Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Direct introduction of hydroxyl groups in polystyrene chain ends prepared by atom-transfer radical polymerization

Abstract

We report a method to directly introduce a hydroxyl group at the omega chain end of polystyrene prepared by atom-transfer radical polymerization. To achieve the quantitative conversion of the bromine group to a hydroxyl group, the transfer reaction of a carbocation with water was exploited. This transfer reaction is a well-known reaction in cationic polymerization. The quantitative conversion and chemical structures of the hydroxyl-terminated PS were characterized using 1H nuclear magnetic resonance spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and high-performance liquid chromatography. In addition, alcohol-based compounds were used to introduce acetonide and propane groups into PS-Br.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Wang J-S, Matyjaszewski K. Controlled/ “living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc. 1995;117:5614–5.

    Article  CAS  Google Scholar 

  2. Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium (II)/methylaluminum bis (2, 6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules. 1995;28:1721–3.

    Article  CAS  Google Scholar 

  3. Anastasaki A, Willenbacher J, Fleischmann C, Gutekunst WR, Hawker CJ. End group modification of poly (acrylates) obtained via ATRP: a user guide. Polym Chem. 2017;8:689–97.

    Article  CAS  Google Scholar 

  4. Coessens V, Matyjaszewski K. End group transformation of polymers prepared by ATRP, substitution to azides. J Polym Sci A. 1999;36:667–79.

    Google Scholar 

  5. Coessens V, Matyjaszewski K. Synthesis of polymers with hydroxyl end groups by atom transfer radical polymerization. Macromol Rapid Commun. 1999;20:127–34.

    Article  CAS  Google Scholar 

  6. Hegewald J, Pionteck J, Häußler L, Komber H, Voit B. End‐functionalized polystyrene by ATRP: a facile approach to primary amino and carboxylic acid terminal groups. J Polym Sci A. 2009;47:3845–59.

    Article  CAS  Google Scholar 

  7. Hein JE, Fokin VV. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper (I) acetylides. Chem Soc Rev 2010;39:1302–15.

    Article  CAS  Google Scholar 

  8. Lutz JF, Börner HG, Weichenhan K. Combining atom transfer radical polymerization and click chemistry: a versatile method for the preparation of end‐functional polymers. Macromol Rapid Commun. 2005;26:514–8.

    Article  CAS  Google Scholar 

  9. Matyjaszewski K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules. 2012;45:4015–39.

    Article  CAS  Google Scholar 

  10. Jakubowski W, Kirci‐Denizli B, Gil RR, Matyjaszewski K. Polystyrene with improved chain‐end functionality and higher molecular weight by ARGET ATRP. Macromol Chem Phys. 2008;209:32–39.

    Article  CAS  Google Scholar 

  11. Nyström F, Soeriyadi AH, Boyer C, Zetterlund PB, Whittaker MR. End‐group fidelity of copper (0)‐meditated radical polymerization at high monomer conversion: an ESI‐MS investigation. J Polym Sci A. 2011;49:5313–21.

    Article  Google Scholar 

  12. Chong Y, Le TP, Moad G, Rizzardo E, Thang SH. A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: the RAFT process. Macromolecules. 1999;32:2071–4.

    Article  CAS  Google Scholar 

  13. Gao H, Ohno S, Matyjaszewski K. Low polydispersity star polymers via cross-linking macromonomers by ATRP. J Am Chem Soc. 2006;128:15111–3.

    Article  CAS  Google Scholar 

  14. Gaynor SG, Edelman S, Matyjaszewski K. Synthesis of branched and hyperbranched polystyrenes. Macromolecules. 1996;29:1079–81.

    Article  CAS  Google Scholar 

  15. Greszta D, Mardare D, Matyjaszewski K. “Living” radical polymerization. 1. Possibilities and limitations Macromolecules. 1994;27:638–44.

    Article  CAS  Google Scholar 

  16. Mastan E, Zhu S. A molecular weight distribution polydispersity equation for the ATRP system: quantifying the effect of radical termination. Macromolecules. 2015;48:6440–9.

    Article  CAS  Google Scholar 

  17. Yu L, Zhang H, Ding J. A subtle end‐group effect on macroscopic physical gelation of triblock copolymer aqueous solutions. Angew Chem Int Ed. 2006;45:2232–5.

    Article  CAS  Google Scholar 

  18. Zhu L-W, Ou Y, Wan L-S, Xu Z-K. Polystyrenes with hydrophilic end groups: synthesis, characterization, and effects on the self-assembly of breath figure arrays. J Phys Chem B. 2014;118:845–54.

    Article  CAS  Google Scholar 

  19. Chung J, Yokoyama M, Aoyagi T, Sakurai Y, Okano T. Effect of molecular architecture of hydrophobically modified poly (N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Control Release. 1998;53:119–30.

    Article  CAS  Google Scholar 

  20. Yoon S, MacKnight WJ, Hsu SL. End‐group effect on chain conformation of poly (propylene glycol) and poly (ethylene glycol). J Appl Polym Sci. 1997;64:197–202.

    Article  CAS  Google Scholar 

  21. Palmiero UC, Sponchioni M, Manfredini N, Maraldi M, Moscatelli D. Strategies to combine ROP with ATRP or RAFT polymerization for the synthesis of biodegradable polymeric nanoparticles for biomedical applications. Polym Chem. 2018;9:4084–99.

