes such as axon
guidance, synaptic vesicle cycle and calcium signaling
pathway, while in line with the indolent biology of this
subtype, the 113 decreased proteins (> 2-fold) were con-
centrated in cellular energy metabolism including oxida-
tive phosphorylation, citrate cycle and glycolysis (Fig. 5a;
Supplementary Table S9). Likewise, for phosphopro-
teomic profiles, we observed a significant upregulation of
pathways and phosphoproteins related to transport and
exocytosis process of secretory proteins, such as Golgi-to-
ER retrograde transport, membrane trafficking and
vesicle-mediated transport in Basal tumors (Fig. 5b, c),
further strengthening its intensified secretion function.

Aligned with the neuroendocrine signature, further
investigation revealed two important trans-omic regula-
tions exclusive in Basal tumors. First, a negative cis-effect
of CpG island methylation on both mRNA and protein
abundance was found in four genes related to neuro-
transmitter conduction (NCAMI1, VAMP4, CADMI,
CALML3) (Fig. 5d). Second, the inferred kinase—substrate
network highlighted a positive association between the
abundance of CAMK2B protein (Ca®*"/calmodulin-
dependent protein kinase II beta) and its own phosphosite
at Thr287 (Pearson’s R = 0.41; P =0.02, Fig. 5e), indicat-
ing a potential role of CAMKII autophosphorylation, a
commonly recognized Ca”*"-independent activation
manner to crosslink postsynaptic proteins*>!, in tumor
development of Basal MTCs.

Upon further searching the molecular profiles across
these three clusters, we found that almost all major
neuroendocrine tumor biomarkers detectable in our study
were upregulated in the Basal subtype at both mRNA and
protein levels, particularly at the protein level (Fig. 5f).
Notably, this increase not only included common MTC-
related biomarkers carcinoembryonic antigen (CEA, also
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called CEACAMS5), calcitonin-related polypeptide beta
(CALCB) and CEA cell adhesion molecule 6 (CEA-
CAMS6), but was also seen in other broad-spectrum
neuroendocrine markers such as chromogranin A/B
(CHGA/CHGB), synaptophysin (SYP), secretogranin II/
III (SCG2/3) and neural cell adhesion molecule 1
(NCAM1, also called CD56) (Fig. 5f). These findings
actually reveal a remarkably stronger neuroendocrine
capability per unit volume of Basal tumors. Combined
with its favorable prognosis, we suggest that the Basal
subtype may represent a group of tumors retaining a
higher degree of neuroendocrine differentiation, or in
other words, more resembling normal C cells.

To explore potential drug targets for this subtype, we
then investigated the characteristic upregulated proteins
of Basal tumors (fold change (FC)>2, g<0.05 vs other
subtypes), and searched these characteristic proteins
(n=67) in the DrugBank database (Materials and Meth-
ods). We found that CEA was the only protein among
them meeting the following criteria, (i) strongly upregu-
lated in Basal tumors (FC > 3, ranked third among the 67
proteins; Fig. 5g) and (ii) had clinically accessible drugs
(approved or investigational, not just experimental), so it
might be a candidate therapeutic target for Basal tumors,
but it still warrants further validation.

Candidate biomarkers and enriched targets of tyrosine
kinase inhibitors in the Mesenchymal subtype

The relatively unfavorable outcome of the Mesenchymal
subtype motivated us to shed light on its diagnostic bio-
markers and treatment targets. As illustrated in Fig. 6a
and Supplementary Table S10, over one quarter of
matrisome proteins (68/263, 25.9%)>* were significantly
upregulated in the Mesenchymal subtype, the majority
(56/68, 82.4%) of which were secretable proteins that may
serve as putative salivary or blood biomarkers™.

Among these secretable proteins, we noticed that two
tenascin family members tenascin-C (TNC) and tenascin-
X (TNXB) showed prominent enrichment in Mesenchy-
mal tumors, ranking 2nd and 60th across all 6607 quan-
tifiable proteins in fold increase (Fig. 6a; Supplementary
Fig. S6a, b). Meanwhile, we performed immunohis-
tochemistry (IHC) staining of TNC using previously
established tissue microarrays (TMAs)>***>, Among the 27
patients in this TMA overlapping with the present study
cohort, the proportions of TNC positivity in Mesenchy-
mal, Basal, and Metabolic subtypes were 66.7% (6/9),
14.3% (1/7), and 27.3% (3/11), respectively (representative
IHC images of each subtype are shown in Supplementary
Fig. S6¢). In particular, in our proteomic data, TNC was
confirmed to be the most strongly upregulated matrisome
protein in RET™?*¥T_driven tumors, while it also appeared
to be positively correlated with the abundance of a clas-
sical tumor stemness marker PROM1 (CD133) in
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Mesenchymal tumors (Fig. 6b, c). These findings above
prompted us to further focus on their prognostic value,
where we found that higher TNC or TNXB expression
(median as cutoff) was not only associated with advanced
staging (TNC: P =1.36e-05; TNXB: P =4.28e—04), but
also predicted a remarkably poorer SRES (TNC:
P=0.0011; TNXB: P =0.0036) in the whole study cohort
(Fig. 6d; Supplementary Fig. S6d). Therefore, we suggest
that TNC or TNXB may have the potential to be candi-
date biomarkers and prognostic indicators for MTC
tumors, although larger independent cohorts are needed
for further validation.

