Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Iron-catalyzed reactions of CO2 and epoxides to yield cyclic and polycarbonates

Abstract

The catalytic coupling and polymerization of CO2 and epoxides has been studied for over 50 years. While traditionally dominated by catalytic systems containing cobalt, chromium, and zinc, the use of iron catalysts has emerged in the past 10 years. This review provides an overview of the homogeneous iron-catalyzed transformations of carbon dioxide and epoxides to yield cyclic and/or polycarbonates. It is important to note the potential for cyclic carbonates to be used as monomers for polymer formation via transesterification or by ring-opening polymerization in some cases, e.g., cyclohexene carbonate. Typical catalytic systems are composed of a Lewis acidic iron center and an anionic nucleophilic source, either through an anionic group weakly bound to the metal center or the addition of an external cocatalyst, cooperatively described as a binary catalytic system. This review is divided into two sections: (1) iron catalysts for cyclic carbonates and (2) iron catalysts for polycarbonates. At the end of each section, a table summarizes each catalytic system and the reaction conditions utilized in an attempt to provide a clearer comparison across the literature. Focus is given to highlighting differences in product selectivity, reaction conditions, and relative amounts of cocatalyst used.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8
Scheme 4
Scheme 5
Fig. 9
Fig. 10
Fig. 11
Scheme 6

Similar content being viewed by others

References

  1. Kätelhön A, Meys R, Deutz S, Suh S, Bardow A. Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proc Natl Acad Sci USA. 2019;116:11187.

    PubMed  Google Scholar 

  2. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE. Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew Chem Int Ed. 2011;50:8510–37.

    CAS  Google Scholar 

  3. Liu Q, Wu L, Jackstell R, Beller M. Using carbon dioxide as a building block in organic synthesis. Nat Commun. 2015;6:5933.

    PubMed  Google Scholar 

  4. North M, Styring P. Perspectives and visions on CO2 capture and utilisation. Faraday Discuss. 2015;183:489–502.

    CAS  PubMed  Google Scholar 

  5. Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev. 2014;114:1709–42.

    CAS  PubMed  Google Scholar 

  6. Aresta M. Activation of small molecules. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany, 2006. pp 1–41.

  7. Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev. 2018;118:434–504.

    CAS  PubMed  Google Scholar 

  8. Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide. J Polym Sci. 1969;7:287–92.

    CAS  Google Scholar 

  9. Kember MR, Buchard A, Williams CK. Catalysts for CO2/epoxide copolymerisation. Chem Commun. 2011;47:141–63.

    CAS  Google Scholar 

  10. Kozak CM, Ambrose K, Anderson TS. Copolymerization of carbon dioxide and epoxides by metal coordination complexes. Coord Chem Rev. 2018;376:565–87.

    CAS  Google Scholar 

  11. Poland SJ, Darensbourg DJ. A quest for polycarbonates provided via sustainable epoxide/CO2 copolymerization processes. Green Chem. 2017;19:4990–5011.

    CAS  Google Scholar 

  12. Small BL, Brookhart M, Bennett AMA. Highly active iron and cobalt catalysts for the polymerization of ethylene. J Am Chem Soc. 1998;120:4049–50.

    CAS  Google Scholar 

  13. Ittel SD, Johnson LK, Brookhart M. Late-metal catalysts for ethylene homo- and copolymerization. Chem Rev. 2000;100:1169–204.

    CAS  PubMed  Google Scholar 

  14. Britovsek GJP, Bruce M, Gibson VC, Kimberley BS, Maddox PJ, Mastroianni S, et al. Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino)pyridyl ligands: synthesis, structures, and polymerization studies. J Am Chem Soc. 1999;121:8728–40.

    CAS  Google Scholar 

  15. Qi M, Dong Q, Wang D, Byers JA. Electrochemically switchable ring-opening polymerization of lactide and cyclohexene oxide. J Am Chem Soc. 2018;140:5686–90.

