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Deep learning models incorporating endogenous
factors beyond DNA sequences improve the
prediction accuracy of base editing outcomes
Tanglong Yuan 1, Leilei Wu2, Shiyan Li3, Jitan Zheng1,4, Nana Li1,5, Xiao Xiao1,5, Haihang Zhang1, Tianyi Fei2, Long Xie1,
Zhenrui Zuo1, Di Li1,4, Pinzheng Huang6, Hu Feng1, Yaqi Cao1, Nana Yan1, Xinming Wei6, Lei Shi1, Yongsen Sun1,
Wu Wei3,7✉, Yidi Sun2✉ and Erwei Zuo 1✉

Abstract
Adenine base editors (ABEs) and cytosine base editors (CBEs) enable the single nucleotide editing of targeted DNA
sites avoiding generation of double strand breaks, however, the genomic features that influence the outcomes of base
editing in vivo still remain to be characterized. High-throughput datasets from lentiviral integrated libraries were used
to investigate the sequence features affecting base editing outcomes, but the effects of endogenous factors beyond
the DNA sequences are still largely unknown. Here the base editing outcomes of ABE and CBE were evaluated in
mammalian cells for 5012 endogenous genomic sites and 11,868 genome-integrated target sequences, with 4654
genomic sites sharing the same target sequences. The comparative analyses revealed that the editing outcomes of
ABE and CBE at endogenous sites were substantially different from those obtained using genome-integrated
sequences. We found that the base editing efficiency at endogenous target sites of both ABE and CBE was influenced
by endogenous factors, including epigenetic modifications and transcriptional activity. A deep-learning algorithm
referred as BE_Endo, was developed based on the endogenous factors and sequence information from our genomic
datasets, and it yielded unprecedented accuracy in predicting the base editing outcomes. These findings along with
the developed computational algorithms may facilitate future application of BEs for scientific research and clinical
gene therapy.

Introduction
Single nucleotide variants (SNVs) represent more than

half of pathogenic mutations in the human genome, and an
accurate reversion of SNVs is one of the most important
goals for gene therapy1. Base editors (BEs), including ABEs2

and CBEs3, have been widely used to correct pathogenic

point mutations4–7 and to generate animal disease models8.
However, experimental evaluation of editing outcomes is
time-consuming, and this limits its application to only a
small number of target sites9,10. Several computational
methods have recently been developed to predict the
editing outcomes of BEs using targeted sequence infor-
mation from lentiviral integrated libraries in mammalian
cells9,11–14. A lentiviral integrated library usually comprises
thousands of oligonucleotides, each of which encodes a
unique 20 nucleotide (nt) small guide RNA (sgRNA) spacer
with paired target sequence. The sgRNA library is ran-
domly integrated into the genome of mammalian cells, and
the sgRNAs could express under the drive of human U6
promoter. The expressed sgRNA combines with trans-
fected or genome-integrated BEs to induce base editing at
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the integrated target sequence. Then the integrated paired
target sequences were PCR amplified and subjected to
sequencing for measuring editing efficiency9,11–14. Previous
studies demonstrated that endogenous factors, such as
transcriptional activity and chromatin accessibility, were
strictly connected with the cleavage efficiency of CRISPR-
Cas9 endonuclease15–19. The lentiviral integrated libraries
limit the examination of endogenous factors at target sites,
given the target sequences were randomly integrated into
the genome. Therefore, large genome-wide endogenous
datasets should be generated to elucidate the influence of
endogenous factors on base editing. Computational
methods incorporating endogenous factors of great
importance could then be developed for better predicting
the outcomes of endogenous base editing.
In this study, we performed base editing experiments

of ABE and CBE on a large number of endogenous
genomic sites and on a lentiviral integrated library in
human embryonic kidney (HEK) 293 T cells. The com-
parative analyses performed in this study showed that
the editing outcomes at the endogenous sites were
greatly influenced by endogenous factors, including
transcriptional activity and epigenetic factors, such as
chromatin accessibility, DNA and histone modifications,
genome-associated protein factors, and cis-regulatory
elements (CREs)20–23. A deep-learning algorithm for an
accurate prediction of the editing outcomes of BEs was
developed by incorporating information of endogenous
factors and DNA sequences. These findings are bene-
ficial to understand which are the factors that may
contribute the most to the base editing outcomes and
provide a computational tool for an optimal sgRNA
selection for future base editing applications.

Results
Generation of genome-wide endogenous and lentiviral-
integrated base editing datasets
To explore the factors that could contribute to the

efficiency of the base editing at endogenous target sites,
we generated genome-wide datasets for two high-fidelity
BEs: ABEmaxF148A (F148A mutation in TadA, referred as
ABE)24 and YE1-BE3-FNLS (W90Y and R126E mutations
in rAPOBEC1, referred as CBE)25 (Fig. 1a; Supplementary
Fig. S1a). Specifically, expression cassettes harboring ABE
or CBE were stably integrated into the genome of human
HEK293T cells using the PiggyBac transposon system
(Fig. 1a; Supplementary Fig. S1a, b). More in detail, a total
of 5012 sgRNAs targeting 4262 (randomly selected) genes
across the genome were designed (Supplementary Fig.
S1c, d and Table S1). Each 20-base pair (bp) sgRNA
spacer was cloned into the vector pLenti-guide-puro
containing an upstream U6 promoter, followed by the
transfection into HEK293T cells that stably expressed
ABE or CBE (Fig. 1a; Supplementary Fig. S1a). In addition,

a lentiviral integrated library of 11,868 sgRNA oligonu-
cleotides, 4654 of which were shared with the endogenous
sites, was developed. Each oligonucleotide encoded a
unique 20 nt sgRNA spacer paired with a target sequence
(Supplementary Table S1). Then, the BEs stably expres-
sing HEK293T cells were infected with the lentiviral
sgRNA library at Multiplicity of Infection (MOI)= 0.3
(Fig. 1a). Genomic DNAs were then extracted from
transfected or infected cells in order to perform a specific
PCR followed by high-throughput sequencing. To ensure
the robustness of the editing outcomes, three indepen-
dently transfected and two independently infected repli-
cates were generated for endogenous and integrated
datasets, respectively.
Using a coverage of > 100×, sequencing data were

generated for a total of 4529 endogenous and 11,112
integrated sites for ABE (referred as “ABE-Endo” and
“ABE-Inte”, respectively), and for 4587 endogenous and
11,002 integrated sites for CBE (referred as “CBE-Endo”
and “CBE-Inte”, respectively) (Supplementary Fig. S1e).
The endogenous and integrated datasets shared 3987 and
4001 sites with the same target sequences for ABE and
CBE, respectively (Supplementary Fig. S1e). A high
reproducibility of the editing outcomes between replicates
in each dataset was observed (R= 0.95–0.99; Supple-
mentary Fig. S1f–h), while the comparison of the editing
efficiencies at the target sites revealed only a modest
correlation between endogenous and integrated datasets
for ABE (R= 0.67) or CBE (R= 0.69) (Fig. 1b). The
editing windows for ABE- and CBE-directed base editing
was located at positions 5–7 and 4–8 within the endo-
genous datasets, consistent with the results obtained in
the integrated datasets and in previous reports24,25 (Fig.
1c, d). The C-to-T editing efficiency values at positions 5
and 6 ranged from 0% to 100% in CBE-Endo dataset, but
from 25% to 75% in the integrated dataset (Fig. 1d).
Despite the high product purity in all 4 datasets, the
average efficiency of the desired editing (A-to-G or C-to-
T) in Endo-datasets was much lower than that observed in
Inte-datasets (Fig. 1e). Additionally, the frequency of
bystander edits was more elevated within and outside the
editing window in the Endo-datasets than in the Inte-
datasets for both ABE and CBE (Supplementary Fig. S1i).
All together, these data, including the low editing effi-
ciency and increased complexity of the editing products at
endogenous target sites, suggested the necessity to
investigate the main determinants of base editing out-
comes using genome-wide endogenous datasets.

