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System-level time computation and representation in the
suprachiasmatic nucleus revealed by large-scale calcium
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The suprachiasmatic nucleus (SCN) is the mammalian central circadian pacemaker with heterogeneous neurons acting in concert
while each neuron harbors a self-sustained molecular clockwork. Nevertheless, how system-level SCN signals encode time of the
day remains enigmatic. Here we show that population-level Ca2+ signals predict hourly time, via a group decision-making
mechanism coupled with a spatially modular time feature representation in the SCN. Specifically, we developed a high-speed dual-
view two-photon microscope for volumetric Ca2+ imaging of up to 9000 GABAergic neurons in adult SCN slices, and leveraged
machine learning methods to capture emergent properties from multiscale Ca2+ signals as a whole. We achieved hourly time
prediction by polling random cohorts of SCN neurons, reaching 99.0% accuracy at a cohort size of 900. Further, we revealed that
functional neuron subtypes identified by contrastive learning tend to aggregate separately in the SCN space, giving rise to
bilaterally symmetrical ripple-like modular patterns. Individual modules represent distinctive time features, such that a module-
specifically learned time predictor can also accurately decode hourly time from random polling of the same module. These findings
open a new paradigm in deciphering the design principle of the biological clock at the system level.
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INTRODUCTION
The suprachiasmatic nucleus (SCN) is the central pacemaker of the
mammalian circadian rhythm. It comprises a pair of oval structures
each containing ~10,000 heterogeneous neurons. The central
clock integrates the external light and time cues to generate
multichannel signals to command peripheral clocks across diverse
tissues, thereby regulating physiological functions and daily
behaviors of the animal.1,2 Almost all SCN neurons are GABAergic
along with a plethora of cell type-specific neuropeptides.3–5

Individual neurons harbor self-sustained molecular clockwork in
the form of the transcriptional/translational feedback loop
(TTFL).6,7 By regulating the membrane conductance to Na+, K+

and Ca2+, the TTFL signals are further decoded into Ca2+ and
electrophysiological rhythms, which, in turn, orchestrate the clock
gene expression through Ca2+/cyclic adenosine monophosphate
(cAMP) response elements, and support system-level SCN
computation and integration as well as projection to supra-SCN
levels.1

To date, the exact mechanism underlying time computation
and representation by SCN as a whole remains enigmatic. SCN
neurons are heterogeneous and exhibit spatiotemporal gradients

in terms of clock gene or protein expression, intracellular cAMP
and Ca2+ signals.8–13 The circadian Ca2+ rhythm, which originates
both endogenously from the core loop and exogenously from the
SCN neuronal network, is at least partly dissociable from TTFL, and
displays topological specificity, with the phase in the dorsal SCN
region ahead of the ventral counterpart in cultured neonatal SCN
slices.14–16 These observations underscore the importance of
intracellular Ca2+ in the coupling, integration, and time repre-
sentation of the SCN network. However, many fundamental
questions beg for answers. What is the exact mechanism whereby
these spatiotemporal gradients and topological specificities are
decoded into the time of day? Given that a small subset of SCN
neurons is critical for maintaining rhythmic function,17 do SCN
neurons contribute uniformly, or else some subpopulations
dominate in this process? How many neurons are required to
make a robust time signal, in order for the master clock to
generate multi-timed outputs to inform diverse peripheral clocks?
At present, deciphering the design principles of complex nuclei

such as SCN is still a formidable task, and there is an urgent need
for innovative technology and methodology to provide new tools
and insights. In this study, we applied high-speed dual-view two-
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photon microscopy for volumetric Ca2+ imaging of 6000–9000
GABAergic neurons in adult SCN slices, and captured multiscale
Ca2+ signals ranging from seconds to minutes to hours and up to
an intact circadian period. Leveraging the power of machine
learning methods, we revealed a modular organization of time
feature representation that gives rise to bilaterally symmetrical
ripple-like patterns in the SCN space. Importantly, we unveiled a
time-prediction mechanism based on polling just a few hundred
neurons of the SCN, with all of them being equally important in
this process.

RESULTS
Multiscale Ca2+ signals in the SCN
We applied two-photon microscopy to image freshly isolated SCN
slices from adult Viaat-Cre::GCaMP6f mice with their GABAergic
neurons expressing the genetically coded Ca2+ indicator
GCaMP6f. To capture temporal properties of different scales,
time-lapse images were acquired at 2.7 Hz for 6 h without any
interruption (Fig. 1a). In all GCaMP6f-expressing neurons, transient,
discrete Ca2+ events, namely Ca2+ bursts, occurred atop slow
baseline Ca2+ oscillations (Fig. 1b). Intriguingly, SCN Ca2+ bursts
varied drastically by virtue of frequency, amplitude, duration and,
in rare cases, polarity; their waveforms were polymorphic, being
spiky, or triangle-shaped with a slow descending slope, or
echelon- or square-shaped with a conspicuous plateau (Fig. 1b).
When Ca2+ bursts were categorized by a K-means clustering
algorithm based on duration and amplitude, we identified five
classes of Ca2+ bursts as determined by the gap statistic method
(Supplementary information, Fig. S1a),18 with average durations
spanning from 17.4 s to 129 s at 5% and 95% percentiles (Fig. 1c, d;
Supplementary information, Fig. S1b, c). The frequency of Ca2+

