Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antagonizing the irreversible thrombomodulin-initiated proteolytic signaling alleviates age-related liver fibrosis via senescent cell killing

Abstract

Cellular senescence is a stress-induced, stable cell cycle arrest phenotype which generates a pro-inflammatory microenvironment, leading to chronic inflammation and age-associated diseases. Determining the fundamental molecular pathways driving senescence instead of apoptosis could enable the identification of senolytic agents to restore tissue homeostasis. Here, we identify thrombomodulin (THBD) signaling as a key molecular determinant of the senescent cell fate. Although normally restricted to endothelial cells, THBD is rapidly upregulated and maintained throughout all phases of the senescence program in aged mammalian tissues and in senescent cell models. Mechanistically, THBD activates a proteolytic feed-forward signaling pathway by stabilizing a multi-protein complex in early endosomes, thus forming a molecular basis for the irreversibility of the senescence program and ensuring senescent cell viability. Therapeutically, THBD signaling depletion or inhibition using vorapaxar, an FDA-approved drug, effectively ablates senescent cells and restores tissue homeostasis in liver fibrosis models. Collectively, these results uncover proteolytic THBD signaling as a conserved pro-survival pathway essential for senescent cell viability, thus providing a pharmacologically exploitable senolytic target for senescence-associated diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: THBD is upregulated in senescent cells and aged tissues.
Fig. 2: THBD signaling is critical for senescent cell survival.
Fig. 3: THBD signaling axis is upregulated in senescent cells and aged tissues.
Fig. 4: THBD signaling persists in recycling endocytic vesicles.
Fig. 5: THBD stabilizes the THBD signaling complex in endocytic vesicles by suppressing proteasome- and lysosome-associated degradation processes.
Fig. 6: THBD suppresses NEDD4L-mediated THBD signaling complex degradation.
Fig. 7: THBD signaling antagonism attenuates liver fibrosis through senescent cell clearance.

Similar content being viewed by others

Data availability

The RNA transcriptional profiling data involved in this study has been uploaded to NCBI GEO datasets (GSE228941).

References

  1. Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Campisi, J. Cancer, aging and cellular senescence. In Vivo 14, 183–188 (2000).

    CAS  PubMed  Google Scholar 

  3. Rodier, F. & Campisi, J. Four faces of cellular senescence. J. Cell Biol. 192, 547–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Childs, B. G. et al. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424–1435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johmura, Y. et al. Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science 371, 265–270 (2021).

  11. Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine 40, 554–563 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang, L. et al. Recent advances in the discovery of senolytics. Mech. Ageing Dev. 200, 111587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carpenter, V. J., Saleh, T. & Gewirtz, D. A. Senolytics for cancer therapy: is all that glitters really gold? Cancers (Basel) 13, 723 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Kovacovicova, K. et al. Senolytic cocktail Dasatinib+Quercetin (D+Q) does not enhance the efficacy of senescence-inducing chemotherapy in liver cancer. Front. Oncol. 8, 459 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Suvarna, V., Singh, V. & Murahari, M. Current overview on the clinical update of Bcl-2 anti-apoptotic inhibitors for cancer therapy. Eur. J. Pharmacol. 862, 172655 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Gasek, N. S. et al. Strategies for targeting senescent cells in human disease. Nat. Aging 1, 870–879 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hernandez-Segura, A. et al. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652–2660.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aird, K. M. & Zhang, R. Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol. Biol. 965, 185–196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kosar, M. et al. Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a). Cell Cycle 10, 457–468 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Martin, F. A., Murphy, R. P. & Cummins, P. M. Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. Am. J. Physiol. Heart Circ. Physiol. 304, H1585–H1597 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Okamoto, T. et al. Thrombomodulin: a bifunctional modulator of inflammation and coagulation in sepsis. Crit. Care Res. Pract. 2012, 614545 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. Chao, T. H. et al. Soluble thrombomodulin is a paracrine anti-apoptotic factor for vascular endothelial protection. Int. J. Cardiol. 172, 340–349 (2014).

