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Abstract
Life science studies involving clustered regularly interspaced short palindromic repeat (CRISPR) editing generally apply
the best-performing guide RNA (gRNA) for a gene of interest. Computational models are combined with massive
experimental quantification on synthetic gRNA-target libraries to accurately predict gRNA activity and mutational
patterns. However, the measurements are inconsistent between studies due to differences in the designs of the gRNA-
target pair constructs, and there has not yet been an integrated investigation that concurrently focuses on multiple
facets of gRNA capacity. In this study, we analyzed the DNA double-strand break (DSB)-induced repair outcomes and
measured SpCas9/gRNA activities at both matched and mismatched locations using 926,476 gRNAs covering 19,111
protein-coding genes and 20,268 non-coding genes. We developed machine learning models to forecast the on-
target cleavage efficiency (AIdit_ON), off-target cleavage specificity (AIdit_OFF), and mutational profiles (AIdit_DSB) of
SpCas9/gRNA from a uniformly collected and processed dataset by deep sampling and massively quantifying gRNA
capabilities in K562 cells. Each of these models exhibited superlative performance in predicting SpCas9/gRNA activities
on independent datasets when benchmarked with previous models. A previous unknown parameter was also
empirically determined regarding the “sweet spot” in the size of datasets used to establish an effective model to
predict gRNA capabilities at a manageable experimental scale. In addition, we observed cell type-specific mutational
profiles and were able to link nucleotidylexotransferase as the key factor driving these outcomes. These massive
datasets and deep learning algorithms have been implemented into the user-friendly web service http://crispr-
aidit.com to evaluate and rank gRNAs for life science studies.

Introduction
Clustered regularly interspaced short palindromic

repeat (CRISPR) technology is revolutionizing biological
and clinical studies because of its efficiency, accuracy, and
flexibility of gene editing, which allows genes to be pre-
cisely edited or regulated in a wide range of applications.
Because of its revolutionary nature, many attempts have

been undertaken to improve performance at the levels of
developing new enzymes and optimizing the design and
selection of guide RNAs (gRNAs).
The selection of gRNAs depends on a thorough

understanding of the connections between the gRNA
sequence and gRNA performance, typically reflected by
the cleavage activities at the desired and undesired
sequences and the ultimate mutational profiles. In recent
times, computational models have been developed to
predict gRNA capabilities from massive experimental
datasets, such as CRISPR screening and synthetic gRNA-
target sequence libraries. Models established from the
CRISPR screening involve observations of the phenotypic
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changes in gene-edited cells, which cannot fully and
directly represent the capabilities of gRNAs1–5. By con-
trast, the high-throughput library of synthetic gRNA-
target pairs allows direct investigations of in vivo gRNA
target sequences in cell lines, although primary cells are
more therapeutically relevant.
In previous studies, ~10,000 to ~50,000 synthetic

gRNA-target pairs were applied to quantify the on-target
efficiency, off-target specificity, or repair outcomes of
gRNAs for various CRISPR enzymes. However, it is
unclear whether datasets of this scale are at the sweet spot
to establish a deep learning model to predict gRNA cap-
ability. For instance, the human genome has 6 × 108

potential gRNAs with NGG PAM, which results in
0.002%–0.009% coverage for gRNAs sampled in earlier
studies. Given this range of sampling, the computational
predictions and experimental measurements of gRNA
cleavage activities had a Spearman correlation of ~0.8 in
the cell types used to create the training datasets. More
datasets from different cell types will likely need to be
gathered, though, as the generalization performance of
prediction models are currently being studied. Therefore,
it will be beneficial to pinpoint the sweet spot of the
model performance given manageable size of experi-
ments. In addition, a deep sampling of gRNAs from at
least one kind of cell will help us better grasp the
advantages of the synthetic gRNA-target library strategy,
having said that, we determined if and how much more
the prediction score could be improved.
Computational models built on a range of datasets have

predicted individual characteristics of the multi-
dimensional gRNA capacity. However, the measure-
ments on various assessment cassettes are inconsistent
between studies due to differences in the designs of the
gRNA-target pair constructs, and there has not yet been
an integrated investigation that concurrently focuses on
multiple facets of gRNA capacity. In this study, we ana-
lyzed the DNA double-strand break (DSB)-induced repair
outcomes and measured SpCas9/gRNA activities at both
matched and mismatched locations using 926,476 gRNAs
covering 19,111 protein-coding genes and 20,268 non-
coding genes. We developed machine learning models to
forecast the on-target cleavage efficiency (AIdit_ON), off-
target cleavage specificity (AIdit_OFF), and mutational
profiles (AIdit_DSB) of SpCas9/gRNA from a uniformly
collected and processed dataset by deep sampling and
massively quantifying gRNA capabilities in K562 cells. In
addition, we looked into the best data size to create high-
performance models for later use. We also discovered a
crucial marker, nucleotidylexotransferase (DNTT)
expression, which we used to direct model choice and
forecast SpCas9/gRNA mutational patterns specific to
different cell types. As a result, our study improved our
understanding of how well the synthetic gRNA-target

library could improve the thorough knowledge of SpCas9/
gRNA activities. Furthermore, the three high-performing
models and the web tool http://crispr-aidit.com should
considerably enhance the capacity to predict specific
gRNA-related editing outcomes across various cell types.

Results
A library comprising 740k synthetic gRNA-target pairs
reveals SpCas9/gRNA cleavage activity in K562 cells
Extending previous studies based on tens of thousands

of gRNA sequences, we designed a 740k gRNA-target pair
library corresponding to 26 gRNAs per protein-coding
gene and 12 gRNAs per non-coding gene (Fig. 1a). The
library was a combination of the gRNAs that we newly
designed for this study and other published libraries,
including Brunello6, GecKOv27, Sabatini8, Tor-
ontoKoV39,10, and YusaKoV111 (Supplementary
Table S1). This library represents ~0.16% of all gRNAs
with NGG PAMs in the human genome (higher than the
0.002%–0.009% coverage in previous studies). The
assessment cassette for each gRNA included the gRNA
itself and its 63-nucleotides (nt) putative genome target,
which was composed of a 20-nt upstream region, 20-nt
target sequence, 3-nt NGG PAM, and 20-nt downstream
region. The assessment cassettes were cloned into a len-
tivirus backbone with a 20-nt random nucleotide barcode
(BC) sequence, which was incorporated to eliminate
confounding issues stemming from processes such as
plasmid propagation and polymerase chain reaction
(PCR) amplification (see Materials and methods).
Under the assumption that relative indel frequencies

and indel frequency ranks are preserved when different
amounts of lentivirus are transduced12, transduction was
conducted at a multiplicity of infection (MOI) of 5 to
achieve high cell-to-library coverage while generating a
cell population that was manageable in size. The cells
were harvested at day 3.5 post-transduction, and the indel
frequencies of all gRNAs were assessed by high-
throughput sequencing (HTS). We filtered those gRNAs
with read numbers ≥ 200 and BC numbers ≥ 10 (see
Materials and methods) and plotted their indel fre-
quencies against their paired target sequences (Fig. 1b;
Supplementary Fig. S1a). The frequency spectra collec-
tively showed that the indel rates were widely distributed
(median: 0.34) and were strongly positively correlated
between biological replicates (Pearson r= 0.93) (Supple-
mentary Fig. S1b), supporting the notion that the results
of our indel frequency quantification were robust and
reproducible.
To gain an overview of the nucleotide preferences of

cleavage activity alongside the gRNA targets and their
flanking regions, we aggregated all target sequences in the
740k library and generated a nucleotide preference map of
SpCas9/gRNA cleavage activity in K562 cells. We used the
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odds ratio of the nucleotide frequency between the
favored and disfavored nucleotides at each position to
represent nucleotide preferences across the 63-base pairs
(bp) target region (Fig. 1c). This analysis showed that the
four nucleotides adjacent to the PAM sequence exerted
obviously stronger impacts on gRNA cleavage activities
than other nucleotides and a guanine positioned imme-
diately adjacent to the 5′ end of the PAM was more likely
to increase cleavage than other nucleotides at these
positions13–16. These results echoed the nucleotide pre-
ferences concluded from previous smaller-scale gRNA-
target paired libraries and further verified the fidelity of
cleavage activity with more than 20-fold expansion in
data size.

Building a machine learning model to predict SpCas9/
gRNA cleavage activity
To develop prediction models for the on-target activity

of gRNAs, we initially compared nine machine learning
algorithms, comprising seven conventional algorithms

(Lasso regression, ridge regression, elastic regression,
random forest, gradient boosting decision tree (GBDT),
extreme gradient boosting (XGBoost) and multilayer
perceptron (MLP) algorithms) and two deep learning-
based algorithms (convolutional neural network (CNN)
and recurrent neural network (RNN) algorithms). We
split the cleavage activity data contained in the 740k
library into a training dataset (90%) and a test dataset
(10%). We randomly picked 10,000 gRNA sequences and
used their indel frequencies to optimize the model
hyperparameters using Hyperopt (see Materials and
methods).
When we trained the seven conventional models and

two deep learning models on the training dataset using
10-fold cross-validation, we found that the two deep
learning frameworks (RNN and CNN) performed better
in predicting on-target activity than the conventional
algorithms (Fig. 2a). The RNN was the best-performing of
all the tested algorithms, with Spearman correlation
coefficients between the measured indel frequencies and