bursts in the SCN neuronal population displayed a broad bell-
shaped distribution, ranging from 0.001 Hz to 0.011 Hz at 5% and
95% percentiles; and the inter-Ca2+ burst intervals followed a
roughly exponential distribution with a long tail (Supplementary
information, Fig. S1d, e). Notably, the vast majority of neurons
underwent frequent switching between different classes of Ca2+

bursts, with a tendency being switched to classes of shorter
duration (Fig. 1e, f; Supplementary information, Fig. S1f). This
result suggests that Ca2+ bursts of distinctive classes likely
constitute fundamental units to form higher-order temporal
features for time representation and computation in the SCN.
Encouraged by these observations, we sought to investigate

population-level Ca2+ activity in the entire SCN over an intact
circadian period. However, we met with an unforeseen challenge
that two-photon microscopy can penetrate SCN only to the depth
of ~200 μm at a tolerable laser intensity. To overcome this limit,
we designed and custom-built a dual-view two-photon micro-
scope, both inverted and upright, doubling the penetration depth
and fluorescence collection efficiency while lowering photo-
damage. The perfusion system was also adapted for temperature
control, sterilization, and dual-side perfusion of the slice over a
prolonged culture time (Supplementary information, Fig. S2).
Meanwhile, to improve the signal-to-noise ratio, we opted to use
Viaat-Cre::GCaMP6s mice for brighter fluorescence signals.19 Using
this system, we performed time-lapse volumetric imaging of 650
μm × 650 μm × 300 μm SCN slices at 0.67 volumes/s for 5-min
recording every hour up to 30 h, and obtained six complete
datasets (Supplementary information, Table S1). In a typical
volume stack, we extracted Ca2+ time series from 6000–9000
neurons along with their spatial coordinates, via a custom-devised
image analysis pipeline (Supplementary information, Fig. S3).
As judged from the kinetics of inter-class switching of Ca2+

bursts, we assumed that an SCN neuron stays at the same
functional state within a short time period (e.g., 5-min). It follows
that the ensemble of all 5-min recordings collected from
thousands of neurons over a circadian period shall cover virtually

all Ca2+ states attainable by SCN GABAergic neurons. To this end,
we resorted to machine learning technology to develop an
automated Ca2+ state classifier. We first transformed Ca2+ time
series into phase-space manifolds,20–22 and summarized them into
six states contingent on visual observation (Fig. 2a–c). Subse-
quently, we constructed and trained a graph convolutional
network (GCN)23–25 to assign Ca2+ states to individual neurons
based on their 5-min Ca2+ behavior (Supplementary information,
Fig. S4). The simplest manifold came from State I (0.60% in total),
showing a ring-shaped structure, while the most complex
manifold came from State II (0.84% in total), showing a three-
pointed star. The predominated state, State VI (93%), exhibited
fast, irregular, and nonperiodic fluctuations in the time domain,
and gave rise to a stochastic oscillating manifold in the phase
space, whereas State V was the rarest (0.04%, Fig. 2d) and
characterized by brief downward deflections from consistently
elevated Ca2+ levels. When mapped to the SCN space, all these
minority states entwined irregularly and the mosaic pattern
variably evolved at different circadian times (Fig. 2e; Supplemen-
tary information, Fig. S5).
Over a 24-h period, while waxing and waning through different

Ca2+ burst classes, most neurons also displayed robust inter-state
switching behavior (Fig. 2f), hinting at the existence of even
higher-order temporal features of Ca2+ signals. Indeed, when Ca2+

signal amplitude (mean ΔF/F over a 5-min recording) was analyzed
as a function of time, we revealed significant differences between
two 12-h divisions, i.e., high-activity Ca2+ mode (H-mode) and low-
activity Ca2+ mode (L-mode) over a 24-h period. Such circadian
Ca2+ rhythmicity was confirmed in almost all SCN neurons
examined, along with neuron-to-neuron variability in the timing
of inter-mode transition (Supplementary information, Fig. S6).
Notably, a dramatic event switching to State IV occurred around

circadian time (CT) 30 (Fig. 2f). By reviewing this event in the SCN
space, we identified an SCN-wide activity, namely phase wave of
hyperactivity (PWHA), which originated from the peripheral SCN,
entered the SCN at the dorsal tip (CT26), then propagated to the
ventromedial region (CT28–CT29), triggered a global Ca2+

excitation (CT30) before fading out (CT31–CT38) (Supplementary
information, Fig. S7 and Video S1). This finding is consistent with
previous reports on extremely slow Ca2+ waves in cultured
neonatal SCN.10,16 The observation that PWHA lasted on a 12-h
timescale and swept across the entire nucleus indicates that it
represents a spatiotemporal feature of the largest scales in the
SCN.
Taken together, we uncovered a full spectrum of multiscale

Ca2+ events at the SCN neuronal and ensemble levels, ranging
from elemental Ca2+ bursts (seconds to minutes) to Ca2+ states
(minutes to hours) to Ca2+ modes as well as population-level
PWHA (~12 h). This finding underscores the idea that time-
keeping by SCN is much more sophisticated than simply
maintaining global coherent oscillations via synchronization.

