Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epoxidized soybean oil grafted with CTBN as a novel toughener for improving the fracture toughness and mechanical properties of epoxy resin

Abstract

We prepared epoxidized soybean oil (ESO) grafted with carboxyl-terminated poly(acrylonitrile-co-butadiene) (CTBN) (ESO-g-CTBN) by a ring-opening reaction between the epoxide group and the carboxyl group. The structural features of the resulting product were determined using modern analytical techniques, such as Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy, and gel permeation chromatography (GPC). The ESO-g-CTBN was applied as a toughener for an epoxy resin-based composite that was fabricated by blending the epoxy resin with diethylenetriamine (DETA) as the curing agent. The main aim of this procedure is to simultaneously improve the mechanical properties and fracture toughness of a bisphenol A-based epoxy resin. When 15 phr of ESO-g-CTBN was added to the EP/DETA mixture, the resin fracture toughness (KIC) and tensile strength increased from 0.65 to 1.09 MPa m1/2 and from 34.42 to 42.55 MPa, respectively. The ESO-g-CTBN existed in the EP matrix as a separate phase and induced an increase in the KIC via stopping crack growth or changing the crack direction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lee JKY, Chen N, Peng S, Li L, Tian L, Thakor N, et al. Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons. Prog Polym Sci. 2018;86:40–84.

    Article  CAS  Google Scholar 

  2. Foard JHD, Rollason D, Thite AN, Bell C. Polymer composite Belleville springs for an automotive application. Compos Struct. 2019;221:110891.

    Article  Google Scholar 

  3. Akhtar S, Saad M, Pandey P. Overview of current advances in the development of polymer composite in biomedical applications. Mater Today Proc. 2018;5:20217–23.

    Article  Google Scholar 

  4. Sharma J, Arya RK, Verros GD. A unified model for the drying of glassy polymer coatings. Prog Org Coat. 2019;134:219–25.

    Article  CAS  Google Scholar 

  5. Sarikaya E, Çallioğlu H, Demirel H. Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Compos B Eng. 2019;167:461–6.

    Article  CAS  Google Scholar 

  6. Vu CM, Nguyen DD, Sinh LH, Pham TD, Pham LT, Choi HJ. Environmentally benign green composites based on epoxy resin/bacterial cellulose reinforced glass fiber: fabrication and mechanical characteristics. Polym Test. 2017;61:150–61.

    Article  CAS  Google Scholar 

  7. Vu CM, Sinh LH, Nguyen DD, Thi HV, Choi HJ. Simultaneous improvement of the fracture toughness and mechanical characteristics of amine-functionalized nano/micro glass fibril-reinforced epoxy resin. Polym Test. 2018;71:200–8.

    Article  CAS  Google Scholar 

  8. Vu CM, Sinh LH, Choi HJ, Pham TD. Effect of micro/nano white bamboo fibrils on physical characteristics of epoxy resin reinforced composites. Cellulose. 2017;24:5475–86.

    Article  CAS  Google Scholar 

  9. Lee M, Kwon W, Kwon D, Lee E, Jeong E. Fracture toughness of the novel in-situ polytriazolesulfone modified epoxy resin for carbon fiber/epoxy composites. J Ind Eng Chem. 2019;77:461–9.

    Article  CAS  Google Scholar 

  10. Cai S, Li Y, Liu HY, Mai YW. Effect of electrospun polysulfone/cellulose nanocrystals interleaves on the interlaminar fracture toughness of carbon fiber/epoxy composites. Compos Sci Tech. 2019;181:107673.

    Article  CAS  Google Scholar 

  11. Vu CM, Choi HJ. Enhancement of interlaminar fracture toughness of carbon fiber/epoxy composites using silk fibroin electrospun nanofibres. Polym Plast Tech Eng. 2016;55:1048–56.

    Article  Google Scholar 

  12. Dittanet P, Pearson RA. Effect of bimodal particle size distributions on the toughening mechanisms in silica nanoparticle filled epoxy resin. Polym. 2013;54:1832–45.

    Article  CAS  Google Scholar 

  13. Vu. CM, Choi HJ. Fracture toughness and surface morphology of micro/nano sized fibrilsmodified epoxy resin. Polym Sci A. 2016;58:464–70.

    Article  CAS  Google Scholar 

  14. Pham TD, Vu CM, Choi HJ. Enhanced fracture toughness and mechanical properties of epoxy resin with rice husk-based nano-silica. Polym Sci A. 2017;59:437–44.

    Article  CAS  Google Scholar 

  15. Wang L, Tan Y, Wang H, Gao L, Xiao C. Investigation on fracture behavior and mechanisms of DGEBF toughened by CTBN. Chem Phys Lett 2018;699:14–21.

    Article  CAS  Google Scholar 

  16. Srivastava K, Rathore AK, Srivastava D. Studies on the structural changes during curing of epoxy and its blend with CTBN. Spectrochim Acta A Mol Biomol Spectrosc. 2018;188:99–105.