Consistent with increased tumor stemness and
mesenchymal formation in Mesenchymal tumors®®, we
observed enhanced STAT3 signaling (represented by
increased p-STAT3 level vs other subtypes, P = 0.024) in
this subtype (Fig. 6e)*’, which is a critical transcription
activator in angiogenesis. Consistently, key angiogenic
factors PDGFRB and VEGFR1 (FLT1) were also sig-
nificantly upregulated in Mesenchymal tumors (Fig. 6f),
which are not only drug targets for the FDA-approved
tyrosine kinase inhibitor (TKI) cabozantinib, but also the
targets of several other TKIs in clinical trials for advanced
MTC such as sorafenib, lenvatinib, sunitinib, etc.
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(see figure on previous page)

Fig. 6 Proteogenomic insights into the Mesenchymal subtype reveal candidate biomarkers and enriched targets of TKls. a Volcano plot
showing differential protein abundance between the Mesenchymal subtype and other subtypes. Matrisome proteins and subclassifications are
annotated, and two tenascin family members TNC and TNXB with large fold change are highlighted in red color. b Volcano plot showing differential
abundance of matrisome proteins between RET™™®"-mutated tumors and other tumors. Dots highlighted in purple color indicate genes whose
cognate mRNA and protein abundances are both upregulated in RETY*'®" tumors. ¢ Heatmaps showing Pearson’s correlation between mRNA or
protein levels of TNC and PROM1 (CD133) in the Mesenchymal subtype. d Kaplan-Meier survival curves comparing SRFS between TNC-high and
TNC-low tumors (left panel), or between TNXB-high and TNXB-low tumors (right panel) in the whole cohort. Median abundances of TNC and TNXB
are used as the cutoff value for high and low expression. P-values are calculated by log-rank test. @ Boxplot showing differential abundance of
phosphorylated STAT3 at SER727 between the Mesenchymal subtype and other subtypes. P-values are calculated with Student’s t-test. For the
boxplot: line in the box indicates the median; box borders correspond with the first and third quartiles (25th and 75th percentiles); whiskers extend
1.5 times the interquartile range; outlier data are shown as dots. f Violin plots showing the protein abundances of PDGFRB, FLT1 (VEGFR1), and mRNA
abundance of CSFIR across the three proteomic subtypes. P-values are calculated by Student's t-test for proteomic data, or calculated by DESeq2
based on the negative binomial distribution for RNA-Seq data. g Histograms showing ImmuneScore and infiltration of M1-, M2-phenotype
macrophages (upper panel), immature dendritic cells (iDCs), conventional dendritic cells (cDCs), activated dendritic cells (aDCs) (lower panel) as
estimated by in silico xCell devolution. P-values are calculated with Student’s t-test, and are annotated as follows: ***P < 0.001, **P < 0.01, *P < 0.05.

See also Supplementary Fig. S6 and Tables S10, S11.

(Supplementary Fig. S6e). In addition, these two tyrosine
kinase receptors are also targets for anlotinib, a TKI
approved for the treatment of advanced MTC in mainland
China®® (Fig. 6f; Supplementary Fig. S6e).

Furthermore, surufatinib has shown promising efficacy
in patients with locally advanced or metastatic MTC and
other neuroendocrine tumors in previous clinical
trials**~*!. In addition to VEGFRI, surufatinib also tar-
gets colony stimulating factor 1 receptor (CSF1R) that
mediates the polarization of tumor-associated macro-
phages (TAM, M2 phenotype). Inhibition of CSFIR
could re-polarize M2 macrophages into the anti-
tumorigenic M1 phenotype, which has been identified
as a key anti-tumor mechanism of this drug*”. Notably,
despite a lack of quantifiable proteomic level of CSFIR
(due to < 50% samples had available data of this protein
in mass spectrometry), our transcriptomic profiling
revealed a significantly upregulated CSFIR mRNA level
in Mesenchymal tumors, as well as enhanced infiltration
of M2-, M1-phenotype macrophages, dendritic cells
(DCs) and increased ImmunoScore inferred by in
silico xCell deconvolution®® (Fig. 6f, g; Supplementary
Table S11).

Discussion

Molecular underpinnings of medullary thyroid carci-
noma have not been comprehensively characterized
owing to the rarity of this neuroendocrine malignancy.
Through collective and long-term efforts, our cooperative
group OTTA has established a large cohort of fresh-
frozen samples of MTC. Utilizing this platform, we herein
present a multicenter multi-omics study incorporating
five platforms (genomics, transcriptomics, epigenomics,
proteomics and phosphoproteomics) that provides novel
insights into the biological understanding of MTC, and
also contributes a rich resource of sequencing data to
fulfill the needs of future translational research.

Previous genomic analyses have greatly broadened our
knowledge of molecular events relevant to this can-
cer’>**  However, these studies are based on either
small patient cohorts or targeted region sequencing
instead of WES, leading to a difficulty in detecting rare
mutations. In our study, independent of the well-
recognized dominant driver genes RET and RAS, we
expanded genetic drivers of MTC by identifying uncom-
mon BRAF and NFI alterations, whose downstream
transcriptomic and proteomic consequences suggest
potential oncogenic roles in this disease. Notably, the
relationship between the BRAF proto-oncogene and MTC
pathogenesis has been scarcely described, with only two
case reports detecting BRAF'*F mutation in RET-
negative MTC tumors, and one study reporting a poten-
tially activating BRAF-PARPI2 gene fusion®*™*®, How-
ever, despite an absence of the well-characterized V600E
mutation, BRAF mutations in our MTC cohort occurred
in two non-hotspot sites G469A and T599dup, suggesting
novel drivers in this cancer.