Ensemble Ca2+ signals predict hourly time
To investigate whether and how multiscale SCN Ca2+ signals
encode and decode time information, we quantified neuronal and
ensemble Ca2+ behaviors in relation to physical time. We
reckoned that, as Ca2+ signals are intimately related to SCN
inputs and outputs, understanding the time-keeping principles of
the SCN can be naturally cast as learning the feature representa-
tion of the multiscale Ca2+ activity.
Taking all observed neurons in each SCN as a whole, we

employed principal component analysis26–28 to appraise the
collective properties of all the 5-min Ca2+ time series in a low-
dimensional space. We found that the resultant data points in the
PC1–PC2 space delineated a circular temporal evolution trajectory
(Fig. 3a). This result inspired us to further explore whether one
could utilize SCN Ca2+ signals to predict physical time and, in so
doing, highlight the SCN’s core function as a time-keeping system.
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We therefore employed modern deep learning tools29,30 to
decode time information from SCN Ca2+ signals. Using a
convolutional neural network (CNN) consisting of one convolu-
tional layer, a residual block followed by one fully connected (FC)
layer, we achieved hourly time prediction by involving randomly
selected cohorts of neurons (Fig. 3b, c). To be specific, single-
neuron Ca2+ signals could predict the correct time at a slightly
above-the-chance level, supporting their ability of time feature
representation. Prediction accuracy steeply increased with the size
of the cohorts polled and reached 99.0% ± 0.4% (mean ± SEM,
n= 6) at a cohort size of 900. Even higher accuracy of time
prediction could be attained by polling a still greater number of
neurons (Fig. 3d). To confirm that such discrimination of time truly

reflects disparities hidden in the Ca2+ time series, we visualized
the output features of the second convolutional layer in a two-
dimensional (2D) space via t-distributed stochastic neighbor
embedding (t-SNE).31 Clearly, as the cohort size increased, the
data points gradually congregated into distinctive clusters in the
feature space, and became more compact within clusters and
more separable between clusters (Fig. 3e). Thus, hourly time
prediction by SCN is contingent on the integration and computa-
tion of Ca2+ signals from cohorts of neurons, analogous to group
decision-making in a statistical system.
Next, we estimated the contribution coefficient for each

and every neuron from the integrated gradient-based attribution
map after min-max normalization.32 Histograms of contribution

Fig. 1 Multiscale Ca2+ activities in SCN GABAergic neurons. a A representative two-photon image showing GABAergic neurons expressing
GCaMP6f in an SCN slice from an 8-week-old Viaat-Cre::GCaMP6f mouse. Dashed lines demarcate the estimated borders of the SCN. Scale bar,
100 μm. b Diversity of SCN neuronal Ca2+ signals. Data shown are 1-h excerpts from a total of 6-h continuous recording at a 2.7 Hz frame rate,
and corresponding neurons are marked in a. Right, an enlarged view of the segment in the dashed box. c Clustering of Ca2+ bursts based on
their duration and amplitude by a K-means clustering algorithm. Crosshairs mark the centroid of 5 classes identified. d Time courses of
averaged Ca2+ bursts in different classes. Data are shown as mean ± SEM (n= 4643, 3150, 764, 638, and 100 events for class I, II, III, IV, and V,
respectively). e Schematic diagram of inter-class switching of Ca2+ bursts. The direction and relative thickness of the arrow represent the
direction and relative propensity of switching, respectively. f Raster plot showing the kinetics of inter-class switching of Ca2+ bursts. Right, an
enlarged view of the segment in the dashed box.
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coefficients of individual neurons were well fitted to a Gaussian
distribution, at all time points examined (Supplementary informa-
tion, Fig. S8a), while for a given neuron, its contribution coefficient
fluctuated over time (Supplementary information, Fig. S8b).
However, after being averaged over an intact circadian period,
single-neuron contribution coefficient exhibited a very narrow
Gaussian distribution, with a mere 7% difference between the 5%
and 95% percentiles (Supplementary information, Fig. S8c). Thus,
our quantitative assessment suggests that, on a 24-h scale, all SCN
neurons contribute uniformly in terms of time computation.

Modular time representation in the SCN
Classic topological division of the SCN is based on retinal and
efferent connectivity and expression of neuropeptides, with VIP/

GRP in the ventral “core” region and AVP in the dorsal “shell”
region.33,34 Regional oscillators in the SCN, namely the evening
oscillator and the morning oscillator, and the light-responsive area
exhibit photoperiodic changes in response to different external
photoperiods.35,36 Recently, single-cell RNA-sequencing has
allowed for fine-grained cell type classification, identifying five
SCN neuron subtypes occupying distinct spatial domains.37 To
identify functional organization patterns hidden in the ensemble
Ca2+ behavior of SCN, we cast the problem of functional neuron
subtype classification as time-series representation learning in an
unsupervised manner, and built a classifier TraceContrast (Fig. 4a).
In this classifier, we leveraged contrastive learning,38 a cutting-
edge unsupervised machine learning paradigm, in which Ca2+