Indel frequencies

a

b c

Fig. 1 High-throughput quantification of SpCas9/gRNA cleavage activity in vivo. a Flowchart of the experimental design used to generate data
from the 740k gRNA-target library and 180k gRNA-off-target library. The 740k library comprised 743,344 gRNA sequences, and their corresponding
target sequences were selected and combined with the Brunello, GecKOv2 AB, Sabatini, TorontoKoV3, and YusaKoV1 libraries derived from 19,111
protein-coding genes and 20,268 non-coding genes. Each target sequence comprised a 23-nt (including a 3-nt PAM sequence) target sequence, its
20-nt upstream region and its 20-nt downstream region (according to the genomic context). The 180k library comprised 183,132 gRNA-off-target
pairs. b The distribution of the SpCas9/gRNA activities in K562 cells. x-axis: indel frequencies. c The nucleotide preferences of SpCas9/gRNA cleavage
activity in the target sequences and context sequences in the flanking genomic regions. At each position along the x-axis, the gRNAs are ranked in
descending order according to their indel frequencies. The percentage of a particular nucleotide in the first quartile at each position was divided by
its percentage in the fourth quartile. The log2-transformed relative ratio is denoted as the log-odds score (y-axis), representing relative abundance in
the 1st and 4th quartiles.
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the predicted scores ranging from 0.875 to 0.911 (median:
0.898) (Fig. 2a). When the trained models were applied
based on the test dataset, the RNN again performed best
among all the models (Supplementary Fig. S2). Thus, we
selected the RNN model built from the 740k library data
collected in K562 cells for further analyses.
An analysis in which the lengths of the flanking

sequences were gradually extended from the central target
showed that the performance of the RNN model con-
tinued to increase with the length of input sequences
(Fig. 2b). The greatest effect was obtained with a flanking

sequence of ±5 bp, which significantly increased the
Spearman coefficient from 0.848 (without any flanking
sequence) to 0.883. And inclusion of flanking sequence of
±10 bp, ±15 bp, and ±20 bp supported length-related
contributions of the sequence context (Fig. 2b). We fur-
ther dissected the contributions derived from the
upstream and downstream flanking sequences and found
that the downstream gRNA sequence contributed to a
greater extent than the upstream sequence (Supplemen-
tary Fig. S3). Hence, we included 63-bp sequences (23 bp
plus 20 bp from both upstream and downstream) as input

Fig. 2 Building AIdit_ON model to predict Cas9/gRNA cleavage activity. a Comparison of the prediction performances achieved by different
algorithms for the cleavage activities of SpCas9/gRNA. The models were trained by 10-fold cross-validation. Each dot represents the Spearman
correlation between the measured indel frequencies and the predicted efficiencies from 10-fold cross-validation. *P < 0.05 and **P < 1e–5 indicate
statistically significant differences between two deep learning-based approaches (between the deep learning-based approaches and the best
conventional machine learning-based algorithm) according to Steiger’s test. b The influence of the input sequence length on model performance.
The 10-fold cross-validation process for the RNN models was performed on training datasets with 23-bp target sequences only (23), and with
additional downstream and upstream sequences of varying lengths (with the bp lengths presented before and after the target sequence length,
respectively). Each dot represents the Spearman correlation coefficient between the measured indel frequencies and the predicted efficiencies from
the 10-fold cross-validation (*P < 0.05 and **P < 1e–5, Steiger’s test). c Schematic representation of the workflow of the AIdit_ON model for predicting
gRNA activity. The input of AIdit_ON was one-hot encoded 63 bp sequences. Number of hidden size of the first BiLSTM layer and the second BiLSTM
layer was 32 units and 64 units, respectively. And the merge mode of both these two BiLSTM layers was elementwise concatenation. The second
BiLSTM layer outputted the merge of last hidden state of its forward and backward layers which was 128 units and was inputted a fully connected
layer with 64 units. Finally, the fully connected layer outputted gRNA activity. d The influence of the input data scale on model performance. The 10-
fold cross-validation process for the RNN models was performed on training datasets in eight pseudolibraries with gradually increasing library sizes
from pseudolib1 to pseudolib8. e Heatmap of the Spearman correlation coefficients between the measured indel frequencies and the predicted
efficiencies across twelve models (columns) for various datasets (rows). Abbreviated information about the datasets, including their years of
publication, cell types, and numbers of included gRNAs, is provided in the row labels. The column labels represent the names of the computational
models included in this benchmark. The Spearman correlation coefficients between the reported or measured indel frequencies and the predicted
efficiencies are color-coded. The gray blocks in the heatmap indicate that the model was evaluated against its own training datasets. The previously
reported models included DeepSpCas913, DeepWt_U614, DeepWt_T714, DeepCRISPR17, the Doench score6, the Wang score2, the Xu score16,
ChariRank5, the Doench score18, the wuCrispr/Wong score20, and CRISPR scan1. The statistical significance determined by Steiger’s test is shown
between the two best models for each dataset (*P < 0.05, **P < 1e–10; n.s. represents not significant).
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sequences for the RNN model and named it “AIdit_ON”,
indicating its function of predicting the on-target SpCas9/
gRNA cleavage activities (Fig. 2c).
The strong detection performance of AIdit_ON trained

on the 740k library encouraged us to investigate the
performance improvements achieved with increases in the
data scale. The requirement for cell-to-library coverage
makes it challenging to apply large-scale synthetic library
to primary cells, which are more relevant to medical
applications such as CRISPR therapy. Expanding the pool
of cell types with available high-quality datasets might
allow us to better answer that question. Achieving this
goal may be limited, however, by the lack of guidelines
regarding the “sweet spot” in the size of the datasets used
for establishing an effective model at a manageable
experimental scale. To this end, we split the 740k library
into eight subpools (see Materials and methods). Starting
with one subpool as the first pseudolibrary, we generated
the second pseudolibrary by adding one more subpool. By
sequentially adding more subpools, we generated eight
pseudolibraries (pseudolib1–8) representing a gradually
increasing data scale. And the pseudolib8 is the same to
what we used to build the AIdit_ON model. We trained
the RNN model for each of the pseudolibraries using 10-
fold cross-validation and calculated the Spearman corre-
lation coefficients between the measured indel fre-
quencies and the predicted scores. As pseudolibrary size
increased, the prediction performance of the eight models
gradually increased from 0.810 to 0.898 (Fig. 2d). We
noted that the performance improvement benefited the
most from pseudolib1 (median: 0.810, ~40k gRNAs) to
pseudolib4 (median: 0.887, ~173k gRNAs). Although the
performance improvement trend continued to increase
when the size of pseudolibraries increased, the curve
became relatively flat starting with the inclusion of
pseudolib5 (median: 0.891, ~220k gRNAs). This pseudo-
library analysis indicated that the increase in the data scale
of the synthetic gRNA-target library contributed to model
performance. However, the performance gain became
flattened after more than 220k gRNAs were included.

Favorable Aldit_ON performance at endogenous sites and
in various further cell types
To investigate whether the AIdit_ON model established

on K562 cells is applicable to other cell types, we applied
the 740k library to Jurkat cells with stable Cas9 expression
following the same experimental protocol. As expected,
the Jurkat dataset also exhibited a uniform indel fre-
quency distribution and high reproducibility between
biological replicates (Supplementary Figs. S1b, S4). The
Spearman correlations between the replicates of K562 and
Jurkat cells ranged from 0.73 to 0.82, suggesting similar
SpCas9/gRNA cleavage activities in these two cell lines.
However, the correlations between cell types are still

lower than that between biological replates of one cell
type, indicating some gRNAs behaved differently between
the K562 and Jurkat cells. Further analysis on these
gRNAs demonstrated distinct nucleotide preferences
around the SpCas9/gRNA cleavage site (Supplementary
Fig. S5), suggesting unknown cell-type specific factor,
together with distinct nucleotides around the cleavage
site, contributes to the cleavage activities of SpCas9.
Interestingly, when the AIdit_ON model was applied to
predict the cleavage activities of gRNAs in Jurkat cells, the
Spearman correlation was 0.77 (Supplementary Fig. S6).
This prediction score was within the range of Spearman
correlations obtained between the two cell types, indi-
cating that AIdit_ON shows good performance general-
ization for synthetic datasets.
To further examine the generalization performance of

the models among more cell types, we applied the
AIdit_ON model and eleven published models for pre-
diction based on publicly available datasets that have been
included in multiple benchmarks on prediction models of
cleavage activities. These datasets represented SpCas9/
gRNA cleavage activities inferred from CRISPR screen-
ings that conducted in cell types including HeLa,
HCT116, RPE-1, A375, HL60, KBM-70, HEK293T,
Mouse-EL4, and MOLM131,2,5,6,13,14,16–21. To eliminate
systematic variations and prevent overfitting, we used ten
datasets with more than 100 gRNAs (excluding gRNAs
overlapping with those in our training set) driven by the
U6 promoter from published datasets. Although the
obtained prediction scores fell within a larger range
(0.375–0.705), the AIdit_ON model outperformed all
other models across all public datasets (Fig. 2e).
Next, to examine the prediction performance of the

AIdit_ON model at endogenous sites, we conducted
CRISPR knockout with 96 randomly selected gRNAs in
K562, HEK293T, and human embryonic stem cells (H1)
to investigate the generalizability of the models. We
quantified the corresponding indel frequencies in the
three cell lines (Endo-293T n= 78; Endo-K562 n= 75;
Endo-H1 n= 71) (Supplementary Fig. S7 and Table S2).
The Spearman correlation coefficients between the model
predictions and the experimental quantification results
were 0.65 for HEK293T cells, 0.5 for K562 cells, and 0.47
for H1 cells (Supplementary Fig. S8). Notably, the AIdi-
t_ON model again outperformed the other models in all
three endogenous datasets, which emphasized that its
good performance was generalized (Fig. 2e).