Characterization of indels induced by BEs
In addition to the differences in base editing effi-

ciencies, we also observed lower indel frequency values
in Endo-datasets, as compared to Inte-datasets (Fig. 1f;
Supplementary Fig. S2a). Indeed, the highest frequency
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Fig. 1 Systematic characterization of base editing activity at endogenous and genome-integrated target sites. a Overview of the generation
of genome-wide endogenous and integrated ABE and CBE datasets. BEs expressing cassettes were stably integrated into HEK293T cells, followed by
infection with paired lentiviral sgRNA library or transfected with one of the sgRNA expressing vectors. The successfully infected or transfected cells
were enriched by antibiotic selection, and then PCR-amplification and next generation sequencing were performed for the target sequences.
b Correlation of ABE- or CBE-directed editing efficiencies between endogenous and integrated target sites with the same target sequences. n= 3987
for ABE; n= 4001 for CBE. c, d A-to-G (c) and C-to-T (d) base editing efficiencies at each protospacer positions 1–20 (PAM is at positions 21–23) of
endogenous and integrated target sites. Data are presented as mean values ± SEM. n= 718 (position 1), 1245, 1607, 809, 1343, 1250, 1106, 916, 916,
1157, 1269, 1493, 898, 1109, 1300, 1234, 936, 771, 910 and 1008 (position 20) for ABE. n= 576 (position 1), 1060, 563, 1025, 1181, 1040, 1195, 1343, 1082,
1079, 1065, 975, 1357, 1163, 938, 1156, 1136, 1891, 931 and 572 (position 20) for CBE. e Proportions of 12 base conversion types within and outside of
editing windows (5–7 for ABE; 4–8 for CBE) in the Endo- and Inte- datasets. f Box plot depicting the deaminase (rAPOBEC1 or TadA) or nCas9-directed
indel frequencies in the indicated datasets. n= 3938 (ABE-Endo TadA), 3904 (ABE-Inte TadA), 3970 (CBE-Endo rAPOBEC1), 3991 (CBE-Inte rAPOBEC1),
3958 (ABE-Endo nCas9), 3827 (ABE-Inte nCas9), 3974 (CBE-Endo nCas9) and 3972 (CBE-Inte nCas9). g Base editing: indel ratio distributions for
deaminase and nCas9-induced indels at endogenous and integrated target sites. n= 2910 (ABE-Endo TadA), 2819 (ABE-Inte TadA), 3464 (CBE-Endo
rAPOBEC1), 3450 (CBE-Inte rAPOBEC1), 2899 (ABE-Endo nCas9), 2879 (ABE-Inte nCas9), 3461 (CBE-Endo nCas9) and 3463 (CBE-Inte nCas9).
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of 1 bp insertion was detected at position 18 of the
protospacer (PAM as positions 21–23) in all 4 datasets,
caused by the activity of Cas9 (nCas9, D10A) HNH
nuclease domain26 (Supplementary Fig. S2b). Consistent
with their editing windows, ABE and CBE induced 1 bp
deletions at positions 5–7 and 4–9 at a high frequency in
both Endo- and Inte-datasets (Supplementary Fig. S2b).
These indels occurring within the editing windows were
induced by base excision repair following the deaminase
TadA- or rAPOBEC1-induced deamination27,28. The
indel frequency induced by deaminase (positions 1–11)
was higher in Endo-datasets but lower in Inte-datasets
compared to that induced by nCas9 (positions 14–20)
(Fig. 1f), while the frequency of deaminase-induced
indels increased with the number of target Cs for CBE at
both endogenous and integrated sites, but not with the
target A numbers for ABE (Supplementary Fig. S2c, d),
suggesting that rAPOBEC1, but not TadA, has a higher
deaminase activity at continuous targeted bases. Addi-
tionally, high ratios of base editing efficiency to indel
frequency in ABE-Endo and CBE-Endo datasets were
observed, consistently with what observed in the inte-
grated datasets (Fig. 1g; Supplementary Fig. S2a) and in
a previous study11. This value was substantially higher in
CBE-Endo dataset than CBE-Inte dataset for both dea-
minase rAPOBEC1 (geometric mean: 96.5 vs 57.0) and
nCas9-induced indels (117.7 vs 40.0), while it was lower
in ABE-Endo dataset than ABE-Inte dataset for deami-
nase TadA-induced indels (64.2 vs 93.4) but similar for
nCas9-induced indels (74.1 vs 73.2) (Fig. 1g). Moreover,
the indel frequency induced by both nCas9 and deami-
nase activity increased with the base editing efficiency of
BEs in the Inte-datasets. On the contrary, no statistical
association was observed for the Endo-datasets (Sup-
plementary Fig. S2e, f).

Characterization of the effects of sequence features on
base editing efficiency
Comparison of the base editing efficiency at each posi-

tion between endogenous and integrated datasets
demonstrated a high correlation for ABE but a low one for
CBE, especially at positions 5 (R= 0.38) and 6 (R= 0.20)
(Fig. 2a; Supplementary Fig. S3a, b). The C5 and C6 are
two loci most likely to be edited by CBE, and the editing
efficiencies were relatively high in CBE-Inte dataset, while
spanned a wider range in the endogenous datasets,
resulting in the relatively low correlation values between
the two datasets (Fig. 1d). The higher editing efficiency at
the integrated sites was possibly caused by the fact that
the lentivirus preferentially integrated into genomic loci
with high chromatin accessibility and the lower editing
efficiency at the endogenous target sites was possibly
caused by the influence of endogenous factors. To further
elucidate the effect of the sequences around the target

base on the BEs in the endogenous sites, the BE-directed
editing efficiency was evaluated for all 16 possible
sequence motifs (NAN/NCN, N=A, T, G or C) within
the editing window. For ABE, the highest A-to-G con-
version efficiency was observed at TAY motif (Y=C or T)
while the lowest at MAR motif (M=A or C, R=A or G)
(Fig. 2b; Supplementary Fig. S4a, b). These observations
are consistent with those found in ABE-Inte dataset (Fig.
2b; Supplementary Fig. S4a, b) and in a previous study for
ABE7.10, which used a lentiviral integrated library9. The
A-to-G editing efficiency showed a high correlation
between ABE-Endo and ABE-Inte datasets in the majority
of sequence motifs except for TAT, which represents the
most common motif for ABE (Supplementary Fig. S4c),
suggesting that endogenous editing is different from the
integrated library in a motif-dependent manner. For CBE,
a C-to-T conversion efficiency was higher at TCN motif
and lower when 5’ was occupied by a G in both datasets
(Fig. 2b; Supplementary Fig. S4d). On the other side, the
base editing efficiency at NCG motif within CBE-Endo
dataset was the lowest, and much lower than (~2-folds)
CBE-Inte dataset, especially for TCG and GCG motifs
(Fig. 2b; Supplementary Fig. S4e, f). The C-to-T editing
efficiency values at TCN motif ranged from 0% to 100% in
CBE-Endo dataset, but from 20% to 80% in the integrated
dataset (Fig. 2d). A low correlation of C-to-T editing
efficiency was observed at TCN and NCG motifs between
CBE-Endo and CBE-Inte datasets, which may also con-
tribute to the observed low correlation between the 2
datasets at positions 5 and 6 (Supplementary Fig. S4f). In
this regard, since CG-enriched motifs are typically
methylated, the C-to-T base editing efficiency at endo-
genous sites might be affected by DNA methylation, as
reported in a previous study29.
Logistic regression models were constructed to identify

preferential target motifs for BEs using datasets with
(randomly selected) 70% and 30% of the target sites for
the training and validation datasets, respectively30. Results
from this study showed that 12.3% and 12.0% of the base
editing efficiency is related to the sequence motifs in ABE-
and CBE-Endo datasets, respectively, as compared to
18.5% and 14.7% observed in the corresponding inte-
grated datasets (variance = Square of Test R; Fig. 2c)11.
The logistic regression model developed with ABE-Inte
dataset showed similar performances in predicting A-to-G
editing efficiency in both endogenous and integrated
target sites (R= 0.41–0.57 for targeted base within the
editing window) (Fig. 2d). However, the logistic regression
model based on CBE-Inte dataset did not predict effi-
ciently the C-to-T mutation within endogenous target
sites, especially at positions 5 (R= 0.24) and 6 (R= 0.17)
(Fig. 2e), suggesting that the editing efficiency of CBE at
endogenous sites may be affected by factors other than
DNA sequences.
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Fig. 2 (See legend on next page.)
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To explore the relationship between the editing effi-
ciency and endogenous factors, we analyzed the editing
efficiencies at 22 multiple target single spacer (MTSS)
sites (Supplementary Table S1), 2–14 of which were
shared by the same protospacer31. The editing efficiency
varied at different genomic loci showing identical target
sequences within (up to 24-fold for ABE and 13-fold for
CBE) and outside (up to 7-fold for ABE and 53-fold for
CBE) the editing window for both ABE and CBE (Fig. 2f,
g; Supplementary Figs. S5 and S6). These findings directly
proved that the conversion efficiency of BEs was deter-
mined by endogenous factors other than target DNA
sequences.