time series augmented with transformations such as masking and

Fig. 2 Ca2+ states and state-switching dynamics in SCN neurons. Data were from a slice containing 6049 identified neurons.
a Representative 5-min Ca2+ recordings, corresponding to different Ca2+ states of SCN neurons (State I to State VI). Data shown are Z-score
normalized fluorescence intensity. b, c Phase-space manifolds (b) and recurrent plots (c) of corresponding traces in a. Note the repeating
features or motifs of systematic dynamics in the recurrent plot. d Percentage of neurons at different Ca2+ states over a 24-h timescale. See
Supplementary information, Fig. S4 for neuronal Ca2+ state classification. e Spatial distribution of neuronal Ca2+ states at CT28. The most
populous State VI neurons (inset, top right) are omitted for clarity. f Raster plot of state-switching over 24 h for all neurons. The color codes of
Ca2+ states are shown on the right.
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cropping (i.e., positive samples) were contrasted against those
from different timestamps or neurons (i.e., negative samples) in a
hierarchical fashion. By enforcing the consistency among features
of positive samples, TraceContrast should be able to capture
emergent properties of SCN Ca2+ signals that are invariant to
transformations.
By TraceContrast, we categorized all observed neurons from the

same SCN slice into 2, 3, 4, or 5 functional subtypes (Fig. 4;
Supplementary information, Fig. S9). Using t-SNE to visualize the
learned high-level features, we found that the clusters were well
separated after their dimensionality reduction into 2D space
(Fig. 4c). Spatial mapping revealed that same-type neurons

aggregated in the SCN space, giving rise to distinctive ripple-like
patterns with bilateral symmetry (Fig. 4b; Supplementary informa-
tion, Video S2). With an increasing number of subtypes, fine-
grained modules were peeled off layer by layer in a coherent and
continuous manner, indicating a modular and hierarchal time
feature representation by Ca2+ signals in the SCN.
We tested the robustness of modular organization in the SCN.

We showed that PWHA appeared to exert no effects on the
modular organization for two reasons. Firstly, the diffusion
direction of the modular ripple did not align with that of PWHA.
Secondly, by division of the 24-h Ca2+ sequence into three 8-h
segments, with no PWHA in the first segment, the modular ripple

Fig. 3 Hourly time prediction by polling randomly selected cohorts of SCN neurons. a Circular evolution trajectory of a 2D representation
of population-level Ca2+ activities. Axes correspond to the first two principal components, PC1 and PC2. Different time points are represented
in different colors, and consecutive time points are connected by dotted lines. b Scheme of time-predictor based on SCN Ca2+ signals. Conv
and FC refer to the convolutional and fully connected layer; N, T and D denote the dimensions of neurons, the input Ca2+ time series of each
neuron and its features extracted, respectively. c Accuracy and loss curves during training process. d Prediction accuracy curves, showing
results from six SCN slices. Data are shown as mean ± SEM (n= 5000 trials). Lower dashed line represents the chance level. e Visualization of
CNN’s high-dimensional features in a 2D space via t-SNE. From left to right: the number of neurons is 1, 100, 300, and 900, respectively.
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remained intact for all three subsets of data, affirming that it is
indeed PWHA-independent (Supplementary information, Fig.
S10a–c). By spatial and temporal subsampling, we showed that,
albeit noisier, the bulk of the modular ripple was unchanged when
only 50% of neurons were retained by the farthest point sampling
method39 (Supplementary information, Fig. S10d) or when every
other data point in 5-min recordings were dropped out
(Supplementary information, Fig. S10e). Furthermore, symmetric
modular ripple emerged even from single-sided analysis using
either left or right SCN data independently. Altogether, we

conclude that the modular ripple-like organization is an emergent
property pertaining to time feature representation by the SCN
at work.
Using the time predictor described above, we demonstrated

that single-module sampling resulted in a markedly degraded
performance as compared with random sampling across all
modules (Fig. 4d). To further explore topological specificity, we
generated module-specific time predictors by training each of
them with data from one module only. We showed that the
accuracy attainable for same-module time prediction was still

Fig. 4 Modular time feature representation revealed by TraceContrast. a Scheme of neuron subtype classification by TraceContrast. N, T,
and D denote the dimensions of neurons, the input Ca2+ sequence of each neuron and its output features, respectively. b Bilaterally
symmetric and hierarchical modularity emerged from neuron subtype classification. The predefined number of clusters (K) is listed below each
corresponding image. c The t-SNE plots of the dimensionality reduction corresponding to b. d Time predictability when sampling only within
one specific module (K= 5). Lower dashed line represents the chance level. Data are shown as mean ± SEM (n= 5000 trials). Note that one-
module-only sampling results in a marked disruption to time prediction accuracy compared to random sampling in all SCN neurons. Similar
results were obtained when K= 2, 3, 4. e, f Ca2+ signal amplitude and corresponding variance (e) and average MIC in different modules (f).
Data are shown as mean ± SEM (n= 1587, 1936, 1211, 835, and 480 for Modules 1, 2, 3, 4 and 5, respectively). Note that the two attributes
showed smooth inter-modular gradients running in opposite directions.
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greater than 99%, but its cross-module time prediction ability was
almost completely abolished (Fig. 5), suggesting that each module
has a full yet unique representation of time features.
To gain insight into the nature of invariant properties captured

in contrastive learning, we analyzed module-specific Ca2+ signal
amplitude and variance, and uncovered their ordered variation
over modules, manifesting as a smooth ventrolateral-to-
dorsomedial upward gradient (Fig. 4e). We also measured the
maximal information coefficient (MIC),40,41 an index of the
coupling strength within a module. While changing dynamically
over time, MIC also exhibited an ordered spatial gradient, except
that it ran in the opposite direction (Fig. 4f). In other words, our
neuron subtype classification might have captured Ca2+ signal
attributes and coupling strength as invariant properties.