Although rare, co-occurrence of neurofibromatosis type
I and MTC or its precancerous condition C-cell hyper-
plasia has been documented in previous literatures, sev-
eral of which have identified NF1 with or without RET
germline mutations by peripheral blood DNA sequen-
cing49’54. However, none of these studies used MTC
tumor samples for genetic testing, resulting in a lack of
direct evidence for the underlying cause of MTC in this
syndrome. In our study cohort, we also reported a typical
neurofibromatosis type I patient with concomitant MTC.
Unlike previous studies, after ruling out other potential
genetic drivers, we detected a somatic de novo truncating
mutation in the NF1I gene directly in his MTC tumor, and
further confirmed the downstream outcome of this
mutation at transcriptomic and proteomic levels. Collec-
tively, our data reveals the first direct evidence for NFI-
driven MTC tumorigenesis.
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In the past decade, targeted therapies for advanced
MTC have achieved a stepwise progression from a barren
land to a non-selective paradigm and then to a more
precise management based on the status of RET mutation.
Objective response rate (ORR) observed with TKIs in
advanced MTC patients is high, being ~80% with selective
RET inhibitors and ~50% with anti-angiogenic TKIs
accompanied by an extended response duration. How-
ever, the rate of complete response (CR) is still far from
satisfactory (~5% for both selpercatinib and pralsetinib)®’.
In addition, even for selective RET inhibitors that have
just started to be used clinically in recent years, primary
and secondary resistance in tumors is emerging and
receiving increasing attention®>>°°, It is widely acknowl-
edged that resistance to TKIs is universal, therefore
emergence of resistance to RET inhibitors is anticipated in
all treated patients sooner or later”®. Meanwhile, a tumor’s
driver mutation is not solely responsible for its biological
behavior. For a given driver such as RET™'®T, this
hazardous mutation has been reported to involve in
multiple signaling pathways including Wnt, NFkB, Notch,
JAK/STAT, and MAPK pathways®’, while epigenetic
modifications, post-transcriptional or post-translational
regulations may all contribute to the differences in
downstream proteomic profiles. In combination with the
facts above, identifying drug targets, especially at the
protein level, may be promising. In the present study,
beyond the genetic level, our data suggest that the pro-
teomic heterogeneity existing across MTC tumors may
provide potential therapeutic vulnerabilities.

Among our proteomic clusters, PI3K/Akt/mTOR and
MAPK pathways exhibited boosted activities in the
Metabolic subtype, both have been implicated as major
cascades that contribute to MTC/MEN2 pathogenesis
partially through dysregulated cellular metabolism®®~",
This uncovers the mechanism why this phenotype is
metabolically active, and also attracts us to discuss the
potential therapeutic value of these two important onco-
genic pathways. Notably, mTOR inhibitors have been
widely used in the treatment of neuroendocrine tumors
(NETs), for example, everolimus has been approved in
pancreatic, gastrointestinal and lung NETs®?, Although its
application in MTC is still in the exploratory stage, pre-
vious trials have suggested that a subpopulation of
advanced MTCs can indeed benefit from everolimus
administration®”**®, Nevertheless, more data are war-
ranted to support whether these beneficiaries belong to
Metabolic tumors. In addition, enhanced cell cycle activity
and increased HRD score were also identified as the
hallmarks of the Metabolic subtype. RBI1 and CDKN2A
have been associated with responses to cell cycle inhibi-
tors®®, while a higher HRD score has been correlated with
responses to DNA damaging agents, such as PARP inhi-
bitors®®>. Therefore, whether these hallmarks could
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provide therapeutic opportunity also deserves further
validation.

The Basal subtype was characterized by a greater
retention of neuroendocrine properties. MTC carcino-
genesis is partially caused by de-differentiation from
functional C cells to tumor cells®*®’, thus it is reasonable
to assume that Basal tumors are at an earlier step of this
process and retain a higher degree of differentiation,
which helps explain why patients with Basal tumors have
a better prognosis. Based on this feature, we focused our
attention on neuroendocrine markers as potential treat-
ment targets, where CEA that preferentially over-
expressed in Basal tumors was finally selected. Anti-CEA
radioimmunotherapy has been reported to bring respon-
ses or even survival improvement in a proportion of
metastatic MTCs®®®, while antibody-drug conjugates
(ADCs), the state-of-the-art antibody therapy, is starting
to be applied across a wide range of CEA-expressing solid
tumors’®’!, However, their real therapeutic efficacy in
MTCGCs still needs further experiments or clinical trials for
validation.

Hallmarks of the Mesenchymal subtype, including a
slight global DNA hypermethylation, enrichment of the
hazardous RET™®'®T mutation, and STAT3 signaling
activation, may be causally related and collectively serve
as molecular determinants of poorer prognosis in
Mesenchymal tumors. Meanwhile, we found that stromal
secretable proteins TNC and TNXB, in addition to their
potential diagnostic value, also revealed strong prognostic
significance, implying their downstream regulatory roles
underlying the aggressive behaviors of this phenotype.
Consistently, our data were consolidated by previous
findings showing tenascin family as a pan-cancer
stromal biomarker and negative prognosticator that pro-
motes cell proliferation, metastasis, angiogenesis, and
epithelial-mesenchymal transition’>”?, In terms of treat-
ment targets, to our surprise, key target proteins for
multiple TKIs, including cabozantinib, vandetanib, anlo-
tinib and surufatinib, were preferentially upregulated in
Mesenchymal tumors. Although these drugs are either
approved or already under investigation in advanced
MTGCs, they tended to yield only poor to moderate efficacy
in unselected patients (Supplementary Fig. S6e), suggest-
ing a demand for more accurate selection of potential
beneficiaries. Since several TKIs have already been
approved for MTC, investigators can retrospectively or
prospectively evaluate the effects of these drugs in MTC
patients with Mesenchymal tumors.