Characterization of the effects of endogenous factors on
base editing efficiency
It was reported that epigenetic factors may influence the

cleavage activity of CRISPR-Cas9 systems in eukaryotic
cells15–19. To explore the association between endogenous
factors and editing efficiency of BEs, endogenous factors
for each site were quantified based on their genomic loci
(Supplementary Fig. S7 and Table S2)20–23, and it was
investigated to which extent the editing efficiency of BEs
was affected by each of the endogenous factors. We
observed that the target sites with a high transcriptional
activity showed significantly higher A-to-G editing effi-
ciency than sites with low transcriptional activity within
the ABE-Endo dataset (Fig. 3a). Finally, to rule out the
influence of different target sequences between high- and
low-transcriptional groups, we also separated integrated
target sites into high- and low-transcriptional groups
according to transcriptional activity of their correspond-
ing endogenous target sites, and no significant differences
were observed between the 2 groups (Fig. 3a). These
results suggested that the differences in the editing effi-
ciency are caused by different transcriptional activities of
the 2 groups within the Endo-dataset. Similarly, the C-to-
T editing efficiency was also found to be significantly
associated with transcriptional activity of targeted genes

in CBE-Endo dataset (Fig. 3a), in line with the influence of
the transcriptional activity on the cleavage efficacy of
CRISPR-Cas9 systems32. Besides, it is well known that
RNA polymerase II (Pol II) plays an essential role in
regulating gene expression33, and endogenous target sites
with Pol II binding exhibited significantly higher base
editing efficiency for CBE (Fig. 3a; Supplementary Fig. S8).
Although endogenous target sites with Pol II binding
demonstrated a lower A-to-G base editing efficiency than
those without, the two groups showed no significant dif-
ferences in the subsampling analysis, which was per-
formed to remove the bias from uneven numbers of target
sites between groups (see Methods; Supplementary
Fig. S8).
As for the epigenetic factors, CCCTC-binding factor

(CTCF) binding to promoters could induce a long-
distance enhancer-dependent transcription in several
cell types34; target sites with CTCF binding showed
higher C-to-T editing efficiency in CBE-Endo dataset
(Fig. 3b; Supplementary Fig. S8). In addition, target sites
with high chromatin accessibility (targets at DNase I
hypersensitive regions, DHS), showed a significantly
higher C-to-T editing efficiency in CBE-Endo dataset
(Fig. 3b; Supplementary Fig. S8), in line with previous
reports stating that chromatin accessibility may influ-
ence the binding and cleavage activity of Cas916,35. We
also demonstrated that target sites with histone mod-
ifications, including H3K4me3, H3K27ac, and
H3K36me3, had significantly higher C-to-T editing
efficiency in CBE-Endo dataset (Fig. 3b; Supplementary
Fig. S8), while H3K4me1 modifications showed no sig-
nificant correlation with C-to-T editing efficiency at the
endogenous sites (Fig. 3b; Supplementary Fig. S8). By
contrast, most of epigenetic factors showed no sig-
nificant association with the editing efficiency of ABE at
endogenous target sites except for chromatin accessi-
bility and H3K27ac variables (Fig. 3b; Supplementary
Fig. S8). By integrating DNA accessibility and chromatin
modification data into CREs according to the

(see figure on previous page)
Fig. 2 Comparison of ABE- or CBE-induced base editing efficiency between endogenous and integrated target sites. a Heatmap of
correlation of ABE-induced A-to-G or CBE-induced C-to-T base editing efficiency between the Endo- and Inte-datasets at each protospacer positions
1–20 (PAM is at positions 21–23). n= 509 (position 1), 930; 1607, 809, 1343, 1250, 1106, 916, 916, 1157, 1269, 1493, 898, 1109, 1300, 1234, 936, 771, 910
and 1008 (position 20) for ABE. n= 576 (position 1), 1060, 563, 1025, 1181, 1040, 1195, 1343, 1082, 1079, 1065, 975, 1357, 1163, 938, 1156, 1136, 1889,
931 and 572 (position 20) for CBE. b Effect of the sequence context surrounding the target As or Cs (red) on the ABE- or CBE-directed base editing
efficiency at endogenous and integrated target sites. n= 139 (AAA), 250 (AAC), 273 (AAG), 100 (AAT), 255 (CAA), 325 (CAC), 575 (CAG), 245 (CAT), 286
(GAA), 334 (GAC), 338 (GAG), 205 (GAT), 52 (TAA), 178 (TAC), 84 (TAG) and 60 (TAT) for ABE. n= 582 (ACA), 463 (ACC), 213 (ACG), 413 (ACT), 537 (CCA),
284 (CCC), 159 (CCG), 328 (CCT), 585 (GCA), 454 (GCC), 186 (GCG), 461 (GCT), 400 (TCA), 327 (TCC), 124 (TCG) and 268 (TCT) for CBE. c Sequence motifs
for ABE- and CBE-directed base editing efficiency in the Endo- and Inte- datasets from logistic regression models. d, e Correlation between observed
and predicted base editing efficiency from logistic models based on the ABE-Inte (d) or CBE-Inte (e) dataset. n= 403 (position 5), 375 and 331
(position 7) for ABE-Inte. n= 1342 (position 5), 1248 and 1105 (position 7) for ABE-Endo. n= 308 (position 4), 355, 312, 358 and 403 (position 8) for
CBE-Inte. n= 1025 (position 4), 1181, 1040, 1194 and 1343 (position 8) for CBE-Endo. f, g ABE-directed A-to-G (MTSS 20) (f) or CBE-directed C-to-T
(MTSS 8) (g) editing efficiency at representative MTSS sites. The target sequence of each MTSS site occurs 2–14 times in the genome.
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Fig. 3 The effect of endogenous factors on ABE- or CBE-directed base editing efficiency. a Comparison of ABE- and CBE-directed editing
efficiency at target sites with high or low gene activities within the Endo- and Inte- datasets. Exp, expression. Non, none. n= 700 (low-expression), 2206
(high-expression), 2670 (non-Pol II) and 236 (Pol II) for ABE. n= 1015 (low-expression), 2435 (high-expression), 3159 (non-Pol II) and 291 (Pol II) for CBE.
b Comparison of ABE- and CBE-directed editing efficiency at target sites with or without the indicated epigenetic modifications in the Endo- and Inte-
datasets. DHS, DNase I hypersensitive site. methy, methylation. n= 2848 (non-CTCF), 58 (CTCF), 2698 (non-DHS), 208 (DHS), 2858 (non-H3K4me1), 48
(H3K4me1), 2671 (non-H3K4me3), 235 (H3K4me1), 2683 (non-H3K27ac), 223 (H3K27ac), 1253 (non-H3K36me3), 1653 (H3K36me3), 1949 (non-methy) and 957
(methy) for ABE; n= 3384 (non-CTCF), 66 (CTCF), 3195 (non-DHS), 255 (DHS), 3391 (non-H3K4me1), 59 (H3K4me1), 3148 (non-H3K4me3), 302 (H3K4me1),
3165 (non-H3K27ac), 285 (H3K27ac), 1682 (non-H3K36me3), 1768 (H3K36me3), 2286 (non-methy) and 1164 (methy) for CBE. c Comparison of ABE- and CBE-
directed editing efficiency at target sites with or without CRE-binding sites in the Endo- and Inte- datasets. n= 680 (CREs) and 2224 (non-CREs) for ABE.
n= 826 (CREs) and 2618 (non-CREs) for CBE. d Comparison of ABE- and CBE-directed editing efficiency at positions 3–10 of each protospacer for
endogenous target sites with or without DNA methylation. n= 48 (position 3), 34, 39, 56, 52, 29, 50 and 34 (position 10) for ABE methylated. n= 1779
(position 3), 907, 1487, 1372, 1205, 1045, 1004 and 1308 (position 10) for ABE non-methylated. n= 66 (position 3), 87, 103, 76, 102, 113, 63 and 110 (position
10) for CBE methylated. n= 580 (position 3), 1088, 1260, 1088, 1269, 1417, 1169 and 1119 (position 10) for CBE non-methylated. e Coefficients and P values
of each endogenous factor in the linear regression between CBE or ABE base editing efficiency with the number of Cs or As as confounding factors. f Ratio
of target sites with endogenous factors among “Consistent”, “Endo-bias”, and “Inte-bias” groups for ABE and CBE. Endo-factors, endogenous factors.
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categorization of the Encyclopedia of DNA Elements
(ENCODE)36, we found that endogenous target sites
with CREs exhibited a significantly higher C-to-T edit-
ing efficiency than those without, while no significant
differences in A-to-G editing efficiency was described
between target sites regardless of the presence of CREs
(Fig. 3c).
Besides histone modifications, DNA 5-mC at CG