    CAS  PubMed  Google Scholar 

  16. Delle Chiaie KR, Biernesser AB, Ortuño MA, Dereli B, Iovan DA, Wilding MJT, et al. The role of ligand redox non-innocence in ring-opening polymerization reactions catalysed by bis(imino)pyridine iron alkoxide complexes. Dalton Trans. 2017;46:12971–80.

    CAS  PubMed  Google Scholar 

  17. Biernesser AB, Delle Chiaie KR, Curley JB, Byers JA. Block copolymerization of lactide and an epoxide facilitated by a redox switchable iron-based catalyst. Angew Chem Int Ed. 2016;55:5251–4.

    CAS  Google Scholar 

  18. Wei J, Riffel MN, Diaconescu PL. Redox control of aluminum ring-opening polymerization: a combined experimental and DFT investigation. Macromolecules. 2017;50:1847–61.

    CAS  Google Scholar 

  19. Wei J, Diaconescu PL. Redox-switchable ring-opening polymerization with ferrocene derivatives. Acc Chem Res. 2019;52:415–24.

    CAS  PubMed  Google Scholar 

  20. Wang X, Thevenon A, Brosmer JL, Yu I, Khan SI, Mehrkhodavandi P, et al. Redox control of group 4 metal ring-opening polymerization activity toward L-lactide and Ε-caprolactone. J Am Chem Soc. 2014;136:11264–7.

    CAS  PubMed  Google Scholar 

  21. Quan SM, Wang X, Zhang R, Diaconescu PL. Redox switchable copolymerization of cyclic esters and epoxides by a zirconium complex. Macromolecules. 2016;49:6768–78.

    CAS  Google Scholar 

  22. Lai A, Hern ZC, Diaconescu PL. Switchable ring-opening polymerization by a ferrocene supported aluminum complex. ChemCatChem. 2019;11:4210–18.

    CAS  Google Scholar 

  23. Kruper WJ, Swart DJ. US Patent 4,500,704, 1985.

  24. Kruper WJ, Dellar DV. Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates. J Org Chem. 1995;60:725–7.

    CAS  Google Scholar 

  25. Darensbourg DJ, Rainey P, Yarbrough J. Bis-salicylaldiminato complexes of zinc. examination of the catalyzed epoxide/CO2 copolymerization. Inorg Chem. 2001;40:986–93.

    CAS  Google Scholar 

  26. Darensbourg DJ, Adams MJ, Yarbrough JC, Phelps AL. Synthesis and structural characterization of double metal cyanides of iron and zinc: catalyst precursors for the copolymerization of carbon dioxide and epoxides. Inorg Chem. 2003;42:7809–18.

    CAS  PubMed  Google Scholar 

  27. Della Monica F, Buonerba A, Capacchione C. Homogeneous iron catalysts in the reaction of epoxides with carbon dioxide. Adv Synth Catal. 2019;361:265–82.

    Google Scholar 

  28. Shibasaki Y, Sanada H, Yokoi M, Sanda F, Endo T. Activated monomer cationic polymerization of lactones and the application to well-defined block copolymer synthesis with seven-membered cyclic carbonate. Macromolecules. 2000;33:4316–20.

    CAS  Google Scholar 

  29. Suriano F, Coulembier O, Hedrick JL, Dubois P. Functionalized cyclic carbonates: from synthesis and metal-free catalyzed ring-opening polymerization to applications. Polym Chem. 2011;2:528–33.

    CAS  Google Scholar 

  30. Tezuka K, Komatsu K, Haba O. The anionic ring-opening polymerization of five-membered cyclic carbonates fused to the cyclohexane ring. Polym J. 2013;45:1183–7.

    CAS  Google Scholar 

  31. Brignou P, Priebe GM, Casagrande O, Carpentier J-F, Guillaume SM. Polycarbonates derived from green acids: ring-opening polymerization of seven-membered cyclic carbonates. Macromolecules. 2010;43:8007–17.

    CAS  Google Scholar 

  32. Saito T, Takojima K, Oyama T, Hatanaka S, Konno T, Yamamoto T, et al. Trimethyl glycine as an environmentally benign and biocompatible organocatalyst for ring-opening polymerization of cyclic carbonate. ACS Sustain Chem Eng. 2019;7:8868–75.