Although the tumor heterogeneity and different biolo-
gical signatures among MTC proteomic subtypes suggest
potential treatment possibilities, further evidence for
validation must be added before we translate our
hypotheses into clinical trials, and these constitute several
limitations of our study that we must acknowledge. First,
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future studies should be planned to investigate clinically
accessible biomarkers (i.e., by IHC or blood assay) to
discriminate proteomic subtypes. Second, our hypothesis
and conclusions were mainly based on in silico analyses.
There are very few commercially available MTC cell lines
at present, and the few cell lines (e.g., TT or MZ-CRC-1)
represent MTCs driven by specific point mutation. If we
would like to mimic different proteotypes or validate drug
targets proposed in our study, or even identify novel drug
targets, multiple primary cell lines, patient-derived xeno-
graft or organoids are still warranted. However, these
tumor models may have not been successfully constructed
in MTC as no relevant literature was published yet. Thus,
these technologies were not applied in this study. Third,
this study was performed on primary tumor samples and
extended disease may appear or may need to be treated
some years or decades later. Biological behavior and
treatment response between extended disease and pri-
mary tumor may be different. Fourth, kinetic parameters
(such as serum calcitonin or CEA doubling time) are
useful predictive markers of MTC tumor burden and are
confirmed to correlate with the probability of disease
relapse. However, different assays among different hos-
pitals, or even at different periods in the same hospital
caused a strong diversity of reference values and results,
making it difficult to apply in this multicenter study
including MTC samples spanning over a ten-year period.
Fifth, the present work is mostly global proteome-centric.
In-depth excavation of other omics, especially for RNA-
Seq, methylome, and phosphoproteome, is still warranted
to provide more profound insights into the molecular
basis of MTC. Sixth, an independent validation cohort of
MTC samples, although very difficult for this rare
malignancy, may help further enhance the strength of
evidence of our conclusions.

In conclusion, our current work broadens our biological
understanding of MTC and brings forth therapeutic
hypotheses that may underpin future preclinical studies and
clinical trials toward molecularly guided therapy of this rare
cancer. Moreover, this study provides the largest collection
of comprehensively profiled MTC tumors to date, and
could serve as an important resource for further investiga-
tion of MTC biology and therapeutic vulnerabilities.

Materials and methods
Patient selection and sample acquisition

We initially enrolled 109 MTC patients undergoing
primary curative surgery from 2007 to 2020 in five Chi-
nese tertiary hospitals in the OTTA consortium, including
Fudan University Shanghai Cancer Center (FUSCC,
n=285), Zhejiang Cancer Hospital (ZJCH, n=21),
Changzhou Second People’s hospital (CZSPH, n=1),
Taizhou People’s hospital (TZPH, n=1), and Peking
University Shenzhen Hospital (PUSH, n=1). After a
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careful pathological review, seven patients were excluded
according to the following reasons: (A) unavailable paired
normal thyroid tissue or blood (1n=1); (B) questionable
MTC pathology (n=3); (C) extremely low tumor cellu-
larity (n=2); (D) tumor-contaminated normal thyroid
tissue (n = 1). Finally, 102 MTC patients were included in
the study cohort (Supplementary Fig. S1).

As for sample acquisition, tumor samples or normal
thyroid tissue (at least 2 cm away from the tumor margin)
were snap-frozen in liquid nitrogen within 30 min of
surgical resection, and then kept at —80 °C at the Tissue
Bank of each hospital until further processing. Peripheral
blood samples were collected the day prior to surgery and
were stored at —80 °C until use. The middle section of all
tumor samples and normal thyroid tissues were resected
and processed for hematoxylin and eosin (H&E) staining.
Under the examination of two independent pathologists,
tumor samples and normal thyroid tissues were carefully
checked for cellularity and tumor contaminants, respec-
tively. After quality control, tumor samples from a single
site of primary lesion were cryopulverized and aliquoted
for genomics and proteomics. Notably, comparison
between primary MTC tumor and normal thyroid tissue
does not reflect the cancer initiation process because
MTC-derived C cells are sparsely distributed in the nor-
mal thyroid gland, which instead consists predominantly
of follicular epithelial cells. Therefore, normal thyroid
samples were not used in other sequencing platforms
except as germline control in WES, just like peripheral
blood samples.

All patients were re-staged per the 8th edition of
American Joint Committee on Cancer staging system.
BcR or BePD was defined as recurrent or persistent ele-
vation of serum calcitonin or CEA, respectively. In a
similar manner, SR or SPD was defined as recurrent or
persistent histological/radiographic evidence of disease
after surgery, respectively. Accordingly, SRES was defined
as the time from initial surgery to first occurrence of
structural disease. In survival analyses, patients without
SR were censored from the time of last follow-up.

The study methodologies conformed to the standards
set by the Declaration of Helsinki and were approved by
the Institutional Review Board of Fudan University
Shanghai Cancer Center (License# 050432-4-1911D).
Written informed consent was provided from each patient
in the study cohort.

WES data analysis
Exome sequencing alignment and quality assessment

The raw data from 102 paired tumor/non-tumor sam-
ples were demultiplexed and then converted into FASTQ
format. Sequencing reads data were checked for quality
and adaptor/primer sequence contamination first by
FastQC (version 0.11.5). Before filtering, the proportion of
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sequenced bases with > Q20 value ranged from 97.07% to
98.78% (average: 98.13%), while GC-content ranged from
47.88% to 55.69% (average: 51.32%). The raw reads were
then filtered by Trimmomatic (version 0.36) to remove
low-quality reads in the following order: (1) remove
adaptor sequences; (2) reads with N (non-AGCT) > 5; (3)
remove bases with an average quality < 20 in a 4-base
sliding window; (4) After trimming, reads with a length <
75bp or with an average quality < 15 were dropped out.
After these quality control processes, an average of
171.73 M clean reads and 98.78 M clean reads were
obtained for tumor samples and NT/blood samples,
respectively.

Clean reads were then aligned to the GRCh37/hgl9
human reference genome with Burrows—Wheeler Aligner
(BWA; version 0.7.17, http://bio—bwa.sourceforge.net)74,
and were also annotated with information from GRCh38/
hg38.p12 to ensure the data consistency in multi-omics
integrative analyses. The resulting BAM files were pre-
processed using version 201711 of Sentieon tools (https://
www.sentieon.com/). PCR duplicates were discarded by
Picard (version 2.25.0, http://broadinstitute.github.io/
picard/). Due to the systematic technical errors from
sequencing machines, base quality scores of reads were then
recalibrated by the BaseRecalibrator tool from GATK
(version 4.2.0.0, https://software.broadinstitute.org/gatk/)”".