sequence motifs (CpG islands) represents one of the
most studied epigenetic factors associated with gene
silencing37. Exploring the influence of DNA methylation
on the base editing efficiency, we found that the editing
efficiency was significantly lower for CBE but not for
ABE at the target sites with DNA methylation (Fig. 3b).
Further examination revealed that targeted Cs with
DNA methylation showed a significantly lower C-to-T
editing efficiency than those without, suggesting that the
influence of DNA methylation may be restricted to
methylated Cs (Fig. 3d). In addition, the editing effi-
ciencies of C5 and C6 loci showed most drastic decrease
under DNA methylation, possibly explaining the low
correlation in base editing efficiencies with CBE-Inte
dataset (Fig. 2a; Supplementary Fig. S3b). Moreover, the
linear regression for each endogenous factor with the
number of targeted Cs as confounding factor also
showed that the editing efficiency of CBE had a positive
correlation with transcriptional activity, Pol II and
CTCF binding, DHS, H3K4me3, H3K27ac, and
H3K36me3 but a negative association with DNA
methylation (Fig. 3e). Unexpectedly, DNA methylation
and H3K27ac showed positive and negative contribution
to the A-to-G editing efficiency, respectively, following
the regression of targeted As in the ABE-Endo dataset,
contrarily to that observed for the CBE-Endo dataset
(Fig. 3e). Further examination showed that the targeted
As with DNA methylation had significantly higher
proportion of ABE-preferential motifs, suggesting that
the DNA-methylation associated with a high efficiency
actually resulted from the underlying preferred motifs of
ABE (Supplementary Fig. S9a). Since it is well known
that modified histones might involve larger regions with
one or multiple nucleosomes, further analysis involving
the broader regions flanking the target region revealed
that H3K27ac was associated with a lower editing effi-
ciency for A-to-G editing within endogenous sites
(Supplementary Fig. S9b).
To further investigate the role of endogenous factors in

leading the differences of editing efficiency between the
endogenous and integrated datasets, the target sites were
divided into three groups, including “Consistent”, “Endo-
bias” and “Inte-bias” groups, based on the consistency of
the editing efficiency between the 2 datasets (Supple-
mentary Fig. S10a). The “Consistent” group included
target sites with similar efficiency between the two

datasets, like the “Endo-bias” and “Inte-bias” groups
(Supplementary Fig. S10b). As expected, the proportion of
target sites with endogenous factors, including high
transcriptional activity, Pol II and CTCF binding, DHS,
and H3K27ac, H3K36me3 and H3K4me3 histone mod-
ifications, was highest in CBE “Endo-bias” group and
lowest in CBE “Inte-bias” group (Fig. 3f). On the contrary,
the proportion of target sites with DNA methylation was
highest in CBE “Inte-bias” group, compared with other 2
groups. Comparing the consistency between the 3 groups
of ABE datasets, no big differences were observed and
only the proportion of target sites with high transcrip-
tional activity and H3K36me3 modification in ABE “Inte-
bias” group was lower than that in the Consistent group
(Fig. 3f). These results together directly demonstrated that
endogenous factors, including transcriptional activity,
chromatin accessibility, DNA and histone modifications,
may influence the activity of BEs at endogenous genomic
sites, resulting in a different conversion efficiency of ABE
and CBE.

Comparison of editing outcomes of BEs between
endogenous and integrated target sites
As for the applications of base editing in reversing the

pathogenic point mutations and generating animal
models, only precise editing at specific targeted C or A is
desired and editing at unintended bases may lead to
unwanted phenotypes38,39. Thus, it is important to
examine the editing outcomes to avoid unwanted edits
at the target sites. When comparing the base editing
outcomes for each target sequence between the endo-
genous and integrated datasets for BEs, we found that
nearly 50% of target sites had different editing outcome
products (Fig. 4a–c). We then classified the target sites
into “Consistent”, “Endo-bias”, “Inte-bias” and “Dis-
cordant” groups, representing those with editing out-
come products consistent between the two datasets,
unique to Endo- or Inte- dataset, and discordant
between the two datasets, respectively (Fig. 4c).
Although the forms of editing outcome products were
same in the “Consistent” group, proportions of the same
editing product still varied a lot between the endogen-
ous and integrated datasets (Fig. 4d), indicating the
discordance in base editing outcome products of the two
datasets.
Interestingly, the co-occurrent editing proportions for

targeted As or Cs at different positions were higher in the
“Discordant” than the “Consistent” group (Fig. 4e). Fur-
ther analysis revealed that when the target sequences
contained more than one A or C, BEs tended to edit more
bases in the Inte-datasets instead of in the Endo-datasets
(Fig. 4f, g). Position flow analysis for targeted As or Cs
between Endo-specific and Inte-specific editing outcomes
further showed that BEs tended to edit more As or Cs at
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the same time in the Inte-datasets than in the Endo-
datasets, resulting in more diverse forms of editing out-
come products (Fig. 4h). Together, by pairwise-
comparison of the base editing outcome products

between endogenous and integrated target sites with the
same sequences, we found that the forms and proportions
of base editing outcomes varied a lot between the two
datasets, especially when the target sequences contained

Fig. 4 (See legend on next page.)
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more than one A or C. These results directly suggested
the necessity of development of deep learning models
using endogenous dataset for accurate base editing out-
come prediction at endogenous target sites.

Development of deep learning models incorporating
endogenous factors to predict the base editing outcomes
Taking the effects of endogenous factors on the editing

efficiency of BEs into account, a deep learning model which
incorporated these features was developed to optimize the
sgRNA selection. In details, a hybrid deep neural network
was designed to predict the per-base A-to-G or C-to-T
editing efficiency using both a protospacer target sequence
and endogenous factor at each target site (Fig. 5a). The
model takes a 40-bp target sequence (10 bp upstream +
20 bp protospacer + 3 bp PAM+ 7 bp downstream) as
input, while the endogenous features of each target site
were also added to the model (see Materials and methods;
Fig. 5a). The 80% of ABE or CBE datasets were used for
model training, while for performance evaluation the 20%
of each model was used. Pearson correlation coefficient (R)
was used to assess the performance of each model. The
models based on sequence features trained using Inte-
datasets were named as ABE_Seq and CBE_Seq efficiency
models and these models showed a significant decreased
prediction performance in the Endo-datasets with shared
target sequences (Supplementary Fig. S11a, b), suggesting
an influence of factors other than sequence contents in
determining the base editing efficiencies at endogenous
target sites. So, we developed deep learning models of ABE
and CBE, incorporating one or all of endogenous factors
(Supplementary Fig. S11c, d). As H3K27ac modification
plays a role in influencing the A-to-G editing efficiency, the
model integrating H3K27ac modification, named
ABE_Endo efficiency, was selected for further analysis
(Fig. 3; Supplementary Figs. S9a, b and S11c). Considering
the influence of all endogenous factors on the C-to-T
editing efficiency, the model integrating all factors was
designated as CBE_Endo efficiency and used for further
testing analysis (Fig. 3; Supplementary Fig. S11d).

Next, we evaluated the performance of BE_Endo effi-
ciency models in predicting base editing efficiency in the
independent MTSS dataset, and found that the BE_Endo
efficiency models showed a significantly higher accuracy
in predicting editing efficiency of target bases within
editing window than those obtained with BE_Seq models
(Supplementary Fig. S11e, f). For facilitating the applica-
tion of BEs in clinical research, we also applied the models
to predict the efficiencies of base editing outcomes for the
pathogenic target sites of human disease-relevant point
mutations reported in ClinVar439. Specifically, we sear-
ched for pathogenic and likely pathogenic point muta-
tions that could be generated using an editable window
(positions 5–7 for ABE and 4–8 for CBE) with an NGG
PAM. This exploration identified 299 and 296 target sites
(only one A or C located in the editing windows) that
could theoretically be mutated to pathogenic point
mutations by ABE and CBE, respectively (Supplementary
Table S1). Compared with the BE_Seq efficiency models,
BE_Endo efficiency models showed a higher prediction
accuracy at the pathogenic dataset (Supplementary Fig.
S11e, f). In addition, we also generated a new endogenous
dataset with 201 target sites located in the intergenic
regions of the genome and found that CBE_Endo effi-
ciency model outperformed CBE_Seq efficiency model
(Supplementary Fig. S11f). Moreover, CBE_Endo effi-
ciency model also showed improved predicting accuracy
in another independent test dataset from a previous study
(Supplementary Fig. S11f)9. In order to determine the
influence of each factor in prediction accuracy, we com-
pared the performance of BEs_Seq and BEs_Endo effi-
ciency models at target sites with specific factor using
different datasets. For the Endo-datasets, BE_Endo effi-
ciency models outperformed BE_Seq efficiency models at
target sites with each endogenous factor examined,
especially for CBE (5.76%–16.83%; Supplementary Fig.
S11g). For the other 4 independent testing datasets,
CBE_Endo efficiency model showed dramatically
improved prediction accuracy than CBE_Seq efficiency
model at target sites with expression, DNA methylation,