DISCUSSION
In dissecting system-level mechanisms underlying SCN rhythmi-
city, we performed volumetric Ca2+ imaging of 6000–9000
GABAergic neurons in each adult SCN slice using a high-speed
dual-view two-photon microscope, and devised hierarchical
sampling strategies to retain multiscale features inherent to SCN
Ca2+ signals. Furthermore, we introduced cutting-edge machine
learning methods to extract hidden features and emergent
properties from massive datasets so acquired, with an emphasis
on network-level time feature representation and topological
organization.
We have uncovered a number of salient and rather distinctive

features of SCN Ca2+ signals. First, unlike Ca2+ signals in other
brain regions,42 the most striking fact is that Ca2+ bursts in the
SCN are highly diverse in amplitude, duration, waveform, and
even polarity, and inter-Ca2+ burst intervals vary across two orders
of magnitude. Second, Ca2+ bursts of five classes constitute the
elemental units to build higher-order temporal features, including
six Ca2+ states of minute-to-hour duration and two Ca2+ modes
switching over a circadian period. The Ca2+ burst class-, Ca2+

state- and Ca2+ mode-switching occur spontaneously and
incessantly, and its choreography in space may underlie the
SCN-traversing, 12-h PWHA similar to Ca2+ waves reported
previously.16 These multiscale spatiotemporal features of Ca2+

dynamics would provide a rich, system-level toolkit for the
mammalian central clock to base its time feature representation
and computation. Our observation supports the notion that the
heterogeneity of SCN neurons and spatiotemporal gradients play
a crucial role in encoding time-of-day through collective
processes.8–13,35,43–45

Several lines of evidence indicate that SCN Ca2+ signals are
indeed time-computing and representing via a group decision-
making mechanism. Hourly population-level Ca2+ activities

delineate a 2D circular evolution trajectory after dimensionality
reduction. Leveraging the power of machine learning methods,
we successfully created a time predictor with 99% accuracy of
time prediction on an hourly scale by polling merely hundreds of
randomly selected neurons. As it takes ~900 neurons to attain
99% accuracy, at least twenty or so output channels of hourly
precision can be sorted out from the central clock harboring
~20,000 neurons to command diverse peripheral clocks. With non-
interruptive whole-nucleus Ca2+ recording in the future, one could
explore whether SCN population-level Ca2+ signals could predict
time on finer biologically relevant scales, and how this time-
keeping mechanism might be perturbed by pathological and
experimental interventions.
Pertinent to this observation, it is important to note that, after

time-averaging, the single-neuron contribution coefficient to time
prediction obeys a very narrow Gaussian distribution. To the first
approximation, this finding suggests that all SCN neurons are
strikingly homogenous in terms of contribution to time prediction.
Given the hour-to-hour fluctuations of single neurons’ contribu-
tion coefficients, a dynamic load-balancing scheme might be at
work to shift and equalize the workload among individual
neurons. In this scenario, frequent state- and mode-switching as
well as the spatiotemporally ordered PWHA might contribute to
workload equalization. Some neuropeptide-mediated interplays
among closely packed neurons might also be at work, and these
possibilities merit future investigations.
A novel type of topological specificity emerged as we applied

contrastive learning technology to classify functional neuron
subtypes. Neurons of the same functional subtypes aggregate
physically and different subtypes are organized in ripple-like
modules, aligning with the opposing gradients of Ca2+ signal
amplitude and coupling strength. Together with the finding on
spatiotemporal clusters of PER2::LUC identified by a K-means
clustering,13 the present and previous findings reinforce the
notion that spatiotemporal gradients and topological specificities
serve as conserved features of SCN that penetrate different
physiological levels ranging from genes and proteins to Ca2+

activities, while being manifested across multiple spatial and
time scales. Importantly, we showed that each module has
unique features gauged by Ca2+ signal amplitude and variance
as well as MIC, and such module-specific Ca2+ signals allow for
the module-specifically trained time predictors to accurately
decode time of the day based on single-module Ca2+ signals.
Teleologically, such a modular organization might endow SCN
outputs with diversity as well as tuning ability through
combinatorial polling and sorting. This point-of-view is in line
with the speculation that region-specific SCN projection to
downstream brain areas may cater to distinctive demands of
different peripheral clocks.46

Fig. 5 Module-specific time predictors and their performance. Dataset was the same as in Fig. 4 with K= 3. Three module-specific time
predictors were trained, each using data from the pertinent module, and its performance pertaining to hourly time prediction was tested in all
3 modules, in order to assess their same-module and cross-module time predictability. The lower dashed line in each panel represents the
chance level. Data are shown as mean ± SEM (n= 5000 trials).
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Overall, our findings support a statistical working model for SCN
as the mammalian circadian time-keeping system. Multiscale
spatiotemporal Ca2+ dynamics at neuronal and ensemble levels
constitute the building blocks of time representation and
computation. Individual neuron each carries only piecemeal time
information, and different functional subtypes of neurons
represent distinctive time features. Accurate time-keeping can
thus be achieved via a group decision-making mechanism, i.e.,
polling sufficiently large cohorts of neurons. The finding that
neurons switch between states and modes as well as the presence
of PWHA might reflect a dynamic load-balancing scheme to
equalize contribution coefficients from individual members in the
system. Finally, topological specificity, as evidenced by the
modular organization of time features, may endow multi-timed
output signals with diversity and tuning ability, such that one
master clock can command and coordinate a variety of peripheral
clocks.