    Article  PubMed  Google Scholar 

  23. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Alexander, P. B. et al. EGF promotes mammalian cell growth by suppressing cellular senescence. Cell Res. 25, 135–138 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Yuan, L. et al. Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. Cell Res. 28, 625–643 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xiang, H. et al. UHRF1 is required for basal stem cell proliferation in response to airway injury. Cell Discov. 3, 17019 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chong, M. et al. CD36 initiates the secretory phenotype during the establishment of cellular senescence. EMBO Rep. 19, e45274 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cheng, Y. et al. Intraovarian thrombin and activated protein C signaling system regulates steroidogenesis during the periovulatory period. Mol. Endocrinol. 26, 331–340 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Tsiang, M., Lentz, S. R. & Sadler, J. E. Functional domains of membrane-bound human thrombomodulin. EGF-like domains four to six and the serine/threonine-rich domain are required for cofactor activity. J. Biol. Chem. 267, 6164–6170 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Wolter, J. et al. Thrombomodulin-dependent protein C activation is required for mitochondrial function and myelination in the central nervous system. J. Thromb. Haemost. 14, 2212–2226 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yousefzadeh, M. J. et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 19, e13094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wootten, D. et al. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19, 638–653 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Mosnier, L. O. et al. Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg46. Blood 120, 5237–5246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Isermann, B. et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat. Med. 13, 1349–1358 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Riewald, M. et al. Activated protein C signals through the thrombin receptor PAR1 in endothelial cells. J. Endotoxin. Res. 9, 317–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Cheng, T. et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat. Med. 9, 338–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Hanyaloglu, A. C. & von Zastrow, M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu. Rev. Pharmacol. Toxicol. 48, 537–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Sungkaworn, T. et al. Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature 550, 543–547 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Finn, R. S. et al. Palbociclib and letrozole in advanced breast cancer. N. Engl. J. Med. 375, 1925–1936 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Finn, R. S. et al. Efficacy and safety of palbociclib in combination with letrozole as first-line treatment of ER-positive, HER2-negative, advanced breast cancer: expanded analyses of subgroups from the randomized pivotal trial PALOMA-1/TRIO-18. Breast Cancer Res. 18, 67 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grimsey, N. J. et al. Recycling and endosomal sorting of protease-activated receptor-1 is distinctly regulated by Rab11A and Rab11B proteins. J. Biol. Chem. 291, 2223–2236 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Trejo, J., Hammes, S. R. & Coughlin, S. R. Termination of signaling by protease-activated receptor-1 is linked to lysosomal sorting. Proc. Natl. Acad. Sci. USA 95, 13698–13702 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lopez-Otin, C. et al. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takenaka, Y. et al. Prolonged disturbance of proteostasis induces cellular senescence via temporal mitochondrial dysfunction and subsequent mitochondrial accumulation in human fibroblasts. FEBS J. 289, 1650–1667 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Joy, J. et al. Proteostasis failure and mitochondrial dysfunction leads to aneuploidy-induced senescence. Dev. Cell 56, 2043–2058.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Saez, I. & Vilchez, D. The mechanistic links between proteasome activity, aging and age-related diseases. Curr. Genomics 15, 38–51 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaushik, S. & Cuervo, A. M. Proteostasis and aging. Nat. Med. 21, 1406–1415 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Coffey, E. E. et al. Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer’s disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience 263, 111–124 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, L. et al. A pH probe inhibits senescence in mesenchymal stem cells. Stem Cell Res. Ther. 9, 343 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun, Y. et al. Lysosome activity is modulated by multiple longevity pathways and is important for lifespan extension in C. elegans. Elife 9, e55745 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wandrer, F. et al. Senescence mirrors the extent of liver fibrosis in chronic hepatitis C virus infection. Aliment Pharmacol. Ther. 48, 270–280 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Wiemann, S. U. et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 16, 935–942 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Aravinthan, A. et al. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J. Hepatol. 58, 549–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ritschka, B. et al. The senotherapeutic drug ABT-737 disrupts aberrant p21 expression to restore liver regeneration in adult mice. Genes Dev. 34, 489–494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dolgin, E. Publisher correction: send in the senolytics. Nat. Biotechnol. 39, 1308 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Beerman, I., Basisty, N. & de Cabo, R. Short-term senolytic treatment: a paradigm to promote fracture repair during aging. J. Clin. Invest. 132, e158871 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fleury, H. et al. Exploiting interconnected synthetic lethal interactions between PARP inhibition and cancer cell reversible senescence. Nat. Commun. 10, 2556 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sharma, A. K. et al. The senolytic drug Navitoclax (ABT-263) causes trabecular bone loss and impaired osteoprogenitor function in aged mice. Front. Cell Dev. Biol. 8, 354 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Munro, J. et al. Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Exp. Cell Res. 295, 525–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Lyu, G. et al. TGF-beta signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. Nat. Commun. 9, 2560 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu, P. et al. m(6)A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nat. Cell Biol. 23, 355–365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tian, Y. et al. Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-kappaB activation. Aging Cell 18, e12858 (2019).