The AIdit_ON model predicts SpCas9/gRNA cleavage
activities in human primary cells for CRISPR therapy
To facilitate gRNA selection for biomedical researchers,

we established a public web service (crispr-aidit.com)
embedded with the AIdit_ON model. With this service,
people can score and rank gRNAs for their genes of
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interest (GOIs) by experimentally quantified or predicted
efficiency. A list of gRNAs with predicted efficiency could
be obtained by entering a gene name, a stretch of
sequence, or a FASTA file with sequences. As an example,
we searched for and ranked gRNAs corresponding to the
pyruvate kinase, liver, and red blood cell (PKLR) gene
locus. Segovia and colleagues recently reported an ex vivo

CRISPR therapy in a clinically applicable system using
SpCas9/gRNA to treat pyruvate kinase deficiency
(PKD)22. The gRNA that they ultimately chose over the
other candidates matched the top1 candidate predicted by
AIdit_ON (Supplementary Fig. S9a).
The K562 cells were often used to screen for gRNAs

with high editing efficiency before ex vivo CRISPR gene

Fig. 3 (See legend on next page.)
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editing was conducted in human hematopoietic stem cell
(HSC). In some reported studies, we found that AIdit_ON
successfully predicted the top1 candidates for different
genomic loci, including α-Globin23, FOXP324, and HBB25,
and the correlation of the model predicted and experi-
mental measured indel efficiencies are high (Supplemen-
tary Fig. S9b–d).
Besides HSC, ex vivo CRISPR therapy also expands the

way to engineer T cells for CAR-T cell therapy. And the
AIdit_ON model performed well in predicting the editing
efficiencies of gRNAs targeting B2M, TRAC, and genomic
loci in human primary T cells26 (Supplementary Fig. S9e).

The 740k library reveals insertion-preferred repair
outcomes in Jurkat cells but not K562 cells
SpCas9 generates non-random and reproducible

mutational profiles depending on the given sequence
context. The datasets of 740k library in both K562 and
Jurkat cells allowed us to further examine DSB-induced
repair outcomes in these two cell types. Different from the
cleavage activity that could be directly used to represent
the gRNA property, a metrics is firstly needed to quantify
the repair outcome of each gRNA. We compared the
repaired sequences to the wild-type (WT) sequences and
sorted the repair outcomes from three dimensions,
including the repair type (insertion or deletion), the repair
location, and the lengths of the repaired sequences. We
comprehensively defined 631 repair categories according
to the above three dimensions and calculated the per-
centages of categories for each gRNA, which was used as
the metrics to represent its repair outcomes. The median
Pearson coefficients of the biological replicates were 0.954
for K562 cells and 0.920 for Jurkat cells, suggesting that

the defined repair categories faithfully represented the
high reproducibility between biological replicates as we
have demonstrated in the analysis of cleavage activities
(Supplementary Fig. S10). However, the median Pearson
coefficient between K562 and Jurkat cells is only 0.544.
The symmetric Kullback Leibler (KL) divergence, which is
a metrics for the relative entropy of probability distribu-
tion and has been used to quantify similarity of repair
outcomes, also supported the high reproducibility
between replicates and relative low similarity between the
K562 and Jurkat cells (Supplementary Fig. S10).
A further analysis showed that 65.99% of the SpCas9/

gRNA-induced DSBs were repaired as deletions in K562
cells (Fig. 3a). By contrast, insertions dominated in Jurkat
cells (64.56% of DSBs; Fig. 3b, c). Previous studies in
several cell types (e.g., HEK293T, K562, mESC, Human
iPSC, et al.) have reported that deletions account for the
most dominant proportion of DSB repairs14,27,28. Hence,
we wondered why Jurkat cells showed a preference for
insertions instead of deletions, and whether we could use
that information to guide model selection for DSB repair
outcome prediction. We therefore formulated the pre-
diction of repair outcomes as a multiclass regression
problem and aggregated the 631 repair categories to
increase the robustness of the models by merging nearby
categories according to the principle of category proxi-
mity (Supplementary Fig. S11 and Tables S3, S4; see
Materials and methods). We derived the 63-bp target
sequence and microhomology features as inputs and
adopted an ensemble learning strategy to train the mod-
els. We first trained an individual XGBoost model for
each repair category to predict the category frequencies,
which were plugged into the final training models as

(see figure on previous page)
Fig. 3 DSB-induced repair outcomes are diverse and biased. a–c Distribution of SpCas9-induced DSB repair outcomes in K562 and Jurkat cells.
The pie charts show the average occurrence percentages of insertions, deletions, mismatches, and mixed mutations per gRNA in K562 (a) and Jurkat
(b) cells. The bidirectional bar plots show the average fraction of each repair category per gRNA in K562 and Jurkat cells (c). d Schematic
representation of the workflow of the AIdit_DSB models for repair outcome prediction for SpCas9/gRNA. The sequence and microhomology features
were extracted from the 63-bp input sequences and merged into 2642 features. The input of AIdit_DSB was a merge datasets of these 2642 features
and XGBoosts predictions, which came from 117/163 XGBoost models fitting each category of DSB-induced repair outcomes for K562/Jurkat,
respectively. AIdit_DSB finally predicted 117 and 163 DSB repair categories through multiple-category logistic regressions for K562 and Jurkat,
respectively. e Comparison of model performance regarding the prediction of DSB-induced repair outcomes. The benchmark was generated based
on four different models (AIdit_DSB_K562, Lindel, ForeCast, and AIdit_DSB_Jurkat) across three datasets (K562, ForeCast_Lindel, and Jurkat). Three
metrics were compared, including Pearson correlation (left), symmetrized KL divergence (middle), and MSE (right). f Comparison of model
performance in predicting DSB-induced repair outcomes. The benchmark was generated based on three different models (AIdit_DSB_K562, Lindel,
and ForeCast) across seven datasets (x-axis). Three metrics were compared, including the Pearson correlation (left), symmetrized KL divergence
(middle), and MSE (right). g–i Distribution of SpCas9-induced DSB repair outcomes in Jurkat WT cells and Jurkat cells with DNTT knockout (DNTT-KO).
Both the Jurkat WT cells and the DNTT-KO Jurkat cells were transduced with the library-3, one of the eight subsets of the 740k library. The pie charts
show the average occurrence percentages of insertions, deletions, mismatches, and mixed mutations per gRNA in Jurkat WT cells (g) and Jurkat cells
with DNTT-KO (h). The bidirectional bar plots show the average fraction of each repair category per gRNA in Jurkat WT cells and Jurkat cells with
DNTT-KO (i). j–l Distribution of SpCas9-induced DSB repair outcomes in K562 WT cells and K562 cells with DNTT overexpression (DNTT-OE). Both the
K562 WT cells and the DNTT-OE K562 cells were transduced with the library-3, one of the eight subsets of the 740k library. The pie charts show the
average occurrence percentages of insertions, deletions, mismatches, and mixed mutations per gRNA in K562 WT cells (j) and K562 with DNTT-OE
cells (k). The bidirectional bar plots show the average fraction of each repair category per gRNA in K562 WT cells and K562 cells with DNTT-OE (l).
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additional features. The final models were trained using a
multiclass logistic regression algorithm, in which the
categorical cross-entropy was used as a loss function
(Fig. 3d). The model trained on the K562 data was named
AIdit_DSB_K562, and the model trained on the Jurkat
data was named AIdit_DSB_Jurkat.
We compared the generalization performance of our

models with that of ForeCasT27 and Lindel28 based on
three datasets using three evaluation metrics: the Pearson
correlation coefficient, mean square error (MSE), and
symmetric KL divergence (Supplementary Fig. S12).
Across all datasets and metrics, the AIdit_DSB_K562
model outperformed the Lindel and ForeCasT models
(Fig. 3e; Supplementary Fig. S12). The superior perfor-
mance of AIdit_DSB_K562 was also demonstrated based
on other public datasets collected from cell lines,
including REP1, CHO, E14TG2A, and HAP1cells27

(Fig. 3f). However, AIdit_DSB_Jurkat showed very low
prediction efficacy for non-Jurkat data, whereas the other
models showed poor prediction scores for the Jurkat data.

DNTT expression drives insertion-preferred repair
outcomes
We hypothesized that a unique property of Jurkat cells

might be responsible for the insertion-dominant repair
outcomes we observed in these cells, and the identifi-
cation of that property might help with the selection of
repair outcome prediction models. To test this hypoth-
esis, we looked up the expression of genes that were
involved in DNA repair pathways from the Human
Protein Atlas database and filtered for those were spe-
cifically and highly expressed in Jurkat cells. Hence, we
identified DNTT as a gene that was more highly
expressed in Jurkat cells than in K562 cells (Supple-
mentary Fig. S13,https://www.proteinatlas.org/ENSG000
00107447-DNTT/cell+line)29.
DNTT is a member of the DNA polymerase type-X

family and encodes a template-independent DNA poly-
merase that catalyzes the addition of deoxynucleotides to
the 3′-hydroxyl terminus of an oligonucleotide primer30.
If DNTT is responsible for the insertion preference in
Jurkat cells, we reasoned that knocking out DNTT in
Jurkat cells would change their repair outcomes, making
them more similar to those of K562 cells. Therefore, we
used a subset of gRNA target cassettes from the 740k
library and transduced them into a DNTT-KO Jurkat-
Cas9 cell line (see Materials and methods). Strikingly, the
resulting repair outcome shifted from insertion-dominant
to deletion-dominant, which accounted for 60.58% of DSB
repairs, similar to what was observed in K562 cells
(Fig. 3g–i). Conversely, when we overexpressed DNTT in
K562-Cas9 cells (DNTT-OE K562-Cas9), insertions
became the most dominant DSB repair profile (Fig. 3j–l).
Collectively, these data demonstrate that the

DSB-induced repair outcomes mediated by SpCas9/gRNA
were DNTT-dependent.