MATERIALS AND METHODS
Animals
All animal experiments were conducted in accordance with the guidelines
of the Animal Care and Use Committee of Peking University accredited by
AAALAC International and the procedures were approved by the Animal
Care Committee of PKU-Nanjing Institute of Translational Medicine
(Approval ID: IACUC-2021-023). All mice were housed in a temperature-
controlled (20–22 °C) and specific pathogen-free animal facility, 3–5 per
cage and maintained on a 12-h light/dark cycle, with water and food
available ad libitum. The experimental mice expressing GCaMP6s or
GCaMP6f specifically in GABAergic neurons (Viaat-Cre::GCaMP6s mice or
Viaat-Cre::GCaMP6f mice) were generated by crossing Viaat-Cre mice (JAX
#017535)47 with Rosa26-LSL-GCaMP6s mice48 or Rosa26-LSL-GCaMP6f mice
(JAX #024105)49 for at least two generations.

Preparation of SCN slices
Before the experiment, male mice of 4–6 weeks old were individually
housed in cages containing running wheels for 14 days, with light on from
07:00 to 19:00 in a 12-h light/dark cycle. Their locomotor activity was
recorded and analyzed using ClockLab (Actimetrics). The mice exhibiting
robust rhythmic locomotor activity were chosen for the subsequent
preparation of SCN slices.
The mice were removed from the home cage at zeitgeber time 11,

anesthetized with 1.25% tribromoethanol (20 μL/g, i.p.; EasyCheck), and
subsequently transcardially perfused with ice-cold section artificial
cerebrospinal fluid (aCSF) containing 110mM choline chloride, 25 mM
NaHCO3, 25 mM D-glucose, 7 mM MgCl2·6H2O, 2.5 mM KCl, 1.3 mM
NaH2PO4, 0.5 mM CaCl2, 1.3 mM L-sodium ascorbate and 0.6 mM sodium
pyruvate saturated with 95% O2/5% CO2 at pH 7.3–7.4.50,51 Then the mice
were decapitated followed by brain removal. The optic nerves were
carefully cut to ensure that no stretching occurs to damage the SCN. The
brain was then rapidly immersed in ice-cold section aCSF and sliced using
a vibratome (VT1200, Leica). A 300-μm coronal slice containing the middle-
rostrocaudal region of the SCN was prepared and incubated in recording
aCSF (124mM NaCl, 24 mM NaHCO3, 10 mM D-glucose, 3 mM KCl, 1.25mM
NaH2PO4, 2 mM CaCl2 and 1mM MgSO4) at 34 °C for 30 min.52 The
recording aCSF was bubbled with 95% O2/5% CO2 for 1 h before use. After
incubation, the SCN slice was transferred to a submerged slice chamber
(RC-27LD, Warner Instrument) and then placed on a heating platform (PM-
7D, Warner Instrument) for subsequent Ca2+ imaging. To allow continuous
perfusion of the SCN slice from both the upper and lower sides, a custom-
made slice supporter (threads are made of Lycra and spacing 1mm) and a
slice anchor (2 mm thread spacing, SHD-27LP/2, Warner Instrument) were
used to support it 0.5 mm above a cover glass (24mm × 60mm, #1
thickness, Deckglaser). Persistent perfusion of oxygenated recording aCSF
heated to 34 °C was conducted by a peristaltic pump (BT100-2J,
LongerPump) and a vacuum pump (7E-C, Yuwell) at a rate of ~3mL/min.

Ca2+ imaging of SCN slices
A two-photon microscope equipped with a Ti:Sapphire laser (Chameleon
Vision S, Coherent) and a 25× objective (Apochromat, NA1.10, Nikon) was
used to continuously image Ca2+ signals reported by GCaMP6f. Images
were acquired with two-photon excitation at 920 nm and emission

collection at 500–550 nm. The time-lapse images (1024 × 960 pixels, 0.65
μm pixel size) were obtained at 2.7 Hz for 6 h without any interruption.
For volumetric Ca2+ imaging of the whole 300-μm SCN slice, we

designed and custom-built a resonant scanning dual-view two-photon
microscope to acquire time-lapse images. The setup involved two resonant
scanning two-photon microscopes positioned symmetrically on the upper
and lower sides. Both microscopes were equipped with identical objectives
(25×, Apochromat, NA1.10, Nikon) and utilized the same design of
excitation and collection light paths. The upright microscope captured
images of the upper half of the slice, while the inverted microscope
captured images of the lower half. Images were acquired alternately from
the upper and lower sides. The light source was a Ti:Sapphire laser
(Chameleon Vision S, Coherent) running at 920 nm. The GCaMP6s
fluorescence was reflected by a dichroic mirror (FF705-Di01, Semrock)
through a bandpass filter (FF03-525/50, Semrock). The laser power at
different imaging depths was pre-calibrated and adjusted accordingly. To
enhance the signal-to-noise ratio and optimize collection efficiency, the
fluorescence signals from either side of the microscope were simulta-
neously detected and then combined.
Z-axis scanning was performed with both objectives using a piezo

objective scanner (PFM450E, Thorlabs). Each volumetric stack comprised
44–48 layers (512 × 512 pixels per layer, 1.27 μm pixel size) with intervals of
~6.7 μm, covering a ~300 μm-thick SCN slice. Continuous volumetric
imaging was conducted at a rate of ~0.67 volumes/s for 5 min. The
imaging protocol commenced at CT12 and was repeated hourly for 30 h.
The last 24-h imaging data were used for analysis, allowing time for
equilibration and device stabilization.