    CAS  Google Scholar 

  33. Gao L, Dong B, Zhang J, Chen Y, Qiao H, Liu Z, et al. Functional biodegradable nitric oxide donor-containing polycarbonate-based micelles for reduction-triggered drug release and overcoming multidrug resistance. ACS Macro Lett. 2019;8:1552–8.

    CAS  Google Scholar 

  34. Marquis ET, Sanderson JR. US Patent 5,283,356, 1994.

  35. Ji DF, Lu XB, He R. Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst. Appl Catal A-Gen. 2000;203:329–33.

    CAS  Google Scholar 

  36. Jin L, Jing H, Chang T, Bu X, Wang L, Liu Z. Metal porphyrin/phenyltrimethylammonium tribromide: high efficient catalysts for coupling reaction of CO2 and epoxides. J Mol Catal A-Chem. 2007;261:262–6.

    CAS  Google Scholar 

  37. Buchard A, Kember MR, Sandeman KG, Williams CK. A bimetallic iron(Iii) catalyst for CO2/epoxide coupling. Chem Commun. 2011;47:212–14.

    CAS  Google Scholar 

  38. Dengler JE, Lehenmeier MW, Klaus S, Anderson CE, Herdtweck E, Rieger B. A one-component iron catalyst for cyclic propylene carbonate synthesis. Eur J Inorg Chem. 2011;3:336–43.

    Google Scholar 

  39. Sheng X, Qiao L, Qin Y, Wang X, Wang F. Highly efficient and quantitative synthesis of a cyclic carbonate by iron complex catalysts. Polyhedron. 2014;74:129–33.

    CAS  Google Scholar 

  40. Adolph M, Zevaco TA, Walter O, Dinjus E, Döring M. Easy-to-handle ionic transition metal complexes in the formation of carbonates from epoxides and CO2: A N4-ligand system based on N,N-bis(2-pyridinecarboxamide)-1,2-benzene. Polyhedron. 2012;48:92–8.

    CAS  Google Scholar 

  41. Adolph M, Zevaco TA, Altesleben C, Walter O, Dinjus E. New cobalt, iron and chromium catalysts based on easy-to-handle N4-chelating ligands for the coupling reaction of epoxides with CO2. Dalton Trans. 2014;43:3285–96.

    CAS  PubMed  Google Scholar 

  42. Fuchs MA, Zevaco TA, Ember E, Walter O, Held I, Dinjus E, et al. Synthesis of cyclic carbonates from epoxides and carbon dioxide catalyzed by an easy-to-handle ionic iron(III) complex. Dalton Trans. 2013;42:5322–9.

    CAS  PubMed  Google Scholar 

  43. Whiteoak CJ, Martin E, Martinez Belmonte M, Benet-Buchholz J, Kleij AW. An efficient iron catalyst for the synthesis of five- and six-membered organic carbonates under mild conditions. Adv Synth Catal. 2012;354:469–76.

    CAS  Google Scholar 

  44. Whiteoak CJ, Gjoka B, Martin E, Martinez Belmonte M, Escudero-Adan EC, Zonta C, et al. Reactivity control in iron(III) amino triphenolate complexes: comparison of monomeric and dimeric complexes. Inorg Chem. 2012;51:10639–49.

    CAS  PubMed  Google Scholar 

  45. Whiteoak CJ, Martin E, Escudero-Adán E, Kleij AW. Stereochemical divergence in the formation of organic carbonates derived from internal epoxides. Adv Synth Catal. 2013;355:2233–9.

    CAS  Google Scholar 

  46. Buonerba A, De Nisi A, Grassi A, Milione S, Capacchione C, Vagin S, et al. Novel iron(III) catalyst for the efficient and selective coupling of carbon dioxide and epoxides to form cyclic carbonates. Catal Sci Technol. 2015;5:118–23.

    CAS  Google Scholar 

  47. Al-Qaisi FaM, Nieger M, Kemell ML, Repo TJ. Catalysis of cycloaddition of carbon dioxide and epoxides using a bifunctional Schiff case iron(III) catalyst. ChemistrySelect. 2016;1:545–8.