(see figure on previous page)
Fig. 4 Comparison of editing outcomes of ABE and CBE between endogenous and integrated target sites. a Comparison of the editing
outcome alleles between the Endo- and Inte- datasets for ABE and CBE. b Representative editing outcomes of ABE or CBEs at endogenous and
integrated target sites with the same sequence. c Comparison of the editing outcome products between the Endo- and Inte-datasets for ABE and
CBE. The dot size represents percentage of unique editing outcome products in Endo- or Inte- dataset. The target sites were thus divided into 4
groups: “Consistent”, target sites with consistent editing outcomes between the Endo- and Inte- datasets; “Endo-bias” and “Inte-bias” groups, target
sites with specific alleles in the Endo- or Inte- datasets, respectively; “Discordant” group, target sites with specific alleles in both Endo- and Inte-
datasets. d Comparison of the proportions of same editing outcome products in the consistent group of ABE and CBE. e Co-occurrence proportions
of each targeted As or Cs. f Comparison of the number of edited As (ABE) or Cs (CBE) within each target site among the “Consistent”, “Endo-bias”,
“Inte-bias”, and “Discordant” groups of ABE or CBE. n= 2005 (Consistent), 824 (Endo-bias), 511 (Inte-bias) and 245 (Discordant) for ABE. n= 1930
(Consistent), 877 (Endo-bias), 552 (Inte-bias) and 263 (Discordant) for ABE. g Normalized proportion of edited As (ABE) or Cs (CBE) within each target
site among the “Consistent”, “Endo-bias”, “Inte-bias”, and “Discordant” groups of ABE or CBE. h Preference of position flow for targeted As or Cs in the
protospacer of target sites for Endo-specific and Inte-specific editing outcomes.
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H3K36me3 or Pol II modification (13.00%–56.11% for
MTSS, 13.27%–28.53% for Pathogenic, 14.47% for Inter-
genic and 11.38%–32.42% for HEK293T9; Supplementary
Fig. S11h–k). ABE_Endo efficiency model showed only
slight influence on prediction accuracy at target sites with
endogenous factors in the examined datasets (Supple-
mentary Fig. S11h–k). These results indicated that
endogenous factors have significant influence on CBE
editing efficiency in different endogenous datasets, with
little impact on the ABE editing. In the 4 independent
testing datasets, the prediction accuracy of CBE_Endo
efficiency model increased with the proportions of target
sites with endogenous factors (Supplementary Fig. S11l).
Moreover, compared with logistic regression models

(Person’s R= 0.41–0.57 for ABE and 0.17–0.64 for CBE;
Fig. 2d, e), BE_Seq efficiency models, based on sequence
features, performed better in predicting the base editing
efficiency at endogenous target sites (Person’s
R= 0.64–0.75 for ABE and 0.21–0.71 for CBE; Supple-
mentary Fig. S12a, b). The deep learning models inte-
grating endogenous factors, BEs_Endo efficiency models,
further improved prediction accuracy, especially for CBE
at positions 5 (1.80-fold) and 6 (2.71-fold) (Person’s
R= 0.64–0.78 for ABE and 0.57–0.82 for CBE; Supple-
mentary Fig. S12a, b). CBE_Endo efficiency model also
outperformed CBE_Seq efficiency model in predicting the
C-to-T efficiency at TCN or NCG motifs, and low cor-
relation was observed between Endo- and Inte-datasets
(10%–62%; Supplementary Fig. S12c).
To further predict the proportions of editing outcome

products of each endogenous target site, we further
applied a Bayesian network to infer the dependency
between each of the two targeted nucleotides. Firstly, we
calculated the prior correlations between each pair of the
target base and found that the editing outcomes of ABE or
CBE in the endogenous datasets varied a lot from in the
integrated datasets (Supplementary Fig. S13a, b). Given
that the majority of the information between distant
editing positions was accounted for by joint probability
with the adjacent editing position, we applied a simplified
Bayesian network model to calculate the joint

probabilities of any possible editing outcomes for each
target site (see Materials and methods; Supplementary
Fig. S13c). Based on the BE_Endo efficiency models, we
then developed the BE_Endo proportion models to pre-
dict the proportions of different editing outcomes of ABE
and CBE at the endogenous target sites (Fig. 5a). To
facilitate the utility of these models, we combined
ABE_Endo efficiency with proportion models, generating
ABE_Endo. CBE_Endo was generated in a similar way, by
combining CBE_Endo efficiency with proportion models
(freely accessible web tools are available at http://
www.sunlab.fun:3838/BE_Endo). Next, evaluating the
prediction performance of BE_Endo models in the testing
endogenous, and independent MTSS and pathogenic
datasets, we found that BE_Endo outperformed BE_Seq in
all 3 datasets for validation in predicting all the outcomes
(termed as “All-form”) (Supplementary Fig. S14a–c). Base
editing usually generates different forms of editing out-
comes with A-to-G for ABE or C-to-T for CBE (termed as
“Edited-form”), while only those with precise editing at
specifically targeted As or Cs were desired. Notably, the
prediction accuracy with the highest base editing fre-
quency among the Edited-forms (termed as “Max-form”)
obtained using BE_Endo showed a significantly higher
correlation within the Endo, independent MTSS and
pathogenic datasets, especially for CBE, when compared
with that obtained with BE_Seq (Fig. 5b–d). Recently,
several computational methods have been developed for
predicting the editing outcomes of BEs, such as BE-HIVE,
DeepBE and BE-DICT9,11,13. Compared with these 3
models, BE_Endo showed similar performance in pre-
dicting the editing outcomes using the integrated testing
datasets from corresponding research (Supplementary
Fig. S14d, e). BE_Endo also outperformed these 3 models
in predicting Max-form and All-form of outcomes using
Endogenous, MTSS and Pathogenic datasets (Fig. 5e;
Supplementary Fig. S14f–h). To demonstrate the gen-
erality of BE-Endo, we next compared the prediction
accuracy of different models using 3 endogenous datasets
from the corresponding studies4 and found that BE_Endo
outperformed the other 3 models in predicting All-form

(see figure on previous page)
Fig. 5 Development and evaluation of deep learning models for prediction of editing outcomes of BEs. a Schematic representation of deep
learning methods development by integrating sequences features with endogenous factors in order to predict base editing efficiency and allele
proportions. b–d Performance evaluation of BE_Seq and BE_Endo models for predicting desired form of edits using testing endogenous (b),
independent MTSS (c) and Pathogenic (d) datasets. e Performance evaluation of different models for ABE and CBE on prediction of the Max-form
edited outcomes using all 3 datasets from this study. n= 4131 (Endo) for ABE and 4116 (Endo) for CBE. n= 120 (MTSS) for ABE and 118 (MTSS) for
CBE. n= 292 (pathogenic) for ABE and 274 (pathogenic) for CBE. f–k Performance evaluation of different models for ABE and CBE on prediction of
the All-form (f–h) and Max-form (j, k) of edited outcomes at endogenous target sites in different cell lines using the published datasets from Song
et al. 2020. n= 276 (HCT116), 578 (HEK293T) and 148 (U2OS) for ABE (All-form of edited outcomes). n= 278 (HCT116), 704 (HEK293T) and 186 (U2OS)
for CBE (All-form of edited outcomes). n= 41 (HCT116), 94 (HEK293T) and 27 (U2OS) for ABE (Max-form of edited outcomes). n= 35 (HCT116), 100
(HEK293T) and 28 (U2OS) for CBE (Max-form of edited outcomes). P values above each group were calculated in comparison with the “BE_Endo”
models.
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of outcomes (Fig. 5f–h). For predicting Max-form of
edited outcomes, BE_Endo also showed better or com-
parable performance in HCT116 and HEK293T cells
(Fig. 5i–k). These results directly demonstrated the more
accurate prediction of base editing outcomes of BE_Endo
models, which integrated endogenous factors.