3D-t image analysis pipeline
Images were processed using a custom-developed 3D-t image analysis
pipeline based on MATLAB (Mathworks) and Python platform. First, to align
and combine the images of the upper and lower sides into a coherent
whole-SCN t-series stack, we used piecewise rigid motion correction
NoRMCorre to correct slight displacements between the two sides.53 Next,
non-rigid motion correction NoRMCorre was applied within each time
point to generate average-projection image stacks. Based on the average-
projection image stacks, we employed the elastix algorithm for 3D image
registration between each time point.54 Then, we employed a correlation-
based method to generate feature images that amplify the contrast
between Ca2+ activity and background noise. This method operates on the
principle that pixels associated with a neuron typically exhibit synchro-
nized temporal dynamics, thus showing a higher correlation.55,56 Subse-
quently, we created hybrid images by fusing these feature images with
average-projection images, thereby integrating both morphological and
activity-based information. Neuronal regions were identified using the
UNet2DS algorithm applied specifically to these hybrid images.57 The
segmented regions of interest (ROIs) were then manually proofread. To
define SCN neurons, we segmented them within an empirically delineated
SCN outer contour. This contour served as a boundary to differentiate
between SCN and extra-SCN regions.
Subsequently, neuronal Ca2+ time series were extracted. The fluores-

cence intensity (F) of a certain neuron was calculated as the averaged
fluorescence after background subtraction from the raw image fluores-
cence (Fraw), i.e., F= < Fraw – Fbg >, where brackets denote the average over
the pixels within the ROI region, Fbg denotes the background baseline
fluorescence which was calculated as the mean of the lowest 10%
fluorescence pixels of the image. For a given fluorescence signal, the
MLspike algorithm was employed to extract Ca2+ burst attributes,58 such
as Ca2+ burst onset time and baseline fluorescence intensity (F0). The Ca2+

burst amplitude was measured as the peak ΔF/F, i.e., (F – F0)/F0 of the
respective Ca2+ burst event. The duration of individual Ca2+ burst was
measured as the full width at half maximum (Supplementary information,
Fig. S3e).

Graph-based Ca2+ state classification
The fluorescence signals were first subjected to Z-score normalization.
Following normalization, these signals were projected onto a phase-space
manifold that encompasses all potential states of the system. During this
transformation, we utilized mutual information to optimize the interval
between consecutive data points in the manifold — termed “delay time”,
effectively reducing redundancy.59 Next, we specified the requisite number
of coordinates for representing the system’s dynamic states within the
phase-space to be three, referred to as “embedding dimension”. This 3D
construction was subsequently organized into a directed graph, where
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data points were nodes linked by directed edges. This directed graph
representation allowed us to cast the classification of “Ca2+ states” for all
neurons (Fig. 2) as a graph classification problem.
The correspondence between each of the six Ca2+ states identified

empirically and its phase-space topological manifold is shown in Fig. 2, and
the phase-space topological manifolds for 429 neurons were manually
labeled. Further, data augmentation was performed to acquire more
training data to expand the training set by a factor of four, by (1)
perturbing the magnitude by multiplying a factor with mean 1 and
variance 0.5; (2) swapping the first and second halves of each state. The
final training dataset comprised a total of 832 instances. Among them, 25%
were original training data, while the remaining 75% were augmented
data. Then, a classical graph classification method known as the GCN23 was
adopted to classify phase-space topological manifolds into one of the six
predefined states. The GCN architecture consisted of three layers of graph
convolution kernels, with the dimension of the intermediate layer set to 32.
We implemented a Leaky ReLU activation function, applying a negative
slope of 0.2. We utilized the Adam optimizer (learning rate, 0.001; training
duration, 160 epochs). The outputs from the three layers were then
concatenated together and processed through global max pooling to
acquire graph-level features. The resulting pooled graph-level representa-
tion was fed into a classifier composed of two FC layers to obtain the final
classification results. The classifier was optimized by Cross-Entropy loss.
Finally, the trained model was adopted to categorize Ca2+ states for every
5-min time series.

Visualizing spatiotemporal PWHA
To generate contour plots of PWHA in selected SCN layers, we first
employed spatial smoothing of the average-projection image using
MATLAB’s built-in function imgaussfilt with a sigma of 3.5. This is followed
by intensity normalization for each layer, dividing by its mean pixel value.
Pixels with a second derivative exceeding a set threshold are marked as
“excited”.60 These excited pixels at synchronized timings outline the PWHA
wavefront, as shown in Supplementary information, Fig. S7.
To provide a 4D (XYZ-t) view of PWHA, we developed a custom

visualization software using the Unity platform. Individual neurons were
represented as particles using Unity’s VFX Graph system (https://unity.com/
visual-effect-graph). The particle system is a technical concept in computer
graphics used to visualize a range of complex and high-dimensional
phenomena. The rendering of each particle encodes a neuron’s 3D spatial
coordinate, normalized fluorescence signals (brightness), and subtype
(color). To reveal spatiotemporal patterns, normalized fluorescence signals
were temporally averaged over 200 frames (5-min recording). A sampling
curve mapped the averaged intensity values to particle color and
brightness for visualization. Neurons with low intensity were hidden to
highlight active areas. By animating the hourly averaged data through
frame interpolation, our visualization method intuitively revealed the
spatial distribution and temporal dynamics of Ca2+ signals across the
population of SCN neurons. The result is shown in Supplementary
information, Video S1.