    Article  PubMed  Google Scholar 

  68. Palfy, M., Remenyi, A. & Korcsmaros, T. Endosomal crosstalk: meeting points for signaling pathways. Trends Cell Biol. 22, 447–456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Murphy, J. E. et al. Endosomes: a legitimate platform for the signaling train. Proc. Natl Acad. Sci. USA 106, 17615–17622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cullen, P. J. & Steinberg, F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol. 19, 679–696 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Grimsey, N., Lin, H. & Trejo, J. Endosomal signaling by protease-activated receptors. Methods Enzymol. 535, 389–401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, B. et al. Adaptor protein complex-2 (AP-2) and epsin-1 mediate protease-activated receptor-1 internalization via phosphorylation- and ubiquitination-dependent sorting signals. J. Biol. Chem. 286, 40760–40770 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, B. et al. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins. J. Biol. Chem. 289, 1580–1591 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Baker, N. et al. Vacuolar ATPase depletion affects mitochondrial ATPase function, kinetoplast dependency, and drug sensitivity in trypanosomes. Proc. Natl. Acad. Sci. USA 112, 9112–9117 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yambire, K. F. et al. Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. Elife 8, e51031 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hughes, A. L. & Gottschling, D. E. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492, 261–265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chondrogianni, N. & Gonos, E. S. Proteasome dysfunction in mammalian aging: steps and factors involved. Exp. Gerontol. 40, 931–938 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Ruano, D. Proteostasis dysfunction in aged mammalian cells. The stressful role of inflammation. Front. Mol. Biosci. 8, 658742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sun-Wang, J. L., Ivanova, S. & Zorzano, A. The dialogue between the ubiquitin-proteasome system and autophagy: Implications in ageing. Ageing Res. Rev. 64, 101203 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Meller, A. & Shalgi, R. The aging proteostasis decline: from nematode to human. Exp. Cell Res. 399, 112474 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Guerrero-Navarro, L., Jansen-Durr P. & Cavinato M. Age-related lysosomal dysfunctions. Cells 11, 1–20 (2022).

  82. Li, G. et al. Downregulation of NEDD4L by EGFR signaling promotes the development of lung adenocarcinoma. J. Transl. Med. 20, 47 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Martinez-Zamudio, R. I. et al. AP-1 imprints a reversible transcriptional programme of senescent cells. Nat. Cell Biol. 22, 842–855 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Giri, H. et al. Thrombomodulin regulation of mitogen-activated protein kinases. Int. J. Mol. Sci. 20, 1851 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Koizume, S. & Miyagi, Y. Diverse mechanisms of Sp1-dependent transcriptional regulation potentially involved in the adaptive response of cancer cells to oxygen-deficient conditions. Cancers (Basel) 8, 2 (2015).