Discussion
In this study, the similarities and differences of base

editing outcomes of ABE and CBE at thousands of target
sites were compared with the same sequences between
endogenous and integrated datasets. The effects of
endogenous factors on BEs were investigated and deep
learning models were developed to achieve more accurate
prediction for endogenous base editing.
Recent studies developed computational models to

predict editing outcomes through high-throughput data-
sets9,11–13. The models are beneficial for the sgRNA opti-
mization of genome editing and should be used for future
applications9,11–13. However, the editing outcomes of high-
throughput datasets were measured in a synthetic envir-
onment, which led to a low correlation with endogenous
genomic editing. In addition, the labor- and time-
consuming process to measure the editing outcomes of
each sgRNA resulted in very small endogenous datasets
before9,10. In this study, for the first time we developed
genome-wide endogenous datasets including over 5000
target sites, which included also genome-integrated datasets
containing the same target sequences as pairwise compar-
isons. The comparative analyses revealed that the editing
outcomes, including product purity, indels, editing effi-
ciency and proportions, varied a lot between endogenous
and integrated target sites. The higher editing efficiency at
the integrated sites was possibly caused by the fact that the
lentivirus preferentially integrated into genomic loci with
high chromatin accessibility40, which are areas more
accessible to BEs. Therefore, the assays using the genome-
integrated synthetic datasets likely overestimated the editing
efficiency of BEs at endogenous target sites.
The genome-wide datasets also allowed us to system-

atically evaluate the effects of the endogenous factors on the
BEs editing. We found that transcriptional activity, Pol II
and CTCF binding, chromatin accessibility, DNA and his-
tone modifications were associated with the editing effi-
ciency of ABE and CBE. Generally, target sites with high
transcriptional activities showed higher base editing effi-
ciency for both ABE and CBE, while target sites with
chromatin accessibility were associated with higher C-to-T
but not with A-to-G editing efficiency, indicating that the
CBE binding to the target sequence was more affected by
the position of the nucleosome, consistently with previous
reports about CRISPR/Cas916,18,35. In addition, since the
nucleosome is composed of DNA wound around histone
proteins41, specific histone modifications exert different

effects on the editing outcomes of ABE and CBE. Specifi-
cally, histone modifications H3K4me3, H3K27ac, and
H3K36me3 promoted the C-to-T instead of the A-to-G
editing efficiency. Indeed, the influence of the histone
modifications on base editing may be related to their role in
regulating gene expression and chromatin accessibility42.
The different influence of endogenous factors on editing
efficiency of ABE and CBE, may be due to the fact that
rAPOBEC1 was a pre-existed cytosine deaminase of ssDNA
in mammal cells and TadA evolved from a tRNAArg adenine
deaminase of E.coli2. TadA of ABE can catalyze adenine
deamination in both ssDNA and dsDNA, but rAPOBEC1 of
CBE catalyzes cytosine deamination in ssDNA43. The pre-
ference of different catalytic substrates between ABE and
CBE may lead to higher editing efficiency of CBE at target
sites with high chromatin accessibility and low DNA
methylation. During the progression of deamination, TadA
catalyzes A to inosine (I) conversion and rAPOBEC1 cata-
lyzes C to uracil (U) conversion, which are read as G and T
by polymerases, respectively44. Following deamination pro-
gression, uracil excision is much more efficient than inosine
excision, and a uracil glycosylase inhibitor protein (UGI) is
added to the C-terminal of CBE to increase the half-life of
uracil at the target locus. An additional UGI of CBE may
influence recruiting proteins of mismatch repair to the
target sites, resulting in distinct performance between CBE
and ABE at endogenous target sites.
Incorporating sequence features and endogenous fac-

tors of great importance, we developed BE_Endo models
for predicting the efficiency and proportion of editing
outcomes of BEs. Compared with BE_Seq models,
BE_Endo showed dramatically improved prediction per-
formance, especially for CBE. These observations also
proved that activity of CBE was more likely to be affected
by endogenous factors beyond sequence, when compared
with ABE. Although our study clearly proved that specific
endogenous factors may influence the base editing out-
comes of endogenous target sites for both ABE and CBE,
limited information is available on the epigenetic factors.
Therefore, further studies aiming at investigating the
genome context will better elucidate the genomic features
that influence the editing outcomes of BEs. In addition,
for the proportion models of CBE and ABE, we used a
simplified Bayesian network to calculate the joint prob-
abilities for all possible editing events given the condi-
tional independence between distant editing positions for
base editing. The relationship between distant editing
positions could be directly taken into consideration for
proportional models in future studies.

Materials and methods
Plasmids
The coding sequences of ABE and CBE were cloned

from pCMV-ABEmax (Addgene plasmid #112095) and
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pCMV-YE1-BE3-FNLS (Addgene Plasmid #154005),
respectively. Site-directed mutagenesis of ABEmax was
generated using site specific primers, and then the ABE-
maxF148A-P2A-GFP or YE1-BE3-FNLS-P2A-GFP expres-
sion cassette was cloned into plasmids containing
PiggyBac transposon using NEBuilder HiFi DNA
Assembly Master Mix (NEB) according to standard pro-
tocols. Each 20-bp sgRNA spacer (Supplementary Table
S1) was cloned into pLenti-guide-puro (Addgene Plasmid
#52963) using enzyme BsmBI digestion.

Cell lines
Human embryonic kidney (HEK) 293 T cells (ATCC

#CRL-3216) were cultured in Dulbecco’s modified Eagle
medium (DMEM, Gibco) supplemented with 10% fetal
bovine serum (FBS, BI) and 1% penicillin/streptomycin
(Gibco) at 37 °C in 5% CO2 incubators. For PiggyBac
transposon-mediated base editor integration,
HEK293T cells were transfected with PiggyBac transposase
plasmid and transposon plasmid harboring ABEmaxF148A

or YE1-BE3-FNLS expression cassette using Lipofectamine
3000 (ThermoFisher Scientific) according to standard pro-
tocols. The transfected cells were washed with PBS and
digested with 0.25% trypsin (Gibco) 48 h after transfection.
Then cells were filtered with a 40-μm cell strainer and GFP-
positive cells were enriched by flow cytometer for several
rounds. The gating strategy for the separation of GFP+ and
GFP− cells was supplied in Supplementary Fig. S1b.

Measurement of editing outcomes of ABE and CBE at
endogenous target sites
For evaluation of ABE- and CBE-directed editing out-

comes at endogenous target sites, HEK293T cells stably
expressing ABEmaxF148A or YE1-BE3-FNLS were seeded
into 24-well dishes and transfected with 1 μg plasmid
expressing guide RNA per well using polyethyleneimine
(PEI, Polyscience) according to the manufacturer’s pro-
tocols. Then 24 h after transfection, untransfected cells
were removed by adding 2 μg/mL puromycin (Invitrogen)
to the medium, and successfully transfected cells were
collected for genomic DNA extraction. The target sites of
interest were amplified by 2 rounds of nested PCR using
site-specific primers (Supplementary Table S1). Each
round was performed at 95 °C for 3 min, 30 cycles at 95 °C
for 30 s, 59 °C for 30 s, 72 °C 60 s, and a final extension at
72 °C for 5 min. The amplicons were purified using uni-
versal DNA purification kit (OMGEA) according to the
manufacturer’s instructions. The PCR products were then
ligated to adapters and sequencing was performed on
Illumina HiSeq X Ten platform.

Plasmid library preparation
A pool of 11,868 oligonucleotides was array synthesized

(Genewiz). Briefly, each oligonucleotide contains a 20 nt

guide sequence, an enzyme BsmBI cutting site, a 10 nt
consistent sequence, an enzyme BsmBI cutting site, and
the corresponding target sequence. The plasmid library
containing guide RNA and paired target sequence were
cloned into guide RNA expression plasmid by a two-step
process as previously reported18.
Step I: Generation of plasmid library containing

sgRNA spacers and their corresponding target
sequences. The restricted enzyme cutting site of EcoRI
was inserted into the backbone plasmid (Addgene
Plasmid #52963) with sgRNA scaffold using NEBuilder
HiFi DNA Assembly Master Mix (NEB). Then, the
backbone plasmid was digested with enzymes BsmBI
and EcoRI, and gel-purified using gel extraction kit. The
oligonucleotide library of paired sgRNAs and target
sequences was amplified using KOD polymerase
(KOD). The purified amplicons and digested backbone
plasmid were incubated for 1 h at 50 °C using NEBuilder
HiFi DNA Assembly Master Mix. The products were
then transformed into electrocompetent cells using
micropulser electroporator (Bid-Rad). The library cov-
erage was more than 500× of the number of total
oligonucleotides.
Step II: Insertion of sgRNA scaffold into the plasmid

library. The plasmid library from Step I was digested with
enzyme BsmBI and gel-purified using gel extraction kit.
The sgRNA scaffold sequences were cloned (a gift from
Dr. Leopold Parts in Wellcome Sanger Institute) and
digested with enzyme BsmBI. The digested plasmid library
and insert fragment were ligated using T4 ligase (Ther-
moFisher Scientific) overnight at 16 °C. The products
were transformed into electrocompetent cells using
micropulser electroporator. The library coverage was
more than 500× of the number of total oligonucleotides.
The colonies were collected using Plasmid Maxiprep kit
(QIAGEN).

Lentivirus production
Paired sgRNA lentiviral plasmid library was produced as

previously described30. For lentivirus production,
HEK293T cells were transfected with 30 μg paired sgRNA
lentiviral vector, 22.5 μg psPAX2 and 15 μg pMD2.G in a
15 cm dish using polyethyleneimine. The supernatant
containing lentiviral particles was collected 48 h and 72 h
after transfection, centrifuged at 4500 rpm for 15min and
filtered through a Millex-HV 0.22-μm low protein-
binding membrane. The filtered supernatant was cen-
trifuged at 27,000 rpm for 2 h, dissolved in PBS and stored
at –80 °C.