On the whole, our WES profiling achieved a mean on
target sequencing coverage of 178x for tumor samples
and 112x for NT/blood samples, consistent with the
recommendations for WES”®””,

Calling of putative somatic driver mutations

Somatic mutations, including single nucleotide variants
(SNVs) and insertions and deletions (INDELSs), were
detected by MuTect2 (embedded in GATK, version
4.2.0.0) with the default parameters. Then these muta-
tions were further annotated using ANNOVAR (version
2019 Oct 24, http://annovar.openbioinformatics.org/en/
latest/)’® and COSMIC (version 85, https://
cancer.sanger.ac.uk/cosmic/)”’. Germline variants were
filtered from database of the 1000 Genomes®’, NHLBI
Exome Sequencing Project (ESP6500), Exome Aggrega-
tion Consortium (EXAC), and Genome Aggregation
Database (gnomAD). The filtered mutations (including
SNVs and INDELs) were further used to identify sig-
nificantly mutated genes (SMGs) by MuSiC (version
0.4.1-1, https://gmt.genome.wustl.edu/packages/genome-
music/) with default parametersSI, where SMGs referred
to genes with a significantly higher mutation rate than the
background mutation rate. Notably, there is a long-held
view and increasing evidence supporting that most neu-
roendocrine tumors (including MTC) distinctively arise
from a single driver event, either inherited or acquiredgz.
Therefore, these SMGs were subjected to a further
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filtering process where we strived to filter out passenger
mutations or likely artifacts with a strict criteria, as
listed below.

In brief, our criteria could be summarized into a three-
step approach. First, we retained somatic mutation calls
that (1) were seen in reads in both directions; (2) quality
score >20; (3) variant sequencing coverage > 10x; (4)
variant supporting reads = 5 in the tumor sample; (5)
variant allele frequency (VAF)=>0.05; (6) minor allele
frequency (MAF) <0.01 in either East Asian or all popu-
lation of known population databases including Genome
Aggregation Database (gnomAD), NHLBI Exome
Sequencing Project (ESP6500) and 1000 Genomes Pro-
ject®®; (7) nonsynonymous variants or variants in splice
region, including missense mutation, nonsense mutation,
nonstop mutation, splice site or translation start site,
frameshift or in-frame INDELs. Second, apart from the
putative drivers identified in previous steps, variants not
in the Catalogue Of Somatic Mutations In Cancer
(COSMIC) database were excluded. Third, consistent
with a TCGA study of neuroendocrine tumors (pheo-
chromocytoma and paraganglioma)®, all these filtered
calls were manually reviewed one by one in previous lit-
erature, and only known hotspot mutations that have
been reported as definite driver mutations in MTC or
other cancers were retained as putative drivers.

Calling of germline RET driver mutations

Germline RET mutations were detected from germline
reference normal samples (normal thyroid tissue or
blood) by HaplotypeCaller (embedded in GATK, version
4.2.0.0), and were then annotated with ANNOVAR (ver-
sion 2019 Oct 24). As described above, the first step of
germline RET mutation calling process was similar to that
of somatic mutations. Next, to screen out hereditary
MTCs and remove likely artifacts, all these filtered calls
were manually reviewed and were retained only when
reported as the cause of MEN2 in previous literatures.

Mutual exclusivity analysis of somatic RET and RAS
mutations

Fisher’s exact test was used to detect mutual exclusivity
of RET and RAS somatic mutations.

Exome-based SCNA analysis

To assess SCNA, WES data from tumor and paired
normal samples were analyzed by Control-FREEC (ver-
sion 8.0)** to obtain segmented copy number calls and
allelic imbalances. Then these segmented calls were
applied as the input of Genomic Identification of Sig-
nificant Targets in Cancer (GISTIC) version 2.0.23 to
identify significant focal SCNA events®*, Consistent with a
previous study®’, the GISTIC2.0 program was run with
the following settings (-smallmem 1; -broad 1; -conf 0.95;
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-cap 3.5; -armpeel 1; -savegene 1; -gcm extreme -ta 0.2;
-td 0.2; -rx 0; -genegistic 1; -brlen 0.7) to estimate log,-
transformed, gene-level or segment-level SCNA ratios,
where the GISTIC calls comprised -2 (deletion), -1 (loss),
0 (diploid), 1 (gain), and 2 (amplification). We then
identified subtype-specific SCNA cytobands of each pro-
teomic subtype, defined as cytobands that had a sig-
nificantly higher frequency of SCNA events in one
subtype than the other subtypes (Fisher’s exact test,
P <0.05). In addition, we annotated those subtype-specific
cytobands that having at least one gene with cis-effect on
its cognate protein with Pearson’s R>0.4, P<0.05
between a gene’s SCNA ratios and protein abundance.

Evaluation of HRD score

We used the scarHRD R package to determine the levels
of HRD based on three genomic scar signatures: number
of telomeric allelic imbalances (NtAI), loss of hetero-
zygosity (LOH) and large-scale transitions (LST)***.
Briefly, NtAI refers to allelic imbalance extending to the
subtelomeric region > 11 Mb in size but not crossing the
centromere. LOH is defined as either deletion of one allele
(copy loss LOH) or deletion and simultaneous duplication
of the remaining allele (copy neutral LOH), resulting in
the loss of one of the two alleles at a heterozygous locus.
The size of affected segments with LOH is generally
longer than 15 Mb but shorter than a whole chromosome.
LST was defined as the number of break points between
regions exceeding 10 Mb after filtering out regions shorter
than 3 Mb®®.