    Article  PubMed  Google Scholar 

  86. Vierbuchen, T. et al. AP-1 transcription factors and the BAF complex mediate signal-dependent enhancer selection. Mol. Cell 68, 1067–1082.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cui, A., Ding, D. & Li, Y. Regulation of hepatic metabolism and cell growth by the ATF/CREB family of transcription factors. Diabetes 70, 653–664 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Giri, H. et al. Thrombomodulin is essential for maintaining quiescence in vascular endothelial cells. Proc. Natl. Acad. Sci. USA 118, e2022248118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bae, J. S., Yang, L. & Rezaie, A. R. Receptors of the protein C activation and activated protein C signaling pathways are colocalized in lipid rafts of endothelial cells. Proc. Natl. Acad. Sci. USA 104, 2867–2872 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schuepbach, R. A. et al. Protease-activated receptor-1 cleaved at R46 mediates cytoprotective effects. J. Thromb. Haemost. 10, 1675–1684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Antoniak, S. et al. Protease-activated receptor 1 activation enhances doxorubicin-induced cardiotoxicity. J. Mol. Cell Cardiol. 122, 80–87 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Grimsey, N. J. & Trejo, J. Integration of endothelial protease-activated receptor-1 inflammatory signaling by ubiquitin. Curr. Opin. Hematol. 23, 274–279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sinha, R. K. et al. PAR1 biased signaling is required for activated protein C in vivo benefits in sepsis and stroke. Blood 131, 1163–1171 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. De Ceunynck, K. et al. PAR1 agonists stimulate APC-like endothelial cytoprotection and confer resistance to thromboinflammatory injury. Proc. Natl. Acad. Sci. USA 115, E982–E991 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Molinar-Inglis, O. et al. aPC/PAR1 confers endothelial anti-apoptotic activity via a discrete, beta-arrestin-2-mediated SphK1-S1PR1-Akt signaling axis. Proc. Natl. Acad. Sci. USA 118, e2106623118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Arif, S. A. et al. Vorapaxar for reduction of thrombotic cardiovascular events in myocardial infarction and peripheral artery disease. Am. J. Health Syst. Pharm. 72, 1615–1622 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Arsenault, K. A. et al. Direct thrombin inhibitors in cardiovascular disease. Nat. Rev. Cardiol. 9, 402–414 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Smith, A., Baumgartner, K. & Bositis, C. Cirrhosis: Diagnosis and management. Am. Fam. Physician 100, 759–770 (2019).

    PubMed  Google Scholar 

  99. Wang, F. D., Zhou, J. & Chen, E. Q. Molecular mechanisms and potential new therapeutic drugs for liver fibrosis. Front. Pharmacol. 13, 787748 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Poole, L. G. et al. Liver fibrosis is driven by protease-activated receptor-1 expressed by hepatic stellate cells in experimental chronic liver injury. Res. Pract. Thromb. Haemost. 4, 906–917 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Passman, A. M. et al. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice. Dis. Model Mech. 8, 1635–1641 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Du, K. et al. Inhibiting xCT/SLC7A11 induces ferroptosis of myofibroblastic hepatic stellate cells but exacerbates chronic liver injury. Liver Int. 41, 2214–2227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Christian, L. S. et al. Resident memory T cells in tumor-distant tissues fortify against metastasis formation. Cell Rep. 35, 109118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, S. et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yu, G. et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gustavsson, E. K. et al. ggtranscript: an R package for the visualization and interpretation of transcript isoforms using ggplot2. Bioinformatics 38, 3844–3846 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Maeso-Diaz, R. et al. Aging reduces liver resiliency by dysregulating Hedgehog signaling. Aging Cell 21, e13530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Tso-Pan Yao and Dr. Nina Tsvetanova for their valuable insight and discussion on endosomal dynamics and signaling. We also thank Drs. Rui Chen, Handan Xiang, Yi Ding, and Omar Lopez for their extensive discussion and valuable input on the senescent field.

Funding

This work was supported by grants from National Institutes of Health (R01CA244564 to X.F.W., R01DK077794 to A.M.D.), Duke Eye Center EM Facility Core (P30EY005722 to V.Y.A.), NIH Pathway to Independence Award (K99EY033763 to T.R.L.), Florence McAlister Professorship of Medicine (A.M.D.).

Author information

Authors and Affiliations

Authors

Contributions

C.C.P., P.B.A., and X.F.W. conceived the study. C.C.P., R.M.D., T.R.L., L.T., Y.L., L.W., F.Y., T.Y., C.W., K.D., D.H., S.H.O., X.Y., V.Y.A., Q.J.L., and X.F.W. contributed to the methodology. C.C.P., R.M.D., T.R.L., K.X., L.T., Y.L., L.W., F.Y., T.Y., C.W., K.D., D.H., S.H.O., E.W., B.L., and M.C. performed the experiments and analyzed the data. X.F.W. and A.M.D. acquired the funding. X.F.W. supervised the study. C.C.P., P.B.A., and X.F.W. drafted the manuscript. C.C.P., R.M.D., K.D., T.R.L., P.B.A., and X.F.W. reviewed and edited the manuscript.

Corresponding author

Correspondence to Xiao-Fan Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C.C., Maeso-Díaz, R., Lewis, T.R. et al. Antagonizing the irreversible thrombomodulin-initiated proteolytic signaling alleviates age-related liver fibrosis via senescent cell killing. Cell Res 33, 516–532 (2023). https://doi.org/10.1038/s41422-023-00820-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-023-00820-4

This article is cited by

Search

Quick links