Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

A new approach to explore the mechanoresponsiveness of microtubules and its application in studying dynamic soft interfaces

Abstract

Mechanical forces play indispensable roles in biological processes in living organisms. Cells in living organisms sense and process mechanical information that is critical to their growth, motility, and other physiological functions. The cytoskeleton has a significant contribution to the mechanotransduction and mechanoregulation of cellular events, in which microtubules (MTs) play pivotal roles as the most rigid component of the cytoskeleton. However, the response of MTs to mechanical forces has remained elusive for a long time. In recent years, we have started to understand the details of how MTs respond to any mechanical cue and how the structural stability and functionality of MTs are affected by mechanical forces. In this review article, the latest progress in the study of the mechanoresponsiveness of MTs is discussed. A novel methodology is emphasized that recently enabled systematic exploration of the mechanical deformation of MTs under tensile and compressive forces. Moreover, the newest outcomes that confirmed the impact of mechanical forces on the functionalities of MTs are also discussed. All this recent progress is expected to advance our current understanding of the mechanical deformation of MTs in cells and its roles in the mechanoregulation of cellular processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dogterom M, Koenderink GH. Actin–microtubule crosstalk in cell biology. Nat Rev Mol Cell Biol. 2019;20:38–54.

    CAS  PubMed  Google Scholar 

  2. Brouhard GJ, Rice LM. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat Rev Mol Cell Biol. 2018;19:451–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Howard J. Mechanics of motor protein and the cytoskeleton. Sunderland, Massachusetts: Sinauer Associates, Inc; 2001.

    Google Scholar 

  4. Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen EH, Koenderink GH. A guide to mechanobiology: where biology and physics meet. Biochimica et Biophysica Acta (BBA)-Mol Cell Res. 2015;1853:3043–52.

    CAS  Google Scholar 

  5. Schaedel L, John K, Gaillard J, Nachury MV, Blanchoin L, Théry M. Microtubules self-repair in response to mechanical stress. Nat Mater. 2015;14:1156.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahmed WW, Saif TA. Active transport of vesicles in neurons is modulated by mechanical tension. Sci Rep. 2014;4:4481.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang-Schomer MD, Johnson VE, Baas PW, Stewart W, Smith DH. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp Neurol. 2012;233:364–72.

    PubMed  Google Scholar 

  8. Gupton SL, Salmon WC, Waterman-Storer CM. Converging populations of F-actin promote breakage of associated microtubules to spatially regulate microtubule turnover in migrating cells. Curr Biol. 2002;12:1891–9.

    CAS  PubMed  Google Scholar 

  9. Kaech S, Ludin B, Matus A. Cytoskeletal plasticity in cells expressing neuronal microtubule-associated proteins. Neuron. 1996;17:1189–99.

    CAS  PubMed  Google Scholar 

  10. Schaefer AW, Kabir N, Forscher P. Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol. 2002;158:139–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo H, Xu C, Liu C, Qu E, Yuan M, Li Z, et al. Mechanism and dynamics of breakage of fluorescent microtubules. Biophys J. 2006;90:2093–2098.

    CAS  PubMed  Google Scholar 

  12. Bicek AD, Tüzel E, Demtchouk A, Uppalapati M, Hancock WO, Kroll DM, et al. Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells. Mol Biol Cell. 2009;20:2943–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Venier P, Maggs AC, Carlier MF, Pantaloni D. Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. J Biol Chem. 1994;269:13353–60.

    CAS  PubMed  Google Scholar 

  14. Brangwynne CP, MacKintosh FC, Kumar S, Geisse NA, Talbot J, Mahadevan L, et al. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J Cell Biol. 2006;173:733–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li TA. Mechanics model of microtubule buckling in living cells. J Biomech. 2008;41:1722–9.

    PubMed  Google Scholar 

  16. Jiang H, Zhang J. Mechanics of microtubule buckling supported by cytoplasm. J Appl Mech. 2008;75:061019-1–061019-9.

  17. Brodland GW, Gordon R. Intermediate filaments may prevent buckling of compressively loaded microtubules. J Biomech Eng. 1990;112:319–21.