Building a machine learning model to predict SpCas9/
gRNA off-target activity with a library comprising 180k
synthetic gRNA-off-target pairs
Encouraged by the results obtained with the 740k gRNA-

target library and the corresponding prediction models, we
applied the same strategy to model the off-target activities of
SpCas9/gRNA at near-cognate sequences. We devised a 180k
gRNA-off-target pair library containing 184,561 sequences,
including 89,730 sequences with a single mutation (mis-
match, insertion, or deletion) compared to the perfectly
matched gRNA target sequence, 93,579 sequences with
multiple mismatches, and 1252 sequences previously repor-
ted as off-targets based on computational prediction or
unbiased genome-wide identification studies (Fig. 4a; Sup-
plementary Figs. S14, S15 and Table S5; see Materials and
methods).
The analysis of the relative indel frequencies between

the mismatched targets and the perfectly matched targets
showed that the bases immediately upstream of the
cleavage sites (the 14th to the 17th nucleotide of the target
sequence from 5′ to 3′) were the most stringently
restricted sequences31,32, where only certain types of
mismatches allowed (Fig. 4b; Supplementary Fig. S16). A
similar analysis on off-target sequences with insertions
demonstrated that the insertion of a G nucleotide in the
NGG PAM caused a decrease in cleavage activity (Sup-
plementary Fig. S17), which emphasized the impact of the
1st downstream nucleotide that we discovered based on
the 740k library data (Fig. 1c). The analysis of the inser-
tion and deletion types of off-targets showed a few
“compatible” sites in both cases, at which > 10% cleavage
activity was retained when sequences were mutated;
however, the positions of those “compatible” sites were
different for insertions and deletions (Fig. 4c, d). Toge-
ther, the results obtained from this 180k gRNA-off-target
library enhanced our knowledge of the cleavage activities
of SpCas9/gRNA toward nearby cognate sequences.
Benefitting from our off-target library, we built what we

believe to be the first deep-learning model for scoring
the likelihood of cleavage at off-target sequences (Fig. 4e;
see Materials and methods). Among the five tested machine
learning algorithms, MLP and XGBoost performed better
than Lasso regression, ridge regression, or elastic regression
on both the validation and test datasets (Supplementary
Fig. S18). We evaluated model generalization performances
by comparing the predicted off-targets of 44 gRNAs21,33–35

with their verified off-targets provided by using GUIDE-seq
and other methods (e.g., DiGenome-seq) (Fig. 4f; Supple-
mentary Fig. S19 and Table S6). The benchmark demon-
strated that the MLP score model outperformed the
CCTop, Hsu-Zhang score, CFD, and Elevation-score
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Fig. 4 (See legend on next page.)
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models. Thus, we retained this model and named it the
AIdit_OFF model in accord with its prediction function at
near-cognate sequences.
The off-target score reflects the likelihood that a pre-

dicted off-target site is being cleaved. To better utilize the
output scores of the AIdit_OFF model to evaluate and
choose favorable gRNAs, we established a minimal off-
target score of 0.0069, which is comparable to the mini-
mal cutoff of 0.023 used by the CFD score models21. After
setting this cutoff, we investigated the accuracy of pre-
diction based on the GUIDE-seq data we obtained for
K562 cells. The results showed that AIdit_OFF improved
the accuracy of predicting real off-targets by an average of
2.6 times relative to CFD while maintaining slightly higher
recall rates, for all evaluation datasets (Supplementary
Fig. S20).

Discussion
Using high-throughput experimental measurements

from 926,476 synthetic gRNA-target and gRNA-off-
target pairs, we developed three deep learning models
(AIdit_ON, AIdit_OFF, and AIdit_DSB) for predicting
the cleavage activities, editing specificities, and repair
outcomes of SpCas9/gRNA in this study. All three
models showed exceptional abilities to forecast SpCas9/
gRNA activities.
The AIdit_ON model, which was trained based on

datasets generated in K562 cells, attained a reasonably high
Spearman correlation coefficient (0.91) for the validation
datasets derived from the same cell line. Importantly, the
model also showed strong generalization performance for
datasets gathered from a variety of other cell types,

including data on endogenous sites of H1, Jurkat and
HEK293T cells as well as CRISPR screening data targeting
endogenous or lentivirus integrated sites in HeLa,
HCT116, PRE, A375, HL60, KBM7, HEK293T, Mouse EL4,
and MOLM13 cells. In addition, when utilizing the AIdi-
t_ON model to rank gRNAs targeting the PKLR gene, a
causal gene of PKD, we predicted the best-performing
gRNA among a set of candidates using our web service
(crispr-aidit.com) as supported by a recent study.
The encouraging Spearman correlation coefficients

obtained between the Aldit model and a few other pub-
lished models showed that it was possible to accurately
estimate the cleavage activities of SpCas9/gRNA in a
variety of cell types. The inclusion of chromatin accessi-
bility data, a typical cell type-specific feature, did not
improve model performance, according to a recent study
by Kim and colleagues13. Despite being somewhat indir-
ect, it supported the ability of models to anticipate
SpCas9/gRNA on-target activities to be generalized.
In addition, we also found that the high generalization

performance achieved with the AIdit_ON model did not
apply to the AIdit_DSB model. In this instance, we
observed insertion-dominant repair outcomes in Jurkat
cells while deletion-dominant repair outcomes in K562
cells. We were able to link DNTT, a DNA nucleotidy-
lexotransferase involved in the NHEJ DNA repair path-
way, to these distinctive repair patterns. The DSB repair
patterns of both cell types were successfully shifted to the
opposite way by overexpressing DNTT in K562 cells and
knocking out DNTT in Jurkat cells, which indicated that
DNTT might be utilized as a marker for picking a repair
outcome prediction model.

(see figure on previous page)
Fig. 4 Building AIdit_OFF model to predict SpCas9/gRNA off-target activity. a Schematic representation of the sequence design process for the
180k synthetic gRNA-off-target library. The 180k library included 184,561 carefully designed off-target sequences. These sequences included: 89,730
single-mutation off-targets, which could be further divided into single mismatches (OFF_Mis), single deletions (OFF_Del), and single insertions
(OFF_Ins); 93,579 off-targets with multiple mismatches (OFF_Mul), which were generated via a traversal strategy and a predictive strategy; and 1252
pairs collected from computational predictions or experimental assays (e.g., GUIDE-seq). The former two groups were utilized to quantify indel
frequencies associated with different off-target types at a large scale. The latter group was used to validate our method. b Heatmap of average
relative indel frequencies between the matched targets and off-targets with 1-bp mismatches. At each position along the target region, the columns
represent the nucleotides of the target sequences, and the rows represent the mismatched nucleotides. The relative indel efficiencies are color-
coded. c Influence of insertion position on off-target sequences with 1-bp bulges. The relative editing activities, which are relative ratios of indel
frequencies between the off-target sequences and the corresponding matched targets, were plotted on the y-axis. Positions 1–3 were excluded from
this analysis due to data filtering. d The influence of the insertion position on off-target sequences with deletions. The relative editing activities, which
are relative ratios of indel frequencies between the off-target sequences and the corresponding matched targets, were plotted on the y-axis.
e Schematic representation of the workflow of the AIdit_OFF models for indel frequency prediction in off-targets for SpCas9/gRNA. The input of
AIdit_OFF included one-hot encoded 23 bp sequence of both matched and mismatched target sequence of gRNAs (184 features), position-
dependent substitution types (240 features), the PAM types of targets (8 features), mismatch number and prediction values of AIdit_ON for both
matched and unmatched target sequences. These features were merged to serve as the input of a built multilayer perceptron network with five
hidden layers whose hidden sizes were 500, 650, 380, 110, and 30, respectively. Finally, the output of the multilayer perceptron network was used to
predict off-target activity. f Comparison of the model performances in terms of predicting cleavage activities on off-target sequences. The benchmark
was conducted on endogenous off-target datasets, which were generated using GUIDE-seq across different models (AIdit_OFF, Elevation_score, CFD
score, CCTop score, and Hsu score). Three metrics were compared, including the area under the curve (AUC) (left) for examining the false-positive rate
and the area under the precision-recall curve (PR-AUC; right) for examining the recall rate.
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Our large-scale synthetic gRNA-target and gRNA-off-
target libraries allowed us to perform the high-throughput
quantification of cleavage activities and repair outcomes
in cultured cells. The 740k and 180k gRNA libraries
employed in this study represented approximately 0.16%
of the known NGG PAM gRNAs across the human
genome. This represents a data scale 20 times greater than
those in published studies involving machine learning-
based modeling. We demonstrated that the model per-
formance greatly improved as the number of gRNAs
gradually climbed to ~200,000 by building eight pseudo-
libraries in silicon with progressively more gRNAs. The
performance growth curve, however, flattened when more
data were included. This curve could be used to balance
the expected model performance and experiment scale as
more datasets in more cell types are likely to be created in
this field to further improve our capability to forecast the
gRNA activities.
We believe that these valuable datasets and high-

performance prediction models could contribute to the
research community to improve the prediction perfor-
mance of CRISPR editors. In addition, with a better
understanding of their generalization performance, these
datasets and prediction models will enhance our ability to
master the application of CRISPR technology to both
biomedical research and CRISPR therapies.

Materials and methods
Oligonucleotide library design
To assemble the library for predicting on-target Cas9/

gRNA cleavage activities (Aldit_ON), unique 20-bp
sequences with NGG PAM-containing sites were selec-
ted by scanning the human genome (hg38), and their off-
target scores were calculated according to the algorithm
developed by John G. Doench and colleagues6. Potential
sgRNAs that aligned with the coding sequence (CDS)
regions (including the 100-bp upstream and 100-bp
downstream sequences) of 19,111 protein-coding genes
or the exon regions of 20,268 non-coding genes and
possessed low off-target scores (≤0.05) were selected and
combined with the Brunello, GecKOv2 AB, Sabatini,
TorontoKoV3, and YusaKoV1 libraries after excluding
sequences containing BsmBI and AarI restriction enzyme
cleavage sites. Each target sequence included a 23-nt
PAM-endowed sequence and a 40-nt context extending
20 nt in the 5′ and 3′ directions of the endogenous gRNA-
encoding sequence. The AIdit_ON library, which con-
tained 743,344 gRNAs paired with their corresponding
targets, was independently synthesized in the form of 8
oligonucleotide pools (GeneScript) in which each oligo-
nucleotide contained a BsmBI restriction site, a 20-nt
gRNA-encoding sequence, two inward-directed AarI
restriction sites (for cloning the gRNA scaffold), a 63-nt

putative genomic target sequence and a second BsmBI site
with a total length of 149 nucleotides.
To assemble the library for predicting off-target effects