    Article  Google Scholar 

  22. Radhakrishnan B, Chambon P, Cloutet E, Cramail H. Synthesis of hydroxy-and dihydroxy-end-capped poly (n-butyl acrylate) s and their use as reactive stabilizers for the preparation of polyurethane latexes. Colloid Polym Sci. 2003;281:516–30.

    Article  CAS  Google Scholar 

  23. Liang L, Astruc D. The copper (I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. an overview. Coord Chem Rev. 2011;255:2933–45.

    Article  CAS  Google Scholar 

  24. Burgess F, Cunliffe A, MacCallum J, Richards D. Reaction to effect the transformation of anionic polymerization into cationic polymerization: 1. Synthesis and reactivities of anionically generated bromine terminated polymers Polymer. 1977;18:719–25.

    Article  CAS  Google Scholar 

  25. Kim K, Hasneen A, Paik H-j, Chang T. MALDI-TOF MS characterization of polystyrene synthesized by ATRP. Polymer. 2013;54:6133–9.

    Article  CAS  Google Scholar 

  26. Matyjaszewski K, Davis K, Patten TE, Wei M. Observation and analysis of a slow termination process in the atom transfer radical polymerization of styrene. Tetrahedron. 1997;53:15321–9.

    Article  CAS  Google Scholar 

  27. Lin L, Zhang G, Kodama K, Yasutake M, Hirose T. A benign initiating system for cationic polymerization of isobutyl vinyl ether: Silver salt/aryl (alkyl) halide/lewis base. J Polym Sci A. 2015;53:2050–8.

    Article  CAS  Google Scholar 

  28. Uchiyama M, Satoh K, Kamigaito M. Diversifying cationic RAFT polymerization with various counteranions: generation of cationic species from organic halides and various metal salts. ACS Macro Lett. 2016;5:1157–61.

    Article  CAS  Google Scholar 

  29. Gürdere MB, Budak Y, Ceylan M. Synthesis of 2, 3, 4, 5-tetraphenylfuran,-thiophene and-pyrrole from Toluene. Asian J Chem. 2008;20:1425.

    Google Scholar 

  30. Bartl J, Steenken S, Mayr H. Kinetics of the reactions of laser-flash photolytically generated carbenium ions with alkyl and silyl enol ethers. Comparison with the reactivity toward alkenes, allylsilanes and alcohols. J Am Chem Soc. 1991;113:7710–6.

    Article  CAS  Google Scholar 

  31. Kunitake T, Takarabe K. Determination of the rate constants of the elementary steps in the cationic polymerization of styrene by trifluoromethanesulfonic acid. Macromolecules. 1979;12:1061–7.

    Article  CAS  Google Scholar 

  32. Bernaerts KV, Schacht EH, Goethals EJ, Prez FEDu. Synthesis of poly (tetrahydrofuran)‐b‐polystyrene block copolymers from dual initiators for cationic ring‐opening polymerization and atom transfer radical polymerization. J Polym Sci A. 2003;41:3206–17.

    Article  CAS  Google Scholar 

  33. Shen X, He X, Chen G, Zhou P, Huang L. MALDI‐TOF mass spectrometry characterization of C60 end‐capped polystyrene prepared by ATRP. Macromol Rapid Commun. 2000;21:1162–5.

    Article  CAS  Google Scholar 

  34. Francis R, Lepoittevin B, Taton D, Gnanou Y. Toward an easy access to asymmetric stars and miktoarm stars by atom transfer radical polymerization. Macromolecules. 2002;35:9001–8.

    Article  CAS  Google Scholar 

  35. Lee W, Cho D, Chun BO, Chang T, Ree M. Characterization of polystyrene and polyisoprene by normal-phase temperature gradient interaction chromatography. J Chromatogr A. 2001;910:51–60.

    Article  CAS  Google Scholar 

  36. Chang T, Recent advances in liquid chromatography analysis of synthetic polymers. Adv. Polym. Sci. 2003;163:1–60.

  37. Macko T, Hunkeler D. Liquid chromatography under critical and limiting conditions: a survey of experimental systems for synthetic polymers. Adv Polym Sci. 2003;163:61–136.

    CAS  Google Scholar 

  38. Oh J, Kuk J, Lee T, Ye J, Paik H-j, Lee HW, et al. Molecular weight distribution of living chains in polystyrene prepared by atom transfer radical polymerization. ACS Macro Lett. 2017;6:758–61.

    Article  CAS  Google Scholar 

  39. Sinnwell S, Ritter H. Microwave accelerated polymerization of 2‐phenyl‐5, 6‐dihydro‐4H‐1, 3‐oxazine: kinetics and influence of end‐groups on glass transition temperature. Macromol Rapid Commun. 2006;27:1335–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2018R1A2B6005119).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heung Bae Jeon or Hyun-jong Paik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Seo, M.G., Jung, J. et al. Direct introduction of hydroxyl groups in polystyrene chain ends prepared by atom-transfer radical polymerization. Polym J 52, 57–64 (2020). https://doi.org/10.1038/s41428-019-0250-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0250-z

Search

Quick links