    CAS  PubMed  Google Scholar 

  18. Ugural AC, Fenster SK. Advanced strength and applied elasticity. 4th edition (Prentice Hall, Upper Saddle River, NJ, 2003).

  19. Jin MZ, Ru CQ. Localized buckling of a microtubule surrounded by randomly distributed cross linkers. Phys Rev E. 2013;88:012701-1–012701-8.

  20. Kabir AMR, Inoue D, Hamano Y, Mayama H, Sada K, Kakugo A. Biomolecular motor modulates mechanical property of microtubule. Biomacromolecules. 2014;15:1797–805.

    CAS  PubMed  Google Scholar 

  21. Kabir AMR, Inoue D, Afrin T, Mayama H, Sada K, Kakugo A. Buckling of microtubules on a 2D elastic medium. Sci Rep. 2015;5:17222.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kurachi M, Hoshi M, Tashiro H. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Cell Motil Cytoskeleton. 1995;30:221–228.

    CAS  PubMed  Google Scholar 

  23. Gittes F, Mickey B, Nettleton J, Howard J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol. 1993;120:923–934.

    CAS  PubMed  Google Scholar 

  24. Schaap IA, Carrasco C, de Pablo PJ, MacKintosh FC, Schmidt CF. Elastic response, buckling, and instability of microtubules under radial indentation. Biophysical J. 2006;91:1521–31.

    CAS  Google Scholar 

  25. Elbaum M, Fygenson DK, Libchaber A. Buckling microtubules in vesicles. Phys Rev Lett. 1996;76:4078–4081.

    CAS  PubMed  Google Scholar 

  26. Velve-Casquillas G, Le Berre M, Piel M, Tran PT. Microfluidic tools for cell biological research. Nano Today. 2010;5:28–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vigers GPA, Coue M, McIntosh JR. Fluorescent microtubules break up under illumination. J Cell Biol. 1988;107:1011–24.

    CAS  PubMed  Google Scholar 

  28. Dixit R, Cyr R. Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J. 2003;36:280–90.

    CAS  PubMed  Google Scholar 

  29. Kabir AMR, Inoue D, Kakugo A, Kamei A, Gong JP. Prolongation of the active lifetime of a biomolecular motor for in vitro motility assay by using an inert atmosphere. Langmuir. 2011;27:13659–68.

    CAS  PubMed  Google Scholar 

  30. Kabir AMR, Wada S, Inoue D, Tamura Y, Kajihara T, Mayama H, et al. Formation of ring-shaped assembly of microtubules with a narrow size distribution at an air–buffer interface. Soft Matter. 2012;8:10863–7.

    Google Scholar 

  31. Inoue D, Kabir AMR, Mayama H, Gong JP, Sada K, Kakugo A. Growth of ring-shaped microtubule assemblies through stepwise active self-organisation. Soft Matter. 2013;9:7061–8.

    CAS  Google Scholar 

  32. Wada S, Kabir AMR, Ito M, Inoue D, Sada K, Kakugo A. Effect of length and rigidity of microtubules on the size of ring-shaped assemblies obtained through active self-organization. Soft Matter. 2015;11:1151–7.

    CAS  PubMed  Google Scholar 

  33. Ito M, Kabir AMR, Inoue D, Torisawa T, Toyoshima Y, Sada K, et al. Formation of ring-shaped microtubule assemblies through active self-organization on dynein. Polym J. 2014;46:220–5.

    CAS  Google Scholar 

  34. Wada S, Kabir AMR, Kawamura R, Ito M, Inoue D, Sada K, et al. Controlling the bias of rotational motion of ring-shaped microtubule assembly. Biomacromolecules. 2014;16:374–8.

    PubMed  Google Scholar 

  35. Kabir AMR, Inoue D, Kakugo A, Sada K, Gong JP. Active self-organization of microtubules in an inert chamber system. Polym J. 2012;44:607.

    CAS  Google Scholar 

  36. Ito M, Kabir AMR, Islam MS, Inoue D, Wada S, Sada K, et al. Mechanical oscillation of dynamic microtubule rings. RSC Adv. 2016;6:69149–55.