(Aldit_OFF), 1019 gRNA sequences from our on-target
experiments were randomly selected for inclusion,
resulting in a moderately dense distribution of indel effi-
ciencies and the mononucleotide contexts of these
sequences (Supplementary Fig. S21a, b). In the compre-
hensive analysis of off-target effects, we considered the
numbers, positions and types of mismatches between the
sgRNAs and target sequences and the effects of DNA/
RNA bulge types and their positions on the off-target
activities of SpCas9. Specifically, the Aldit_OFF library
consisted of the following randomly selected components.
(1) For the single mutation type, a total of 88,711 pairs of
gRNAs and target sequences were designed, comprising
1019 gRNAs * 69 (= 23 positions * 3 (all possible sub-
stituted bases)) for the single mismatch type, 500 gRNAs *
21 (deletion positions from 1 to 21) for the single deletion
type and 100 gRNAs * 79 (= 4 insertion bases * 19
insertion positions from 2 to 20+ 3 insertion bases
without G * 1 (insertion position of 21)) for the single
insertion type. After deduplication and data supplemen-
tary, 85,039 oligonucleotide pairs of gRNAs and target
sequences were synthesized. (2) For the multiple mis-
match type, we adopted two different strategies for
selecting pairs of gRNAs and target sequences: the tra-
versal strategy and whole-genome searching. Under the
traversal strategy, we first split the target region into 5
windows with overlap occurring every 7 positions (the
window positions ranged from 1 to 7, from 5 to 11, from 8
to 14, from 12 to 18, and from 15 to 21) and selected
58,500 multi-mismatches of up to six nucleotides,
including 100 randomly selected gRNAs * 5 windows *
119 multiple-position combinations from 2 to 6 for each
window * 1 substituted base combination with the highest
CFD score. In addition, we randomly selected 100 gRNAs,
searched for potential off-target sites of these gRNAs in
the genome using the Elevation-search tool and thereby
obtained 35,079 pairs of gRNAs and target sequences with
up to 6 multi-mismatches, giving priority to high CFD
scores. After data deduplication and supplementary,
94,579 oligonucleotide pairs of gRNAs and target
sequences were synthesized. (3) To evaluate off-target
effect quantification performance achieved via the high-
throughput methods, the Aldit_OFF library also con-
tained 431 off-target sites of 13 gRNAs measured with
GUIDE-seq or Digenome-seq27,35–40 and 805 pairs of
gRNAs and target sequences (of 3 gRNAs) evaluated
based on a similar oligonucleotide synthesis method32.
We also added 1035 matched sequences for all gRNAs to
the Aldit_OFF library as references and selected
1243 same off-targets between two independent
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AIdit_OFF libraries as inernal reference (Supplementary
Table S5).

Plasmid design and construction
ON-OFF-Backbone_lentiGuide-Puro-Mkate2: Two

inward-directed BsmBI restriction sites, a fixed 28-bp
nontarget sequence, and two inward-directed AarI
restriction sites were synthesized and cloned into the 3′
end of the U6 promoter of Direct-seq_lentiGuide-Puro-
Tail-8A8G (Addgene #52963). BsmBI restriction sites
for cloning the gRNA-target library inserts were located
downstream from the U6 promoter, and AarI restric-
tion sites were used for the cloning of the BC. The
resulting plasmid was referred to as ON-OFF-Back-
bone_lentiGuide-Puro-Mkate2.
ON-OFF-Insert-Scaffold: 2 AarI restriction sites, 1

conventional gRNA scaffold sequence, and 7 consecutive
thymines (T) were synthesized and cloned into pET-
28a(+), resulting in the ON-OFF-Insert-Scaffold vector
(kanamycin resistance marker).

lenti-Cas9-Blast: lenti-Cas9-Blast (Addgene #52962)
lenti-DNTT-HygR: The human DNTT CDS was PCR

amplified from Jurkat cell cDNA using the DNTT-F/DNTT-
R primers. The hygromycin resistance gene was PCR
amplified from a plasmid containing the gene (Addgene
#89308). The two PCR products were inserted into the
BsiWI and EcoRI sites of our lentivirus vector by Gibson
assembly, resulting in the plasmid vector lenti-DNTT-HygR.
The corresponding all-in-one plasmids used for mea-

suring SpCas9 indel frequencies at endogenous sites were
constructed by inserting a gRNA oligo into an empty
backbone (Addgene #82416) via Golden Gate assembly.
The gRNA plasmid employed for DNTT knockout

(DNTT-KO) was constructed by inserting a gRNA oligo
into our empty gRNA backbone via Golden Gate assem-
bly. The gRNAs were designed by using the AIdit_Ca-
s9_ON model developed in this study. The primer
sequences used to construct the vectors and gRNA
sequences are listed in Supplementary Table S7.

Plasmid library preparation
Plasmid library preparation involved a three-step

Golden Gate cloning process. Step 1: A BC oligo
(including a 20-nt random nucleotide flanked by two
outward-directed AarI restriction sites) was synthesized
by GenScript. Fwd-Barcode/Rev-Barcode primers were
used to amplify the BC oligo using 25 µL of NEBNext
Ultra II Q5 Master Mix (New England Biolabs), 1 µL of
BC oligo (~0.5 ng), 5 µL of primer mix (final concentra-
tion 500 nM), and 19 µL of water. The following PCR
program was applied: i. 98 °C for 30 s. ii. 8 cycles of (98 °C
for 10 s; 67 °C for 30 s; 72 °C for 10 s). iii. 72 °C 2min. iv.
4 °C hold.

The 8 PCR products were combined and purified using
a QIAquick Nucleotide Removal Kit (QIAGEN #28306).
The purified total product was then cloned into the ON-
OFF-Backbone_lentiGuide-Puro-Mkate2 plasmid via
Golden Gate assembly (90 cycles of 5 min at 37 °C and
5min at 22 °C, followed by a 30-min heat inactivation at
65 °C) using AarI and purified with Agencourt AMPure
XP SPRI beads (XP beads) according to the manu-
facturer’s instructions. The purified plasmid library was
transformed into Endura (Lucigen) electrocompetent
cells, which were subsequently grown at 30 °C for 20 h on
Luria-Bertani (LB) agar plates with 100 µg/mL ampicillin
(a limited dilution series was also plated and grown to
assess transformation efficiency). To achieve high cover-
age, more than 1 × 108 colonies (>1000×) were scraped,
and plasmid DNA was extracted using a Plasmid Mid-
iprep kit (Qiagen). The resulting plasmid library was
referred to as Lig1-ON-OFF-Barcode. Step 2: The 10
oligonucleotide pools were synthesized by GenScript, and
each oligonucleotide pool was PCR- amplified using the
Fwd-oligo-pool/Rev-oligo-pool primers in the following
PCR mixture: 25 µL of NEBNext Ultra II Q5 Master Mix
(New England Biolabs), 2 µL of the oligonucleotide pool
(~40 ng), 5 µL of the primer mix (final concentration
500 nM), and 18 µL of water. The following PCR program
was applied: i. 98 °C for 30 s. ii. 18 cycles of (98 °C for 10 s;
60 °C for 30 s; 72 °C for 10 s). iii. 72 °C for 2 min. iv.
4 °C hold.
We performed 24 separate amplification reactions in

50-µL PCR mixtures for every oligonucleotide pool, and
the total PCR product from the 24 combined PCR pro-
ducts was concentrated to 200 µL using Amicon Ultra 0.5-
mL Centrifugal Filters (Sigma). The concentrated PCR
product was gel purified (2.5% agarose gel, 120 V for
10min, 80–100 V for 60 min) using a QIAquick Gel
Extraction Kit, and the gel-purified product was further
purified via phenol–chloroform extraction and ethanol
precipitation. This purified product was cloned into the
Lig1-ON-OFF-Barcode plasmid via Golden Gate assembly
using BsmBI. The remaining library preparation proce-
dures performed in Step 2 were essentially the same as
those in Step 1, and the resulting plasmid library was
referred to as Lig2-ON-OFF-Barcode-Oligo_pool (Cov-
erage > 1000×). Step 3: The ON-OFF-Insert-Scaffold was
cloned into Lig2-ON-OFF-Barcode-Oligo_pool via
Golden Gate assembly using AarI and purified with XP
beads. The purified plasmid library was transformed into
Endura (Lucigen) electrocompetent cells. A limited dilu-
tion series was plated and grown to assess transformation
efficiency. The total colonies grown on LB agar plates
(>1000×) were subsequently scraped, and plasmid DNA
was extracted using a Plasmid Midiprep kit (Qiagen).
Accordingly, we obtained a final plasmid library coverage
of 300× relative to the initial number of oligonucleotides.
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All 3 steps of plasmid library preparation were repeated in
exactly the same way for each oligonucleotide pool. Bio-
logical replicates for each oligonucleotide pool were per-
formed using two independent plasmid library
preparations. The primer sequences used to construct the
plasmid library are listed in Supplementary Table S7.

Cell culture and cell line establishment
The HEK293T cells were a gift from the Shang Cai lab at

Westlake University. The K562 cells were purchased from
the American Type Culture Collection (ATCC). The Jurkat
cells were a gift from the Xu Li lab at Westlake University.
The H1 cells were obtained from the National Collection of
Authenticated Cell Cultures. The HEK293T cells were
grown in high-glucose Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine serum (FBS)
(Gemini #900-108) and 1% penicillin/streptomycin (Gibco
#15140-122). K562 and Jurkat cells were grown in RPMI
1640 (SIGMA #R8758) with 10% FBS (Gemini #900-108)
and 1% penicillin/streptomycin. H1 cells were cultured in
Matrigel (Corning)-coated plates with mTeSR medium
(StemCell Technologies). The medium was changed daily.
The cells were passaged every 3–4 days using ReLeSR
(StemCell Technologies). The K562-Cas9 cell line was
established by inserting the lenti-Cas9-Blast (Addgene
#52962) lentivirus into WT K562 cells. A single clone was
selected, expanded, and maintained with 2 μg/mL blas-
ticidin. The Jurkat-Cas9 cell line was established following a
similar procedure41. To establish the DNTT-KO Jurkat-
Cas9 cell line, electroporation was used to transiently
transfer the DNTT-KO gRNA plasmid into Jurkat-Cas9
cells. Single Mkate2-positive cells were isolated via
fluorescence-activated cell sorting (FACS) and replated to
generate a monoclonal lineage at 48 h post-transfection. A
small portion of the cells were assessed to verify the KO of
the DNTT protein. The DNTT-OE K562-Cas9 cell line was
established by inserting the lenti-DNTT-HygR lentivirus
into K562-Cas9 cells. A single clone was selected, expanded,
and maintained with 100 μg/mL hygromycin. A small
fraction of the cells were selected to confirm stable DNTT
gene expression.