RNA-Seq data analysis
RNA-Seq data quality control and generation with FPKM
The raw data from 101 tumor samples were then
demultiplexed and converted into FASTQ format.
Sequencing reads were checked for quality and adaptor/
primer sequence contamination first by FastQC (version
0.11.5). Before filtering, the proportion of sequenced bases
with > Q30 value ranged from 90.66% to 96.03% (average:
93.63%), while GC-content ranged from 45.22% to 62.33%
(average: 49.42%). The raw reads were then filtered by
Trimmomatic (version 0.36) to remove low-quality reads
in the following order: (1) remove adaptor sequences; (2)
remove bases with an average quality < 3 at the 5" or 3’
ends; (3) remove bases with an average quality < 15 in a
4-base sliding window from the 5’ end; (4) after trimming,
reads with length < 50 bp were dropped out. After these
steps, an average of 80.69 M clean reads for each sample
were retained for subsequent analyses. Subsequently,
clean reads of RNA-Seq data were aligned to the reference
genome GRCh38/hg38.p12 (patch release 12) using
HISAT?2 (version 2.1.0)*°, and the count number of each
gene was obtained by HTSeq-count (version 0.11.2)%.
Then the Fragments Per Kilobase of exon model per
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Million mapped fragments (FPKM) value was calculated
using the TopHat-Cufflinks pipeline based on the count
number’’. The differences in mRNA abundance were
calculated by DESeq2. If multiple testing was performed,
P-values were adjusted using the Benjamini—-Hochberg
procedure.

After quality control, RNA-Seq resulted in an average of
80.76 M clean reads per sample. RNA-seq data analysis
identified a total of 19,598 protein-coding genes with an
average of 16,742 genes per sample. The distribution of
gene expression was largely consistent across the
101 samples subjected to RNA-Seq analysis, suggesting a
high degree of stability of our sequencing platform and
homogeneity in the transcriptomic profiling of MTC
tumors (Supplementary Fig. S2e).

RNA-Seq variant calling

For RNA-Seq variant calling, all reads that passed the
quality control (QC) were first aligned using BWA (ver-
sion 0.7.17, http://bio-bwa.sourceforge.net). SAMtools
(version 1.9, http://www.htslib.org) was used to sort the
above results and prepare the aligned bam files. After-
wards, variant calling was conducted with BCFtools
(version 1.9, http://www.htslib.org) and all obtained var-
iants were annotated with snpEff (version 3.4p, http://
pcingola.github.io/SnpEff/). During the whole process,
highly accurate variants were filtered with parameters:
DP > 10, QUAL > 40, and MQ (RMS Mapping Quality)
> 20.

Prediction of tumor purity

Tumor purity was predicted with the ESTIMATE
package'” in RStudio using FPKM values of the normal-
ized RNA-Seq data.

Evaluation of E2F activity score

According to a previous study'”, E2F hallmark gene sets
were queried from the MSigDB Hallmark gene sets”*. For
these genes, ssGSEA was conducted for tumor samples
using FPKM value of RNA-Seq data via the GSVA R
package®®. Prior to data normalization, read counts of 0
were treated as NAs. Enrichment scores were calculated
from ssGSEA and were regarded as the E2F pathway
activity score.

DNA methylation data analysis
EPIC methylation array data quality control

The raw IDAT files were processed by GenomeStudio
Methylation Module software (version 1.8, Illumina, San
Diego, CA). Consisting of 865,918 probes, the raw data
were subjected to quality control process using the R
package ChAMP (version 2.12.4, https://bioconductor.org/
packages/release/bioc/html/ChAMP.html)** in the follow-
ing order: (1) we removed probes with detection P >0.01;
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(2) removed probes with a bead count < 3 in at least 5% of
samples; (3) removed non-CG probes; (4) removed probes
containing an SNP; (5) removed probes aligning to multi-
ple locations (MultiHit probes); (6) removed probes located
on either the X or Y chromosome. After these steps, the
clean data were generated with a total of 697,795 probes,
and were then normalized by BMIQ in the ChAMP
package (version 2.12.4).

After normalization, the data were used to calculate
DNA methylation levels, displayed as f5-values ranging
from O to 1, corresponding to unmethylated and methy-
lated sites, respectively. CpG sites were mapped to the
human reference genome (GRCh37/hgl9) using the
annotation file provided by the manufacturer (R package
“IluminaHumanMethylationEPICanno.ilm10b2.hg19”),
and further curated and translated to GRCh38/hg38.p12
(patch release 12)°°.

Comparison of global DNA methylation levels between the
proteomic subtypes

Histograms were used to show the difference in global
DNA methylation level in CpG island or CpG shore
regions across proteomic subtypes. For each sample, the
mean value of all S-values in either CpG island or CpG
shore regions was calculated to represent the global DNA
methylation level of this sample, as displayed in the ver-
tical coordinate. The height of the column represented
the mean value of the DNA methylation level of all
samples in this proteomic subtype, and the error bar
represented the 95% confidence interval, reflecting the
dispersion of the global DNA methylation level of differ-
ent samples in each subtype. The difference of global
DNA methylation level was evaluated using Student’s ¢-
test, and a P<0.05 was considered to be statistically
significant.

Pathway enrichment analysis based on DNA methylation
profiling of the three proteomic subtypes

Differentially methylated sites (DMS) (8> 0.1, adjusted
P <0.05) were identified in each subtype respectively in
comparison to all other samples (one subtype vs other two
subtypes). The KEGG pathway enrichment analysis was
performed on the cognate genes of these DMSs for each
subtype using a hypergeometric test.

Proteome and phosphoproteome data analysis
Quantification of global proteome and phosphoproteome
data

Proteins or phosphopeptides with missing values in <
50% of the total samples were regarded as quantifiable and
were subjected to further data normalization. Specifically,
we identified 6607 quantifiable proteins and 3073 quan-
tifiable phosphopeptides that were detected in more than
half of the samples subjected to global proteome and
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phosphoproteome, respectively (= 51 out of 102 samples
for global proteome; > 37 out of 74 samples for phos-
phoproteome). The XIC value of each protein or phos-
phopeptide was normalized with the column-median
centering method to correct for equal loading across
samples, and were then log,-transformed. Subsequently,
K-nearest neighbor (KNN) algorithm was applied for
missing value imputation.