    CAS  Google Scholar 

  48. Alhashmialameer D, Collins J, Hattenhauer K, Kerton FM. Iron amino-bis(phenolate) complexes for the formation of organic carbonates from CO2 and oxiranes. Catal Sci Technol. 2016;6:5364–73.

    CAS  Google Scholar 

  49. Andrea KA, Brown TR, Murphy JN, Jagota D, McKearney D, Kozak CM, et al. Characterization of oxo-bridged iron amino-bis(phenolate) complexes formed intentionally or in situ: mechanistic insight into epoxide deoxygenation during the coupling of CO2 and epoxides. Inorg Chem. 2018;57:13494–504.

    CAS  PubMed  Google Scholar 

  50. Andrea KA, Butler ED, Brown TR, Anderson TS, Jagota D, Rose C, et al. Iron complexes for cyclic carbonate and polycarbonate formation: selectivity control from ligand design and metal-center geometry. Inorg Chem. 2019;58:11231–40.

    CAS  PubMed  Google Scholar 

  51. Fazekas E, Nichol GS, Shaver MP, Garden JA. Stable Fe(III) phenoxyimines as selective and robust CO2/epoxide coupling catalysts. Dalton Trans. 2018;47:13106–12.

    CAS  PubMed  Google Scholar 

  52. Della Monica F, Maity B, Pehl T, Buonerba A, De Nisi A, Monari M, et al. [OSSO]-type iron(III) complexes for the low-pressure reaction of carbon dioxide with epoxides: catalytic activity, reaction kinetics, and computational study. ACS Catal. 2018;8:6882–93.

    Google Scholar 

  53. Cozzolino M, Leo V, Tedesco C, Mazzeo M, Lamberti M. Salen, salan and salalen iron(III) complexes as catalysts for CO2/epoxide reactions and ROP of cyclic esters. Dalton Trans. 2018;47:13229–38.

    CAS  PubMed  Google Scholar 

  54. Kamphuis AJ, Milocco F, Koiter L, Pescarmona P, Otten E. Highly selective single-component formazanate ferrate(II) catalysts for the conversion of CO2 into cyclic carbonates. ChemSusChem. 2019;12:3635–41.

    CAS  PubMed  Google Scholar 

  55. Driscoll OJ, Hafford-Tear CH, McKeown P, Stewart JA, Kociok-Köhn G, Mahon MF, et al. The synthesis, characterisation and application of iron(III)–acetate complexes for cyclic carbonate formation and the polymerisation of lactide. Dalton Trans. 2019;48:15049–58.

    CAS  PubMed  Google Scholar 

  56. Nakano K, Kobayashi K, Ohkawara T, Imoto H, Nozaki K. Copolymerization of epoxides with carbon dioxide catalyzed by iron–corrole complexes: synthesis of a crystalline copolymer. J Am Chem Soc. 2013;135:8456–9.

    CAS  PubMed  Google Scholar 

  57. Taherimehr M, Al-Amsyar SM, Whiteoak CJ, Kleij AW, Pescarmona PP. High activity and switchable selectivity in the synthesis of cyclic and polymeric cyclohexene carbonates with iron amino triphenolate catalysts. Green Chem. 2013;15:3083–90.

    CAS  Google Scholar 

  58. Taherimehr M, Serta J, Kleij AW, Whiteoak CJ, Pescarmona PP. New iron pyridylamino-bis(phenolate) catalyst for converting CO2 into cyclic carbonates and cross-linked polycarbonates. ChemSusChem. 2015;8:1034–42.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support, including a Discovery Grant (FMK). KAA is supported by a Vanier Canada Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca M. Kerton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrea, K.A., Kerton, F.M. Iron-catalyzed reactions of CO2 and epoxides to yield cyclic and polycarbonates. Polym J 53, 29–46 (2021). https://doi.org/10.1038/s41428-020-00395-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00395-6

This article is cited by

Search

Quick links