Lentivirus production and transduction of human cells
For lentivirus production, the transfer plasmids con-

taining the GOI or the plasmid library, psPAX2 and
pMD2.G were combined at a weight ratio of 5:3:2 to yield
a plasmid mixture of 192 µg, which was then delivered in
an equal volume to 90% confluent HEK293T cells cul-
tured in 2 T175 flasks using the calcium phosphate
transfection method according to the manufacturer’s
protocol42,43. At 6–8 h after transfection, the cells were
washed twice with PBS (20 mL) to remove residual plas-
mids, and the PBS was then replaced with 20mL of fresh
Advanced DMEM (Gibco) supplemented with 2% FBS.

The supernatant containing the virus was collected at 48 h
and 72 h after transfection and filtered through a 0.45-μm
polyvinylidene fluoride filter. After ultracentrifugation of
the supernatant (20,000 rpm for 2 h), the virus was
resuspended in 1mL of PBS and stored at −80 °C in small
aliquots. To determine the virus titer, the viral aliquots
were serially diluted and transduced into corresponding
suspension cell lines in the presence of 8 µg/mL polybrene
(Sigma); this was followed by centrifugation at 600× g for
2 h at 32 °C. For adherent cell lines, the viruses were
transduced into corresponding cell lines seeded on day 1,
to which 8 µg/mL polybrene was added on day 2. After
incubating the cells for 48 h at 37 °C under standard cell
culture conditions, the ratio of Mkate2-positive cells was
analyzed by FACS. The titer was calculated according to
the following formula developed by Jakob Reiser44: IU
ml−1= (F ×N ×D × 1000)/V, where F= the percentage of
fluorescent cells, N= the number of cells at the time of
transduction, D= the fold dilution of the vector sample
used for transduction, and V= the volume (µL) of the
diluted vector sample added to each well for transduction.
We calculated the titer only if the percentage of fluor-
escent cells was less than 25%.

Screening and sequencing
For the screening of the Jurkat-Cas9 and K562-Cas9 cell

lines using the AIdit_ON and Aldit_OFF libraries, 15
million cells were resuspended in 6mL of RPMI in the
presence of 8 µg/mL polybrene, and we then transferred
1mL of the cell suspension to each well of a 6-well plate.
A predetermined volume of virus in the same 6-well
format was added to each well to achieve an MOI of 5.
After centrifugation at 600× g for 2 h at 32 °C, 2 mL of
prewarmed RPMI with 15% FBS and 8 µg/mL polybrene
was immediately added to each well of the 6-well plate.
The cells were selected with puromycin (2.5–3 µg/mL) for
2 days beginning at 36 h post-transduction to remove
uninfected cells. The cells were then harvested at day 3.5
after transduction, and genomic DNA (gDNA) was iso-
lated using DNeasy Blood & Tissue Kits (Qiagen)
according to the manufacturer’s protocol. The region that
was integrated with gDNA, including the gRNA, target
sequence, and barcode, was PCR-amplified from gDNA
for HTS. The Fwd-libseq/Rev-libseq primers for HTS
were used to specifically amplify all of the gDNA using
25 µL of NEBNext Ultra II Q5 Master Mix (New England
Biolabs), 17 µL of gDNA (~2.5 µg), 2.5 µL of primer mix at
a final concentration of 250 nM, and 5.5 µL of water. For
each gDNA sample, the number of amplification reactions
ranged from 30 to 60. The following PCR program was
applied: i. 98 °C for 30 s. ii. 10 cycles of *(98 °C for 10 s;
64 °C for 30 s; and 72 °C for 10 s) + a variable number of
cycles (8 to 13) of *(98 °C for 10 s; 71 °C for 30 s; and 72 °C
for 10 s). iii. 72 °C for 2 min. iv. 4 °C hold.
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The Fwd-libseq/Rev-libseq primers were also used to
amplify the final AIdit_ON and Aldit_OFF plasmid
libraries using 25 µL of NEBNext Ultra II Q5 Master Mix
(New England Biolabs), 1 µL of the plasmid library
(~40 ng), 2.5 µL of primer mix at a final concentration of
250 nM, and 21.5 µL of water. For each plasmid library,
eight PCR replicates were performed. The following PCR
program was applied: i. 98 °C for 30 s. ii. 6 cycles of *(98 °C
for 10 s; 64 °C for 30 s; and 72 °C for 10 s) + 8 cycles of
*(98 °C for 10 s; 71 °C for 30 s; and 72 °C for 10 s). iii. 72 °C
for 2 min. iv. 4 °C hold.
The PCR products were purified with XP beads and

quantified and sequenced on an Illumina NovaSeq system
via 150-bp paired-end sequencing. If a mutation was
found in the gRNA sequences or gRNA-target sequences
in the final plasmid libraries compared with the library
sequences we originally designed, the corresponding
gRNA was excluded from further analysis because of the
error derived from oligonucleotide synthesis or PCR
amplification. All screening and sequencing steps were
repeated for each oligonucleotide pool. We performed
two biological replicates of each oligonucleotide pool. The
primer sequences used in these steps are listed in Sup-
plementary Table S7.

Detection of SpCas9 indel frequencies at endogenous sites
and GUIDE-seq
To obtain the SpCas9-Endo dataset, 96 gRNA sequen-

ces from human endogenous sites were randomly selec-
ted. The corresponding all-in-one plasmids containing
SpCas9, gRNA, and GFP were generated via Golden Gate
assembly. HEK293T cells were plated at a density of
3 × 105 per well in 2 mL of media in poly-D-lysine-coated
6-well plates. After 24 h, the cells typically reached 90%
confluence, and the plasmids (2.5 μg) were then trans-
fected with Lipofectamine 3000 (Invitrogen #L3000-015)
according to the manufacturer’s instructions. For K562
and H1 cells, an easy-to-perform and low-cost method for
our lab is using viral vectors to deliver the Cas9/sgRNA
into the cells. For lentivirus production, the transfer
plasmids containing the corresponding sgRNAs, psPAX2,
and pMD2.G were combined at a weight ratio of 5:3:2 to
yield a plasmid mixture of 25 µg, which was then delivered
in 90% confluent HEK293T cells cultured in T25 flask
using the calcium phosphate transfection method
according to the manufacturer’s protocol. At 6–8 h after
transfection, the cells were washed twice with PBS to
remove residual plasmids, and the PBS was then replaced
with 5 mL of fresh Advanced DMEM (Gibco) supple-
mented with 2% FBS. The supernatant containing the
virus was collected at 48 h after transfection and filtered
through a 0.45-μm polyvinylidene fluoride filter. The virus
was repackaged in 1mL and stored at −80 °C for further
use. To transduction, the viral aliquots were transduced

into K562 cell line in the presence of 8 µg/mL polybrene
(Sigma); this was followed by centrifugation at 600× g for
2 h at 32 °C. For H1, the viruses were transduced into H1
cell line seeded on day 1, to which 8 µg/mL polybrene was
added on day 2. The cells were selected with puromycin
(2.5–3 µg/mL) for 2 days beginning at 36 h post-
transfection to remove uninfected cells. The cells were
then harvested at day 3.5 after transduction, and genomic
DNA (gDNA) was isolated using DNeasy Blood & Tissue
Kits (Qiagen) according to the manufacturer’s protocol.
The region that sgRNA targeting was PCR amplified from
gDNA for HTS for 96 sgRNAs, respectively.
For GUIDE-seq, 5 gRNA sequences from human

endogenous sites were randomly selected. The corre-
sponding all-in-one plasmids containing SpCas9, gRNA,
and GFP were generated by Golden Gate assembly. When
the HEK293T cells typically reached 90% confluence, 5 μg
of the plasmids and 50 pmol of dsODN were transfected
into the cells with Lipofectamine 3000 (Invitrogen
#L3000-015). At 48 h post-transfection, the cells were
lysed, and gDNA was extracted using a TIANamp
Genomic DNA Kit (TIANGEN #DP304-03). The in vitro
cleavage of genomic DNA and GUIDE-seq sequencing
were carried out according to the manufacturer’s
instructions.