Lentiviral plasmid library transduction
The day before transduction, 3 × 107 HEK293T cells

stably expressing ABE or CBE were seeded into 15 cm
dishes overnight. The cells were infected with paired
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sgRNA lentiviral plasmid library at MOI= 0.3 with
10 μg/mL polybrene. Then 24 h after infection, the
untransduced cells were removed by adding 2 μg/mL
puromycin into the medium, and the successfully trans-
duced cells were collected after puromycin treatment for
another 48 h. Genomic DNA was next extracted from the
puromycin -resistant cells using TIANamp Genomic
DNA Kit (QIAGEN) according to the manufacturer’s
protocols.

Measurement of gene editing outcomes at integrated
target sites
The integrated target sequences were amplified for 2

rounds of PCR using Premix Ex Taq (Takara). A total of
240 μg genomic DNA (10 μg genomic DNA per 106 cells)
was used as template for the first round of PCR. The
coverage of the paired sgRNA lentiviral plasmid library
was 2000× for each sample. The 240 μg genomic DNA
was separated into 96 50-μL reactions with 2× Premix Ex
Taq, outer forward and reverse primers (Supplementary
Table S1). The first round of PCR was performed at 95 °C
for 3 min, 20 cycles at 95 °C for 30 s, 60 °C for 30 s, 72 °C
30 s, and a final extension at 72 °C for 5 min. The pro-
ducts of the first round of PCR were mixed and used as
template for the second round of PCR. The 100 μL
products was separated into 96 50-μL reactions with 2×
Premix Ex Taq, inner forward and reverse primers
(Supplementary Table S1). The second round of PCR
was performed at 95 °C for 3 min, 32 cycles at 95 °C for
30 s, 60 °C for 30 s, 72 °C 30 s, and a final extension at
72 °C for 5 min. The products from the second round of
PCR were purified with gel extraction kit. The purified
PCR products were then ligated to adapters and
sequencing was performed on the Illumina HiSeq X Ten
platform.

Deep sequencing data alignment and preprocessing
High-throughput sequencing datasets were pro-

cessed using CRISPResso245; the amplicon for each
target site was used as reference sequence (170 bp,
including 75 bp upstream of protospacer, 20 bp pro-
tospacer and 75 bp downstream of protospacer).
Redundant barcodes were trimmed by cutadapt (v1.18),
and clean reads were aligned to the reference using a
global alignment algorithm with default parameters.
The allele frequency table for each target site from
CRISPResso2 was used for calculating base editing
efficiency and outcomes in the following analysis.
Specifically, the overall base editing efficiency for each

target site was defined as:

total reads included intended base transition in the window
Total reads

� 100%

The base editing efficiency at each targeted C or A was
calculated as:

total reads included intended base transition at each position
Total reads

� 100%

Additionally, modified editing efficiency for each target
site was considered as:

Edited reads with basemutation or indels
Total reads

� 100%

Total reads were the sum of all reads aligned to the
reference. To improve the accuracy of base editing, we
excluded some sgRNAs with coverage less than 100, and
the average efficiency among biological replicates for each
target site was used for the following analysis.

Base editing purity
Unintended base editing events were previously repor-

ted in base editors11. To account for the efficiency of each
base transition, all the editing outcomes for each target
site were analyzed. The overall base editing efficiency for
each target site was defined as:

Total reads that contained one of 12 base transitions in target sites
Total reads

Specifically, base editing frequency within the editing
window was defined as:

Total reads that contained one of 12 base transitions inwindow of target sites
Total reads

The base editing frequency outside of the editing win-
dow was defined as:

Total reads that contained one of 12 base transitions outside the window of target sites
Total reads

Similarly, total reads were the sum of all aligned reads to
the reference.
The purity frequency was calculated as:

Total reads that contained one of 12 base transitions in target sites
Total readswithmutations

The final relative editing frequency was normalized
purity frequency so that the sum of relative editing fre-
quency of 12 base transitions was 100%. The statistical
position (overall sg, in the window, and outside the win-
dow) was the same as that of the base editing efficiency.

Quantifying 1 bp indels within the protospacer of
target site
To achieve accurate assessment for 1 bp indels, target

sites were ordered by their indel frequency for each indel
length, and the target sites with indel frequencies between
the 25th and the 75th percentile were retained for fol-
lowing analysis11. Indel frequency was normalized by
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indel length, and the indel frequency at each position was
calculated as averaged indel frequency of retained
target sites.
The indel frequency for each target site was divided into

deaminase-induced (position 1–11) and nCas9-induced
(position 14–20) based on the location on the proto-
spacer. The deaminase- or nCas9-induced indel frequency
was calculated by the number of reads containing indels
in the corresponding region divided by total number
of reads.

The ratio of base editing efficiency to indel frequency
Base editing efficiency to indel frequency ratios were

calculated to uncover the relationship between general
base editing efficiency and indel frequency. Target sites
without indel reads were removed from this analysis to
avoid division by zero. The geometric mean was selected
as a summary statistic because BE:indel ratios were
reported roughly by log-normalization, and the statistic
summarizes more of the data than the median11.

Sequence motif and logistic regression model
To clarify the preference of sequence context adjacent

to targeted Cs for CBE or As for ABE within the editing
window, 7 bp sequences (3 bp upstream of the targeted C/
A, 1 bp targeted C/A and 3 bp downstream of the targeted
C/A) for each targeted C/A were divided into training and
test datasets with a ratio of 7:3. A logistic regression
model was built on the training dataset using the
sequence features, and tested on the test dataset. All
sequence features surrounding the targeted C or A were
encoded by one hot encoding. To illustrate whether
integrated library and endogenous profiles share similar
sequence features, training model built on integrated
datasets was applied to predict non-zero base editing
efficiency of endogenous datasets. The performance of
logistic model was evaluated by Pearson correlation
coefficient between the predicted and observed base
editing efficiency.

Characterizing base editing efficiency between
endogenous and integrated target sites
Target sites were divided into three groups according to

the differences in base editing efficiency between endo-
genous and integrated target sites. We fitted a linear
regression of base editing efficiency for endogenous with
that of integrated target sites, and the distribution of
differences between the observed efficiency at endogenous
sites and fitted ones was calculated and plotted. The μ± σ
of difference distribution was considered as the cutoffs for
categorization of target sites, where μ and σ represent
mean and standard deviation of the difference distribu-
tion, respectively. Target sites with differences higher than
μþ σ were divided as Endo-bias group, and those with

differences less than μ� σ were divided into Inte-bias
group. The rest of target sites were divided into
consistent group.

Editing outcome analysis
For each target site, a strict prepossessing step was

introduced for editing outcome analysis, 1) percentage of
reads that were edited, which was defined as Ne/Nt, where
Ne represents reads that were modified, and Nt represents
total reads. 2) Kullback-Leibler divergence (KL) values of
each target site among biological replicates. Target sites
with Ne/Nt less than 90% and KL values extremely large
(outliers) in each biological replicate were filtered out.
Then the editing alleles of each target site from all the
biological replicates were collapsed and proportions of
editing outcomes were obtained for each target. For
comparison of editing outcomes between endogenous and
integrated target sites, the wild-type alleles were removed,
and the left alleles were normalized to 100% for each
target site.
Then the editing product allele forms with normalized

proportion larger than 5% were kept. Target sites were
assigned to four groups based on the consistency in out-
come products between the Inte- and Endo- datasets. The
“Consistent” group included target sites with the same
outcome products between endogenous and integrated
datasets. The “Inte-bias” group included target sites with
outcome products from the Inte-datasets containing all
the alleles from the Endo-datasets together with alleles
forms unique to the Inte-datasets. The “Endo-bias” group
represented target sites with outcome products from the
Endo-datasets containing all the alleles from the Inte-
datasets together with alleles forms unique to the Endo-
datasets. The “Discordant” group represented those with
editing outcome products unique to both Endo- and Inte-
datasets.