    Article  CAS  Google Scholar 

  17. Chen J, Kinloch AJ, Sprenger S, Taylor AC. The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles. Polym. 2013;54:4276–89.

    Article  CAS  Google Scholar 

  18. Liu S, Fan X, He C. Improving the fracture toughness of epoxy with nanosilica-rubber core-shell nanoparticles. Compos Sci Tech. 2016;125:132–40.

    Article  CAS  Google Scholar 

  19. Han W, Chen S, Campbell J, Zhang X, Tang Y. Fracture toughness and wear properties of nanosilica/epoxy composites under marine environment. Mater Chem Phys. 2016;177:147–55.

    Article  CAS  Google Scholar 

  20. Li J, Zhu W, Zhang S, Gao Q, Li J, Zhang W. Amine-terminated hyperbranched polyamide covalent functionalized graphene oxide-reinforced epoxy nanocomposites with enhanced toughness and mechanical properties. Polym Test. 2019;76:232–44.

    Article  CAS  Google Scholar 

  21. Vijayan PP, Puglia D, Maadeed MAS, Kenny JM, Thomas S. Elastomer/thermoplastic modified epoxy nanocomposites: the hybrid effect of ‘micro’ and ‘nano’ scale. Mater Sci Eng: R: Rep. 2017;116:1–29.

    Article  Google Scholar 

  22. Nguyen LT, Vu CM, Phuc BT, Tung NH. Simultaneous effects of silanized coal fly ash and nano/micro glass fiber on fracture toughness and mechanical properties of carbon fiber‐reinforced vinyl ester resin composites. Polym Eng Sci. 2019;59:584–91.

    Article  CAS  Google Scholar 

  23. Bach QV, Vu CM, Vu HT, Nguyen DD. Enhancing mode I and II interlaminar fracture toughness of carbon fiber-filled epoxy-based composites using both rice husk silica and silk fibroin electrospun nanofibers. High Perform Polym. 2019; https://doi.org/10.1177/0954008319840404.

    Article  CAS  Google Scholar 

  24. Fernandes FC, Kirwan K, Lehane D, Coles SR. Epoxy resin blends and composites from waste vegetable oil. Eur Polym J. 2017;89:449–60.

    Article  CAS  Google Scholar 

  25. Sharmin E, Zafar F, Akram D, Alam M, Ahmad S. Recent advances in vegetable oils based environment friendly coatings: a review. Ind Crop Prod. 2015;76:215–29.

    Article  CAS  Google Scholar 

  26. Yim YJ, Rhee KY, Park SJ. Fracture toughness and ductile characteristics of diglycidyl ether of bisphenol-A resins modified with biodegradable epoxidized linseed oil. Compos B Eng. 2017;131:144–52.

    Article  CAS  Google Scholar 

  27. Park SJ, Jin FL, Lee JR. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil. Mater Sci Eng A. 2004;374:109–14.

    Article  Google Scholar 

  28. Kumar S, Samal SK, Mohanty S, Nayak SK. Epoxidized soybean oil-based epoxy blend cured with anhydride-based cross-linker: thermal and mechanical characterization. Ind Eng Chem Res. 2017;56:687–98.

    Article  CAS  Google Scholar 

  29. Zhang J, Deng S, Wang Y, Ye L. Role of rigid nanoparticles and CTBN rubber in the toughening of epoxies with different cross-linking densities. Compos A Appl Sci Manuf. 2016;80:82–94.

    Article  CAS  Google Scholar 

  30. Mansour G, Tsongas K, Tzetzis D. Investigation of the dynamic mechanical properties of epoxy resins modified with elastomers. Compos B Eng. 2016;94:152–9.

    Article  CAS  Google Scholar 

  31. Vu CM, Nguyen LT, Nguyen TV, Choi HJ. Effect of additive-added epoxy on mechanical and dielectric characteristics of glass fiber reinforced epoxy composites. Polym. 2014;38:726–34.

    CAS  Google Scholar 

  32. Park SJ, Jin FL, Lee JR. Effect of biodegradable epoxidized castor oil on physicochemical and mechanical properties of epoxy resins. Macromol Chem Phys. 2004;205:2048–54.

    Article  CAS  Google Scholar 

  33. Yu JW, Jung J, Choi YM, Choi JH, Yu J, Lee JK, et al. Enhancement of the crosslink density, glass transition temperature, and strength of epoxy resin by using functionalized graphene oxide co-curing agents. Polym Chem. 2016;7:36–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.02–2017.15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuong Manh Vu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bach, QV., Vu, C.M., Vu, H.T. et al. Epoxidized soybean oil grafted with CTBN as a novel toughener for improving the fracture toughness and mechanical properties of epoxy resin. Polym J 52, 345–357 (2020). https://doi.org/10.1038/s41428-019-0275-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0275-3

This article is cited by

Search

Quick links