Analysis of indel frequencies
After performing deep sequencing, we analyzed the

obtained sequencing reads using data processing proce-
dures, comprising sequence alignment, read quality con-
trol, and indel frequency analysis based on in-house
Python scripts. We defined the indel (insertions or dele-
tions) window located around the cleavage site (i.e., the
7-nt region next to the upstream region of the PAM).
First, through deep paired-end sequencing, the corre-
spondence between each gRNA-target sequence and the
BCs was determined in the plasmid library without gen-
ome editing. Then, we conducted sequence alignment
between the designed gRNA sequences and sequencing
reads in both the plasmid and edited libraries using
Bowtie. To remove the background unmatched reads
derived from the synthesis or PCR amplification proce-
dures, we excluded these error reads from the edited
library in the subsequent analysis.
Specifically, for the on-target case, we calculated the

perfect matching rate with the designed sequences in the
same gRNA-barcode sequencing reads in the plasmid
library and filtered out the low-quality gRNA-barcode
reads for which the matching rate was less than 90%.
Then, we aligned and only retained the gRNA-barcode
reads in the edited library corresponding to high-quality
reads in the plasmid library and removed the background
errors originating from the gRNA-barcodes of the plasmid
library. Thus, the indel frequency of a gRNA was
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calculated with the following formula:

Indel frequency ¼
P

barcode per gRNA Number of indel reads
P

barcode per gRNA Number of total reads
:

To accurately measure the editing efficiencies of off-
targets, after sequence alignment, firstly we classified each
sequence read according to its gRNA-target-barcode in
plasmid library and calculated ratio of the dominant type
in each category, and filtered out low-quality categories
which dominant ratio is less than 90%. Then for the edited
library, we classified and retained sequence reads of the
library based on high-quality gRNA-target-barcode cate-
gories of plasmid library. To remove background errors
from the synthesis or PCR procedure of the plasmid
library, we filtered out gRNA-target-barcode reads of the
edited library same with non-dominant ones in the cor-
responding category of the plasmid. And for the synthesis
or PCR errors from the edited library, if the mutated
result of a sequence read in the library was not located in
the edited window and did not include the dominant type
of the corresponding category of the plasmid, then we
identified and remove the read as a background error
from the edited library. Thus, we can calculate the indel
frequency of a gRNA-target from the off-target library as
follows:

Indel frequency ¼
P

barcode per gRNA target Number of indel reads
P

barcode per gRNA target Number of total reads
:

To correct the batch effects along with the experimental
processing of the eight libraries, a Baseline Library was
constructed to include 10,000 gRNAs randomly chosen
from each of the library1 to library8. These gRNAs in the
Baseline Library served as internal references of the eight
subpools. Through fitting a linear regression model using
scikit-learn between indel frequencies of shared gRNAs
from each subpool and the Baseline Library, the indel
frequencies of all gRNAs were normalized.

Analysis of the SpCas9-induced DSB repair profile
As described above, we classified the edited reads of

each gRNA into the DSB repair categories of deletion and
insertion based on their types, locations, and sizes with
respect to the edited window. Due to the difference
between the SpCas9-induced DSB repair distributions of
K562 and Jurkat cells, which showed that Jurkat cells
preferentially exhibited the introduction of longer inser-
tions than were observed in K562 cells, we grouped all
insertion mutations into different insertion categories in
K562 and Jurkat cells (see the corresponding portion of
the text for details). We normalized all repair categories
for each gRNA according to the total number of indel
reads for that gRNA. To achieve prediction robustness, we

merged adjacent categories, with one category whose
mean frequency was less than 0.0001 and one whose
Pearson coefficient between two biological replicates was
less than 0.5. Finally, 117 repair categories were identified
in K562 cells and 163 in Jurkat cells.

Symmetrized KL divergence
KL divergence (or the relative entropy of probability

distributions) was used to evaluate how the distribution of
the measured SpCas9-induced DSB repair outcomes dif-
fered from that of the predicted repairs. To avoid the
influence of the asymmetry of KL divergence, we used
symmetrized KL divergence. The formula for calculating
symmetrized KL divergence was as follows:

DsymmetrizedKL PjjQð Þ ¼
X

x2@
PðxÞ log PðxÞ

QðxÞ
� �

þ QðxÞ log QðxÞ
PðxÞ

� �� �

=2

where P and Q are two discrete probability distributions
of the measured and predicted DSB repair outcomes per
gRNA, respectively, and ℵ is a set of DSB repair categories
that we defined. We added a 0.00001 epsilon value to each
element of P and Q in the computational code such that
neither P(x) nor Q(x) was equal to 0, where x is one repair
category in ℵ.

Feature engineering
To evaluate the effects of the input sequences on SpCas9

on-target activities, we used sequence features of different
lengths as the model inputs. These included the only 23-bp
sequence (20-bp target sequence and 3-bp PAMs); 24-bp
to 28-bp sequences obtained by the addition of 1-bp to
5-bp nucleotides to the upstream and downstream regions
of the 23-bp sequence; and 33-bp, 43-bp, 53-bp, and 63-bp
sequences obtained by adding 5-bp, 10-bp, 15-bp, and 20-
bp nucleotides, respectively, to the upstream and down-
stream regions of the 23-bp sequence. Finally, we used 63-
bp (20-bp upstream+ 20-bp target+ 3-bp PAM+ 20-bp
downstream) one-hot sequence encoding as input of
AIdit_ON.
For the development of off-target models, we extracted

pairs of gRNAs and target sequences to engineer features.
We adopted a combination of multiple feature sets, which
included the basic sequence features of gRNAs and tar-
gets, the aligned sequence features of gRNAs and target
sequences, mismatch positions, the PAM nucleotides in
the target sequences, the numbers of mismatches and the
prediction features of the on-target model for sgRNA
sequences and target sequences for which the upstream
and downstream information was the same. The sequence
features consisted of a 20-bp protospacer/potential target
region and a 3-bp PAM. We trained and selected the
optimal feature combination to train the models that
produced both the highest validation scores across
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multiple metrics, including the Pearson correlation coef-
ficients and Spearman correlation coefficients, and the
highest MSEs between the experimentally measured and
predicted gRNA off-target activities. We finally selected
the best feature combination as input features of AIdit_-
OFF, which included 23-bp sequence features of both
gRNAs and targets, position-dependent substitution
types, the PAM types of targets, mismatch number and
prediction values of AIdit_ON for both matched and
unmatched target sequences. As we designed off-target
sequences for each gRNA to reflect distinct sequences
where off-target, there are multiple gRNA-off-target pairs
corresponding to a single gRNA. Accordingly, we split
these gRNA-off-target pairs into three subsets, in which
gRNAs were mutually exclusive from each other to avoid
data leakage. Specifically, the three subsets include a
training set (741 gRNAs and 76,498 pairs), a validation set
(93 gRNAs and 12,285 pairs), and an independent test set
(92 gRNAs and 13,280 pairs).
To predict SpCas9-induced DSB repair outcomes, in

addition to the sequence features used to train the
models, we incorporated microhomology information
into our models. The left-end nucleotides of each dele-
tion were compared with the left-end nucleotides
downstream of the deletion within the same length (1 bp
to 4 bp, since each deletion was left-aligned). This yiel-
ded 2390 binary microhomology features by one-hot
encoding for each 85-bp target sequence, including a 20-
bp upstream component, a 20-bp protospacer, a 3-bp
PAM, and a 42-bp downstream component. To investi-
gate the factors that affected insertion or deletion in the
repair outcomes, we exploited different feature sets to
predict the distribution of insertions or deletions alone.
Similar to the findings of a previous study28, the results
showed good performance (Pearson correlation coeffi-
cient median: 0.977, Supplementary Fig. S22) only for the
sequence features around the cut site (+/–3 bp) used to
train the insertion model, and the addition of longer
sequences or microhomology features slightly improved
performance in predicting the insertion distribution.
However, when predicting the deletion distribution, the
microhomology features played a key role. The median
Pearson correlation coefficients were 0.644, 0.892 and
0.905 (Supplementary Fig. S22) for only sequence fea-
tures, only microhomology features and the combination
thereof, respectively. We trained 117 and 163 XGBoosts
for each category of DSB repair outcomes using both the
sequence features and microhomology features of K562
and Jurkat cells, respectively. Finally, AIdit_DSB output
117 or 163 observed repair categories for K562 or Jurkat
(supplemented in Fig. 3D) since there are lots of DSB-
induced repair outcomes which are merged because of
low ratio or poor repeatability between two biological
replicates. Final feature sets for training the AIdit_DSB

include the 63-bp sequence, 2390 microhomology fea-
tures and prediction values of corresponding XGBoost
for cell lines.

Hyperparameter optimization
The Python Hyperopt optimization library was devel-

oped to search optimized hyperparameter combinations
of models from the configuration space based on Bayesian
optimization algorithms. The search space includes both
real-valued and discrete-valued dimensions. We opti-
mized the hyperparameter combinations of our models
through multiple iterations of the hyperparameter space.
First, we identified the initial hyperparameter search space
based on the performance of the models with several
random parameter combinations and then used Hyperopt
to perform distributed hyperparameter optimization to
reduce and optimize the hyperparameter space based on
the tree-structured Parzen estimator approach (TPE).
Finally, we selected the optimized hyperparameter com-
binations of the models based on their validation scores.
Notably, when training the on-target models, we ran-
domly sampled 10,000 gRNA data from the training
dataset to reduce the time required for model selection.

Development of deep learning-based models
CNNs and RNNs are two powerful types of deep

learning-based algorithms that have recently been applied
to predict SpCas9 activities and promoter–enhancer
interactions and the optimization and design of diverse
proteins.
Our CNN architecture for predicting gRNA activities

consisted of an input layer, convolution layers, pooling
layers, a flattening layer, fully connected layers, and an
output layer. The convolution layers calculated a dot
product between the convolution kernel and the input
layer’s matrix to learn spatially local correlations. The max
pooling layers were used to reduce the dimensions of the
data from the convolution layer and output feature maps.
We used a flattening layer to flatten the feature map to
transform the data format to the shape of (batch size,
flattened neuron number), which was input into the fully
connected layers. Similar to an MLP, fully connected
layers connect every neuron in the input to every neuron
in the next layer via a weighted sum operation and a
rectified linear unit (ReLU) nonlinear function and finally
output the solution. During CNN architecture building,
we selected two interchangeable convolution and pooling
layers and two fully connected layers.
When training the CNNs, the input sequence data were

converted into four-dimensional binary matrix data via
one-hot encoding. Hyperparameters including the num-
ber of filters, kernel sizes, the number of neurons in the
hidden layers and batch size were optimized by using
Hyperopt based on the following configurations: the
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number of filters was chosen from [32, 64, 128, 256, 512],
kernel size was selected from [2, 3, 4], the number of
neurons in the hidden layers was chosen from [64, 128,
256], and batch size was selected from [128, 256, 512,
1024]. To reduce model overfitting, we added a dropout
layer after the first fully connected layer with a dropout
rate of 0.3. When training the CNNs, we performed early
stopping by monitoring the MSE of the validation dataset,
where training was stopped once the metric stopped
decreasing after 50 iterations.
A long short-term memory network (LSTM) is a pow-