The very long and continuous operating time of the
mass spectrometer (12 consecutive days for global pro-
teomics and phosphoproteomics, respectively) makes it
difficult to guarantee absolute stability of instrument
condition. During the data checking, we observed that
11 samples (FUSCC-03, FUSCC-11, FUSCC-12, FUSCC-
14, FUSCC-15, FUSCC-17, FUSCC-18, FUSCC-19,
FUSCC-21, FUSCC-23, FUSCC-32) clustered together
and significantly deviated from the other samples in the
PCA plot (data not shown). These 11 samples happened
to be tested continuously in sequential order on LC-MS/
MS. For this reason, we retrospectively checked the total
ion chromatogram of each sample, and observed inter-
mittent instabilities in the instrument when these
11 samples were being loaded and tested. Therefore, the
resulting batch effects from the 11 samples were corrected
by ComBat function in SVA R package with default

96
parameters”.

Unsupervised clustering for global proteomic data

Based on all 6607 quantifiable proteins from the global
proteomic data, ssGSEA was performed using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) dataset to
assess the Enrichment Score (ES) of all signaling pathways
for each sample. Next, unsupervised hierarchical cluster-
ing was performed according to the average Euclidean
distance metric of ES for each sample, which classified the
102 tumor samples into three initial clusters with distinct
patterns of enriched signaling pathways.

To further reduce the “noise” of subtyping and to high-
light the heterogeneity between subtypes, we aimed to
further distinguish the functional differences of these initial
clusters. Therefore, we then defined the characteristic sig-
naling module of each cluster, by selecting pathways with
the ratio of mean ES values between a given cluster/other
clusters > 1.2 from the enriched signaling pathways men-
tioned above. The three characteristic signaling modules
generated on this basis contained a total of 1485 proteins,
among which we finally selected the top 60% proteins
(n=2891) according to the coefficient of variation (CV)
across samples for downstream analyses (Supplementary
Table S5). Based on the average Bray—Curtis dissimilarities
among the expression abundance of these 891 proteins,
unsupervised hierarchical clustering was conducted to
identify proteo-typical clusters with the following para-
meters: pivot_kws = None, method = “average”, metric ="
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braycurtis”. The heatmap was plotted by the clustermap()
function of seaborn Python package 0.21.2. In summary, the
102 MTC tumor samples were divided into three subgroups
with sample numbers of 33, 36, and 33, respectively.

Estimation of BRAF score based on global proteomic data

In this study, we used a BRAF score to quantify the
extent to which the downstream signaling of a given
sample resembles the BRAF'****-mutant profiles®’. The
BRAF score, based on the expression profiles of 58 genes,
is a modified version of a 71-gene-based BRAF'**°*-RAS
scoring algorithm derived from a TCGA study of papillary
thyroid cancer”. Of the 58 BRAF score-related genes, a
total of 25 genes (QSOX1, ASAP2, PPL, STK17B, ETHEI,
FNI1, ANXAI, PROS1, SFTPB, PTPRE, ITGA3, SDC%,
GBP2, AHR, PDLIM4, CTSC, BID, CDC42EPI1, LLGLI,
SELIL3, ANKLE2, SYT12, PRICKLE1l, TMEM43, PLE-
KHAG6) were quantifiable in our global proteomic data,
whose protein abundances were then used for score cal-
culation with AddModuleScore function of the Seurat R
package (v3.1.4) following the methods described in a
previous study”'.

Evaluation of MAPK and PI3K-Akt-mTOR signaling activity

The ssGSEA analysis was carried out based on the
global proteomic data of each tumor sample. Query gene
sets for ssGSEA included all pathways from KEGG data-
sets. In ssGSEA, the matrix of protein abundances for a
given sample is rank-normalized, and an ES is then gen-
erated using the Empirical Cumulative Distribution
Functions (ECDF). Finally, the ES of each gene set was
normalized to account for the size of that gene set,
yielding a normalized enrichment score (NES). Activities
of MAPK signaling and PI3K-Akt-mTOR signaling were
evaluated based on their respective NES.

Pathway enrichment analysis between Basal tumors and all
other tumors

Differential expression analysis for global proteomic
data was carried out between Basal tumors and other
tumors using Student’s ¢-test. P-values were adjusted by
the Benjamini—Hochberg procedure and features were
considered significant with an adjusted P-value (FDR, also
called g-value) < 0.05. Finally, in the Basal group, we
identified a total of 313 proteins upregulated by at least
two-fold, and 113 proteins downregulated by at least two-
fold, respectively, whose cognate genes were separately
aligned to KEGG pathway enrichment analysis using the
hypergeometric test by “Phyper” function available in the
stats R package. Pathways with a P-value < 0.05 were
regarded to be significantly regulated. For the KEGG
enrichment analysis of upregulated and downregulated
proteins, we listed three characteristic pathways each.
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One-way ANOVA was applied to identify phospho-
peptides with significantly different abundance (P < 0.05)
among the three proteomic subtypes, which were then
compared between Basal tumors and other tumors. These
phosphopeptides with FC > 1.2 in the Basal group were
further selected, whose cognate genes were included to
derive enriched pathways using the Reactome databases.
P-values were calculated by the R function “Phyper”
function based on the hypergeometric test.