Quantification of transcriptional and epigenetic activity at
target sites and their effects on editing efficiency
To reveal the effect of transcription activity and epige-

netic modification on base editing efficiency of endogen-
ous target sites, gene expression matrix from GEO
database with accession GSE16801223, ChIA-PET assay
narrow peak data of RNA polymerase II (Pol II)21 and
CCCTC-binding factor (CTCF)21, DNase-seq20, and ChIP-
seq narrow peak data of H3K4me121, H3K4me320,
H3K27ac21 and H3K36me321 from the Encyclopedia of
DNA Elements (ENCODE), were retrieved. To quantify
the level of endogenous factor at each target site, bedtools
(version 2.27.1) were applied to map the location of each
of the endogenous factors to the genomic loci of each
target site. The gene activity for each target site was
designated as the gene expression levels for the located
gene in the genome. For gene expression levels,
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normalized gene expression levels larger and lower than
1.5 were assigned as “high” and “low” groups, respectively.
Considering the long-range regulation of epigenetic fac-
tors on the genome, a wider range adjacent to the target
site (65 bp upstream, 20 bp protospacer and 65 bp down-
stream of the protospacer for 150 bp target site and 500 bp
upstream, 20 bp protospacer and 500 bp downstream of
the protospacer for 1020 bp target site) for H3K27ac
modification was considered. Target sites that overlapped
with narrow peaks of histone modifications or broad peaks
of CTCF/Pol II for one of the endogenous factors were
considered with the corresponding modification.
Whole genome bisulfite sequencing (WGBS) data of

HEK293T cells were obtained from the GEO database
with accession GSE16801223. Downstream analysis was
performed in R with BS-seq and DSS packages to obtain
methylation levels for each single nucleotide. Then the
per-base methylation level datas were intersected with the
genomic position of target sites using bedtools (version
2.27.1). Target-level methylation was measured as average
methylation levels of intersected nucleotides within the
target site. Target sites with methylation levels larger than
0.75 were designated as high methylation group, and the
others were labeled as non-methylation. To explore the
base-level methylation at each base, we considered all
targeted Cs for CBE and ACG/CGA motifs for ABE
within the editing windows. The considered Cs or As that
overlapped with the per-base methylation level data were
classified as target sites with “Methylation”.

Normalization of endogenous factors
Genome-wide signals of each endogenous factor were

log2 transformed and normalized using min-max nor-
malization method. For gene expression and DNase-seq
data, Transcripts Per Million (TPM) and Reads Per
Fragment (RPF) reads were used. For methylation data,
beta value was used. For histone modification data, signal
values (fold changes in comparison with the control) were
used according to the Encode instruction.
To demonstrate the effect of endogenous factors on

editing efficiencies within the editing window, the target
sites were split into binary groups for each examined
endogenous factor and compared the efficiency differ-
ences between two groups. Then regression models were
built using continuous values of each endogenous factor
and regressed out the number of As or Cs within the
editing window.

Quantification of methylation and histone modification on
the editing efficiency was independent of motifs or not
To explore whether methylation and histone modifica-

tion on the editing efficiency was independent of the
underlying sequence motifs or not, we divided motifs into
promoted motifs (including TAT, TAC, CAT, GAC,

GAT) and inhibited motifs (including CAG, AAG, CAA,
AAA). And then we calculated the ratio of promoted
motifs as below in both non-methy and methy or
H3K27ac and non-H3K27ac groups.

Numbers of promoted motifs
Numbers of promoted motifsþ Numbers of inhibited motifs

The P value was calculated using χ2 test.

Construction of base editing efficiency model
For predicting the editing efficiency of ABE and CBE at

endogenous target sites, a deep-learning model based on
Convolutional Neural Network (CNN) architecture was
built. The model was consisted of 5 convolution layers
with various kernel size (1 × 2, 1 × 3, 1 × 4, 1 × 5), one
concatenate layer, one max pool layer (1 × 2) and one 20-
size vector output layer. For BE_Seq efficiency model, the
input layer was the 40 bp one-hot encoding matrix with 4
channels. For BE_Endo efficiency model, the input layer
was 40 bp one-hot encoding matrix with 4 channels and
additional one or more endo-factor channels. We adopted
a common approach for deep neural network training,
stratified the shuffled Endo-datasets based on the exis-
tence of endogenous factor into 80% (training set) and
20% (testing set), and repeated this process for six times to
generate 6 shuffled datasets. During the training process,
we randomly split 20% of the training dataset as validation
set in every epoch for parameter optimization, and tested
the model performance in the testing set. Finally, the
performance of BE_Endo and BE_Seq efficiency models
were evaluated using independent the MTSS, pathogenic
datasets, Intergenic dataset and testing datasets of BE-
HIVE, DeepBE and BE-DICT.

Construction of proportional model
The proportional model was adapted from our pre-

viously published work30. Briefly, the editing of each
position was considered as a Bernoulli distribution. In
order to further output the proportion of all outcomes, a
Markov network was introduced to model such depen-
dency between each position. To simplify this problem,
only the relation between adjacent editing positions was
considered. Such Markov network was equivalent to a
Bayesian network. We first proved that this simplification
is reasonable by calculating the mutual information (log2
transformed) when the adjacent editing positions were
considered or not. The majority of the information
between distant editing positions was accounted for by
joint probability with the adjacent editing position. Thus,
this model not only considered the relation between
adjacent editing positions, but also considered the relation
between distant editing positions in the proportion model.
The correlation of distant editing positions for each target
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site was transmitted through the chain-like Bayesian
network. The probability of each position being edited can
be obtained from the neuronal network model above. The
correlation between different editing position was esti-
mated using c ¼ p11p00

p01p10
from the training dataset. Here p11

and p00 denoted the two positions being edited or not
simultaneously, and p01 and p10 denoted the two positions
being edited separately.
The above learning process can be formulated as follows.

For a sequences, the editing positions were denoted as
X1;X2; ::Xn. The joint probability of the Bayesian network
was defined as p X1;X2; ¼ ;Xnð Þ ¼
p X1ð Þp X2; j;X1ð Þ � � � p Xn�1; j;Xnð Þ. The editing efficiency
p Xi ¼ 1ð Þ of each position was estimated by the output of
the neuronal network g s;Xið Þ, for i ¼ 1; 2; ¼ n. The con-
ditional probability p Xi; j;Xi�1ð Þ can be learned using
g s;Xi�1ð Þ; g s;Xið Þ and the correlation c between position
Xi;Xi�1. The proportions of all outcomes can be then
inferred from the Bayesian network. The BE_Endo propor-
tion was established from Endo-datasets (training and test-
ing datasets) and validated independently using MTSS and
pathogenic datasets. The proportions of Max-form of each
target site were compared between predicted and measured
values by both BE_Seq and BE_Endo proportion models.

Comparison of different models
To compare the performance of several computational

models for ABE and CBE, we implemented three BE tools
using deep learning and machine learning methods, includ-
ing DeepBE (https://github.com/MyungjaeSong/Paired-
Library/tree/DeepCRISPR.info/DeepBaseEditor), BE-DICT
(https://github.com/uzh-dqbm-cmi/crispr) and BE-HIVE
(https://github.com/maxwshen/ be_predict_bystander).
DeepBE9, a deep learning predictor based on CNN

architecture, were implemented by python 2.7 and Ten-
sorFlow 1.4. Each target sequence contains 26 bp,
including 3 bp flanking + 20 bp protospacer + 3 bp PAM.
A 2-step-implementation was required for DeepBE.
Firstly, the editing efficiencies of each target sequence
were predicted. Secondly, the proportions were predicted.
BE-DICT13, which was adapting the Transformer archi-

tecture, was built by a machine learning algorithm capable of
predicting base editing outcomes of commonly used ABEs
and CBEs at any given protospacer sequences. The ABEmax
model for ABE and BE4max model for were chosen for
further analysis. The inputs of target sequences only contain
20 bp protospacer and the outputs were the predicted score
for each mutation variant under each ID of the sequences.
BE-HIVE11, a deep conditional autoregressive model,

with two neural networks for encoding and decoding, was
implemented by python package pyTorch 1.1 and python
3.7. For BE-HIVE, the inputs of sequences were expanded
to 50 bp, containing 20 bp flanking + 20 bp protospacer +
3 bp PAM+ 7 bp flanking sequence. The outputs contain

the mutations that occurred out of the protospacer.
Therefore, we calculated the sum of variation probabilities
by considering all identical variants within the proto-
spacers as homogenous variants and ignoring the muta-
tions in the flanking sequences.
Firstly, we compared the prediction accuracy of

BE_Endo with DeepBE, BE-DICT and BE-HIVE using
testing datasets from the corresponding studies. Secondly,
the performance of DeepBE, BE-DICT, BE-HIVE and
BE_Endo was also evaluated using Endo, MTSS and
Pathogenic datasets from this study. We concatenated all
predicted outputs by the same sequence id and mutation
variant with the experimental results. Pearson’s R was
calculated between the observed experimental results and
the predicted results of each model. Error bars demon-
strated 95% confidence intervals. P values were calculated
by two-sided Steiger’s Z tests.

Statistical analysis
To compare base editing between endogenous and

integrated protospacers, Pearson correlation coefficient
was used to evaluate similarity. Wilcoxon rank-sum test
was used to compute the significance of differences
between groups. χ2 test was applied to test significance of
epigenetic factors for any two groups of three divided
groups and the promoted motif ratio (promoted motif
number/ (promoted motif number + inhibited motif
number)) for methylation and non-methylation group or
H3K27ac and non-H3K27ac group of ABE, respectively.
Pearson correlation coefficient (R) was calculated to
evaluate the performance of each model. All the statistical
tests were performed in R (version 4.1.2) and Python
(version 3.9.4).
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