erful artificial RNN architecture for processing the
sequences of patterns. An LSTM unit is a cell including an
input gate, a forget gate, and an output gate, which plays a
key role in remembering information for long periods of
time and avoiding the long-term dependency problem.
Since LSTM networks process time series data, when 63-
bp sequences were input, we converted the sequences into
the shape of a (63, 4) binary matrix via one-hot encoding,
indicating that the input data of each batch had 63 time
steps and that, at each time step, the input was a
4-dimensional vector. For time step t, let xt, ht−1, and ct−1

be the input 4-dimensional vector, the hidden state vector
at time step t−1 and the cell state vector at time step t−1,
respectively. The following equations represent the pro-
gression of the information flow in the inner LSTM unit:

ft ¼ σðWf xt þ Uf ht�1 þ bf Þ

it ¼ σðWixt þ Uiht�1 þ biÞ

ot ¼ σðWoxt þ Uoht�1 þ boÞ

ct ¼ ft � ct�1 þ it � tanhðWc � xt þ Uc � ht�1 þ bcÞ

ht ¼ ot � tanhðctÞ
where W ∈ Rh×63, U ∈ Rh×h, and b ∈ Rh are weight
matrices and trainable bias vector parameters, and σ, tanh
and * are sigmoid functions, hyperbolic tangent functions
and elementwise multiplication functions, respectively. ft,
it, and ot are the forget, input, and output of gates at time
step t, respectively, and ct and ht are the cell state and
hidden state vector at time step t−1.
We used bidirectional LSTM (BiLSTM) networks to

learn the input sequence once from the 5′ to 3′ direction
and once from 3′ to 5′ direction during every time step.
The two output sequences from the BiLSTM networks
were combined by using a concatenation function.
The LSTM-based model architecture that we developed

included layers consisting of BiLSTM units, fully con-
nected layers and an output layer. We used dropout layers
in both the BiLSTM layers and fully connected layers to

prevent overfitting, and we used ReLU activation func-
tions to increase the nonlinear properties of the models
following the fully connected layers. The Hyperopt
strategy was used to select the optimized hyperpara-
meters, including the numbers of hidden neurons in the
BiLSTM and fully connected layers, dropout rates, and
batch size. Similar to CNN model training, the early
stopping strategy was adopted to increase the training
efficiency by stopping training when the MSE of the
validation set failed to improve further during 50 con-
secutive iterations. In addition, we exploited a learning
rate schedule to reduce the learning rate by half every 50
epochs, from the initial value of 0.001 to the minimal
value of 1e–5.
In the training of the CNN and RNN models, the

metrics that we used were the MSE and Spearman cor-
relation score, the loss function was the MSE function,
and an adaptive moment estimation (Adam) optimizer
was used for stochastic gradient descent (SGD). After
selecting the optimized hyperparameter combination,
tenfold cross-validation was performed to evaluate the
generalization performance of the models. The final
models were trained using our corresponding combined
training and validation dataset for K562 and Jurkat cells.
The development of the deep learning-based models was
implemented using Keras built on top of TensorFlow.

Development of conventional machine learning-based
models
Regardless of whether we were performing on-target or

off-target modeling, we trained multiple conventional
machine learning-based algorithms separately using
scikit-learn (version 0.21.1); this training was applied to
ridge linear regression, lasso linear regression, elastic
linear regression, random forest, GBDT, XGBoost, and
MLP algorithms. After engineering the features as pre-
viously described for on- and off-targets, we selected the
optimized parameter combination of each model listed
above via the Hyperopt method over at least 50 max
iterations based on the following searching spaces: for
linear regression, the L1-regularized parameter was cho-
sen from 1e–4 to 150, and the L2-regularized parameter
was selected from 1e–9 to 0.01; for the algorithms based
on decision trees, the n_estimators parameter ranged
from 50 to 2000, max_depth ranged from 6 to 50, min_-
samples_split ranged from 50 to 500, min_samples_leaf
ranged from 30 to 200 and max_features ranged from 0.5
to 1.0; for the MLP, the selected sizes of multiple hidden
layers ranged from 30 to 650, the L2 penalty parameter
ranged from 1e–5 to 0.1, and the maximum number of
iterations ranged from 50 to 500.
For DSB repair modeling, we used the ensemble strategy

to predict DSB repair outcomes. As previously described,
the prediction of each category by XGBoost involved
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inputting both sequence and microhomology features into
a multiple-category logistic regression model as the final
training features; this process was implemented using
TensorFlow. To select the optimized parameters of the
logistic regression model, we used a grid search based on
the following parameter configuration: the optimization
algorithm for the models was chosen from [SGD, Adam],
the learning rate was chosen from [0.1, 0.01] and the
batch size was selected from [1024, 512, 256, 128, 64].

Public data collection and model comparisons
For on-target, the Spearman correlations between the

experimentally measured sgRNA activities and the scores
predicted by each on-target model were used to evaluate
the performance of the models. To systematically com-
pare the performance of AIdit_ON with that of the other
existing models, we used 10 published endogenous data-
sets collected by Haeussler et al.21 from other groups.
Each of these datasets included more than 100 gRNAs and
was generated using the U6 promoter1,2,5,13,16,6,18–20.
When evaluating these test datasets, we excluded the
gRNA sequences included in our training datasets and did
not compare the results with the correlations that were
generated by models tested against their own training
datasets to prevent bias from algorithmic overfitting.
For off-target, we compared the performance of

AIdit_OFF with that of other conventional machine
learning-based models trained on our high-throughput
dataset using multiple metrics, including the Pearson
and Spearman correlation coefficients and MSE between
the measured off-target activities and the prediction
scores yielded by each model. To evaluate the prediction
accuracy of AIdit_OFF in quantifying real off-target
effects, we used four independent datasets obtained
from off-target unbiased genome-wide assays, including
three GUIDE-seq datasets from Tsai et al.35, Kleinstiver
et al.33, and Listgarten et al.34 and one dataset collected
by Haeussler et al.21. We took advantage of the
Elevation-search tool34 to perform efficient genomic
searches for potential off-targets with the following
search parameters: mismatchTolerance of six and mis-
matchLimit of 999,999,999, meaning that the possible
off-target sites that we searched included those with a
maximum of six nucleotide mismatches across 1–20
nucleotides of one gRNA, without a limit regarding the
number of potential off-target sites for each gRNA. For
the PAM selection of potential off-target sites,
Elevation-search only considered nonzero active PAMs
according to the CFD model (i.e., NAG, NCG, NGA,
NGC, NGG, NGT, and NTG). Thus, 10, 9, and 23
gRNAs were included from the Tsai et al.35, Kleinstiver
et al.33, and Listgarten et al. datasets34, respectively,
which yielded 386, 228, and 62 active off-target sites
based on GUIDE-seq and led to the identification of

963,321, 792,711, and 1,207,002 potential off-target
pairs by Elevation-search. For the Haeussler data21,
which were collected from eight different studies in
which real off-target gRNA sites were identified through
techniques such as targeted sequencing, GUIDE-seq,
HTGTS, DiGenome-seq, and BLESS35–40, we filtered
out the off-targets detected by targeted sequencing since
the sensitivity of the targeted PCR was far higher than
that of the whole-genome assays. The remaining 17
gRNAs from the Haeussler dataset21 generated 494
active off-target sites from 1,698,400 possible off-target
loci searched by Elevation-search34. We calculated
CCTop and Hsu-Zhang scores based on the descriptions
in the corresponding papers38,45. For the CFD score6, we
implemented the approach of Haeussler et al.21 When
we compared our method to these approaches, we
excluded the training gRNAs in our test datasets and
only evaluated potential off-target sites with NRG PAMs
that accommodated CCTop.
For SpCas9-induced DSB repair models, we compared

our AIdit_DSB model to two other existing high-
performance models (ForeCasT and Lindel) based on our
independent test dataset, the ForeCasT-Lindel combined
test dataset and other datasets collected from cell lines,
including REP1, CHO, E14TG2A, and HAP1cells27,28. Each
indel of DSB repair profiles predicted by both Lindel and
ForeCasT was characterized by its type, size, and location
with respect to the response edited window, though the
identifiers defined by Lindel and ForeCasT were different.
To conduct an easy comparison between the models, we
unified the DSB repair categories predicted by both Lindel
and ForeCasT to the format that we characterized (631
repair categories including 610 deletions of up to 30 bp, 20
insertions of up to 2 bp and one insertion of more than
2 bp). For each gRNA, we used multiple metrics to evaluate
the prediction performance of each model; these metrics
included the Pearson correlation, symmetrized KL diver-
gence, and MSE between the measured DSB repair dis-
tribution and the predicted outcomes produced by the
model. For a fair comparison, we evaluated the perfor-
mance of models based on the same merged repair cate-
gories (i.e., 117 repair categories were identified in K562
cells and 163 in Jurkat cells), which were achieved by using
the corresponding merging tables of K562 and Jurkat
(Supplementary Tables S3, S4), respectively.

Evaluation of feature importance
Feature coefficients of the elastic regression model for

predicting off-target indel efficiencies were used to analyze
the effect of mismatched nucleotide position on off-target
activities. We first calculated the variation coefficient of
regression coefficients of each position in off-target
sequences and then remeasured the position feature
importance score as an integrated value by multiplying the
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maximum absolute value of the regression coefficients of
each position by the coefficient of variation of the corre-
sponding position. The results show that the larger the
integrated value of one position is, the more important the
position is for off-target activities.

Statistical analyses
We used Steiger’s test to compare the Spearman

correlation between the prediction scores obtained with
AIdit_ON model (Fig. 2d, e) and one-way analysis of var-
iance (ANOVA) followed by Tukey’s post hoc test to con-
duct pairwise comparisons between the SpCas9-induced
DSB repair outcome predictions of multiple models
(Fig. 3e). Statistical significance was calculated based on the
corresponding formulas using the Python scipy.stats library.
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