Identification of potential drug targets for the Basal subtype

First, we attempted to identify characteristic proteins of
the Basal subtype. The differences of protein abundance
between Basal tumors and other tumors were compared
by Student’s t-test with P-values adjusted by
Benjamini-Hochberg procedure. Proteins with FC > 2 and
q<0.05 were considered significantly upregulated and
regarded as characteristic proteins of this subtype. Sec-
ond, these proteins were then searched in the DrugBank
database (https://go.drugbank.com/) to see if they had
been already identified as drug targets®®. As a result, a
total of 67 candidate drug target proteins were retrieved.
Third, as the drugs recorded in DrugBank were often
clinically unavailable or only experimental, we manually
reviewed the therapeutic targets recorded in the Drug-
Bank database for each of these proteins, in order to
identify therapeutic targets with truly clinically accessible
drugs (approved or investigational in solid tumors, not
merely experimental). Finally, CEA having both a high
upregulation (FC =3.42) and investigational drug (anti-
CEA antibody-drug conjugate, e.g., labetuzumab) was the
only candidate that met this criteria.

Multi-omics data analysis
mRNA-protein correlation

The gene-wise mRNA-protein correlation for all genes
quantifiable in both omics (n = 6454) was computed using
Spearman’s correlation with statistical significance set at
FDR < 0.05. On the other hand, the sample-wise
mRNA-protein correlation was calculated as the med-
ian of gene-wise correlation of all genes with cognate
mRNA-protein pairs in each sample.

Subsequently, using the cognate genes of significantly
positively (Spearman’s r>0, FDR<0.05) or negatively
(Spearman’s r<0, FDR<0.05) correlated gene-wise
mRNA-protein pairs, KEGG pathway enrichment analy-
sis was performed by R function “Phyper” based on the
hypergeometric test. Signed —log;oP-value was used as the
ranking metric to identify KEGG pathways enriched for
genes with low and high protein—RNA correlations,
respectively, and 35 signaling pathways with the lowest P-
values (highest —log;oP-values) were selected to generate
the ridge plot. In the ridge plot, the x-axis displayed the
distribution of Spearman’s correlation coefficients of
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mRNA-protein pairs whose cognate genes were included
in the 35 KEGG pathways (one per row). These pathways
were listed in descending order of the median of the
Spearman’s coefficients from top to bottom.

Comparison between global proteomic and transcriptomic
data

We used information of all 4274 mammalian protein
complexes recorded in the CORUM database (version 3.0,
released in 2018) to make the comparison between global
proteomic and transcriptomic data. For all 6607 quanti-
fiable proteins in global proteome data, we fist calculated
the expression correlations between each pair of proteins
(a total of 21,822,921 protein—protein pairs). For all
19,645 quantifiable genes in RNA-Seq data, we also cal-
culated the expression correlations between each pair of
RNAs (a total of 54,162,592 RNA-RNA pairs). Correla-
tions of each protein—protein pair and RNA-RNA pair
were matched with the information recorded in the
CORUM database.

The match results were considered to be true-positive if
the predicted correlations existed in the CORUM data-
base, otherwise they were regarded as false-positive.
Similarly, true-negatives and false-negative results could
be determined. Afterwards, a receiver operating char-
acteristic (ROC) curve was plotted to compare the
superiority of proteome and transcriptome in predicting
CORUM protein complexes by “sklearn” function of
Python version 0.21.2. In this analysis, two thirds of our
samples were used as the training cohort, while the
remaining one third of samples were used for validation.

Phosphosite-to-protein co-variation analysis

For the 74 MTC tumors with both proteome and
phosphoproteome data, Pearson’s correlation coefficients
were computed between phosphosite and cognate protein
abundances in the three proteomic subtypes, respectively.
Those phosphosite-to-protein pairs with Pearson’s coef-
ficient > 0.2, and P < 0.05 were considered significantly co-
regulated in each subtype. In total, 980 significantly co-
regulated pairs were identified in the three proteomic
subtypes, where 267, 557 and 501 pairs were identified in
the Metabolic, Basal and Mesenchymal subtypes, respec-
tively. Unsupervised hierarchical clustering with complete
linkage was then performed using the Pearson’s correla-
tion coefficient of each pair, and the 980 pairs could be
classed into three major clusters. GO enrichment analysis
was conducted using the cognate genes of these pairs, and
the enriched terms/pathways (one specific cluster vs other
clusters) were identified with a Benjamini-Hochberg
FDR < 0.05, of which representative ones were annotated
in the heatmap.
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Survival analysis

Kaplan—Meier survival plots were used to describe SRFS
of different genotypes or proteomic subtypes, and log-
rank tests were used to evaluate the differences between
survival curves. All these analyses were performed by
GraphPad Prism version 8.4.0 (GraphPad Software).

IHC staining and evaluation
Immunostaining experiment

IHC staining was performed to measure the level of
TNC using the TMA slides that had been previously
constructed, on which sections were cut from the repre-
sentative tumor areas of > 200 MTC tumor samples®*?°,
In brief, the slides were subsequently deparaffinized and
rehydrated, followed by quenching endogenous perox-
idase activity and conducting heat-induced epitope
retrieval. After preventing nonspecific antibody binding
by using 5% normal goat serum, the slides were then
incubated with TNC (1:200, ab108930, Abcam) at 4 °C
overnight. A Dako REAL EnVision Detection System
(horseradish peroxidase; HRP, Rabbit/Mouse, Agilent)
was applied to stain the slides for 30 min at room tem-
perature. The positive signal was finally detected after
3,3"-diaminobenzidine coloration, hematoxylin counter-
staining, and dehydration.

Immunostaining evaluation

The IHC-stained slides were screened by a KF-PRO-120
Digital Pathology Slide Scanner (Konfoong Biotech) and
viewed with K-Viewer Digital Pathology System, version
1.5.3.1 (Konfoong Biotech). The immunostaining of each
core was independently evaluated by two experienced
pathologists (T.C. and Y.Z.) who were blinded to clinical
parameters and outcomes. The cutoff for TNC positivity
was decided according to proportion of staining in the
whole tumor area (including mesenchyme), and was finally
set as 5% based on the consensus of the two pathologists.
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