Time predictor based on Ca2+ signals
Each dataset was divided into training, validation, and testing datasets at a
ratio of 6:1:3. A CNN was constructed with one convolutional layer, a
residual block of 32 channels followed by one FC layer. The residual block
was implemented with two convolutional layers and a residual connec-
tion.61 Ca2+ signal across a predefined number of randomly selected
neurons (e.g., 1, 10, 100, etc.) with the same time label was directly input to
the CNN. Cross-entropy loss was used to control weight updates. Five
random seeds, 0, 1, 2, 3 and 4 were used for these experiments, with 5000
trials each to assess time prediction accuracy. t-SNE analysis was performed
on the output features of the second convolutional layer using random
seed 0. All time predictors in this study shared the same configuration while
each was trained with a whole-SCN dataset or a single-module dataset.
To quantify the contribution coefficient of each neuron in the SCN

population to the time prediction, adjustments were made to both the
datasets and the neural network architecture. First, the dataset was
transformed to yield 24 signals obtained by Ca2+ signals from all neurons
across the 24 time points. Then, the channels of the convolutional layers
were reduced to 2, which was the minimal value to achieve 100% accuracy
on the new dataset. Lastly, the integrated gradient-based attribution
map38 was used to extract the contribution coefficients of individual
neuronal Ca2+ signals to the time prediction. The contribution coefficients
were normalized into the range of [0, 1] by min-max normalization.

Classification of functional neuron subtypes via TraceContrast
The Ca2+ time series in consecutive 24 h (5-min recording in each hour) of
all the observed neurons were represented as a 3D matrix. Each time series
was randomly sampled into two overlapping sub-series and then input
into an encoder. The encoder was composed of an FC layer, a timestamp
masking module to mask latent vectors at randomly selected timestamps
to generate an augmented context view, and a dilated CNN module with
ten residual blocks.62 In particular, each sub-series was augmented by
cropping and masking to generate similar sub-series (i.e., positive samples),
and sub-series from different timestamps or various neurons were adopted
as dissimilar sub-series (i.e., negative samples).62 In the cropping operation,
a random length from each sub-sequence was selected and isolated. For
the masking operation, we randomly generated mask values using a
binomial distribution with a probability parameter of 0.5 (Python package
function “numpy.random.binomial”). This implies an equal likelihood of a
value being 0 or 1, where 1-mask retains the original data and 0-mask sets
the corresponding data to zero. Further, to enhance positive sampling,
each sub-series was augmented by introducing Gaussian noise to mimic
noise generated during the acquisition process, and each sub-series was
transformed into the wavelet domain with only the signal represented by
high-frequency components retained as positive samples, based on the
observation that the high-frequency signal captured Ca2+ bursts, the
prominent feature for the functional neuron classification. The number of
negative samples was the number of neurons multiplied by the length of
the sequence for each time scale. Correspondingly, the number of positive
samples was set to the number of negative samples, maintaining a 1:1
ratio for balanced training. The iteration process continued until the
algorithm achieved convergence, typically occurring around 10 iterations.
This augmentation process was uniformly applied to all sub-sequences,
ensuring consistency across our dataset.
Hierarchical contrasting was then performed to learn invariant features

at multiple resolutions of neurons and temporal sequences, and
max pooling along the time axis was conducted to acquire the overall
representation of each neuron. The network was optimized with
temporal contrastive loss and instance-wise contrastive loss over
multiple scales in a hierarchical framework.62 The K-means algorithm
was finally deployed to cluster the overall neuronal representations into K
categories.

3D visualization of the modular organization of functional
neuron subtypes
The 3D positions of identified neurons were used to create a binary volume
dataset, and each functional neuron subtype where the voxels in the
volume surrounding the neurons were labeled as 1, while the remaining
were labeled as 0. These volume datasets were further converted into a
point cloud format and imported into MeshLab software (https://
www.meshlab.net/). Within MeshLab, detailed triangle mesh was com-
puted via Poisson surface reconstruction.63 Further manual repair and
smoothing of the mesh was applied to improve mesh continuity. Neuron
subtypes are represented in different colors. The result is shown in
Supplementary information, Video S2.

Quantification and statistical analysis
Data from each experiment represent at least three independent
replicates. The number of independent experiments (n) and the relevant
statistical parameters for each experiment (such as mean ± SEM) are
described in the figure legends. Data fitting and calculation of the fitting
coefficient (R2) were performed with MATLAB (Mathworks). Statistical
significance was performed with MATLAB, and the P value was calculated
by a two-sided Wilcoxon rank sum test, using MATLAB’s built-in function
ranksum.

DATA AVAILABILITY
Raw data in this study and custom code used in this work are available at GitHub:
https://github.com/RafaWong/SCN-Research-Project.
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