    CAS  Google Scholar 

  37. Inoue D, Gutmann G, Nitta T, Kabir AMR, Konagaya A, Tokuraku K, et al. Adaptation of patterns of motile filaments under dynamic boundary conditions. ACS Nano. 2019;13:12452–60.

    CAS  PubMed  Google Scholar 

  38. Inoue D, Kabir AMR, Tokuraku K, Sada K, Kakugo A. Mechanical Stimulation-induced orientation of gliding microtubules in confined microwells. Adv Mater Interfaces. 2020;7:1902013.

    Google Scholar 

  39. Kis A, Kasas S, Babic B, Kulik AJ, Benoit W, Briggs GAD, et al. Nanomechanics of microtubules. Phys Rev Lett. 2002;89, 248101−1−248101−4.

  40. Kasas S, Kis A, Riederer BM, Forro L, Dietler G, Catsicas S. Mechanical properties of microtubules explored using the finite elements method. ChemPhysChem. 2004;5:252–257.

    CAS  PubMed  Google Scholar 

  41. Amos LA, Amos WB. The bending of sliding microtubules imaged by confocal light microscopy and negative stain electron microscopy. J Cell Sci. 1991;1991:95–101.

    Google Scholar 

  42. Mimori Y, Miki-Noumura T. Extrusion of rotating microtubules on the dynein-track from a microtubule-dynein γ-complex. Cell Motil Cytoskeleton. 1995;30:17–25.

    CAS  PubMed  Google Scholar 

  43. Memet E, Hilitski F, Morris MA, Schwenger WJ, Dogic Z, Mahadevan L. Microtubules soften due to cross-sectional flattening. Elife. 2018;7:e34695.

    PubMed  PubMed Central  Google Scholar 

  44. Fygenson DK, Marko JF, Libchaber A. Mechanics of microtubule-based membrane extension. Phys Rev Lett. 1997;79:4497–4500.

    CAS  Google Scholar 

  45. Kikumoto M, Kurachi M, Tosa V, Tashiro H. Flexural rigidity of individual microtubules measured by a buckling force with optical traps. Biophysical J. 2006;90:1687–96.

    CAS  Google Scholar 

  46. Kabir AMR, Sada K, Kakugo A. Breaking of buckled microtubules is mediated by kinesins. Biochem Biophys Res Commun. 2020;524:249–54.

    CAS  PubMed  Google Scholar 

  47. Nasrin SR, Afrin T, Kabir AMR, Inoue D, Torisawa T, Oiwa K, et al. Regulation of biomolecular-motor-driven cargo transport by microtubules under mechanical stress. ACS Appl Bio Mater. 2020;3:1875–83.

    CAS  Google Scholar 

  48. Inoue D, Nitta T, Kabir AMR, Sada K, Gong JP, Konagaya A, et al. Sensing surface mechanical deformation using active probes driven by motor proteins. Nat Commun. 2016;7:12557.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Knauth A, Gordin M, McNelis W, Baumgart S. Semipermeable polyurethane membrane as an artificial skin for the premature neonate. Pediatrics. 1989;83:945–50.

    CAS  PubMed  Google Scholar 

  50. Ghanbari H, Viatge H, Kidane AG, Burriesci G, Tavakoli M, Seifalian AM. Polymeric heart valves: new materials, emerging hopes. Trends Biotechnol. 2009;27:359–67.

    CAS  PubMed  Google Scholar 

  51. Wheatley DJ, Raco L, Bernacca GM, Sim I, Belcher PR, Boyd JS. Polyurethane: material for the next generation of heart valve prostheses? Eur J Cardio-Thorac Surg. 2000;17:440–8.

    CAS  Google Scholar 

  52. Kuan YH, Dasi LP, Yoganathan A, Leo HL. Recent advances in polymeric heart valves research. Int J Biomater Res Eng. 2011;1:1–17.

    Google Scholar 

  53. Hess H. Engineering applications of biomolecular motors. Annu Rev Biomed Eng. 2011;13:429–50.

    CAS  PubMed  Google Scholar 

  54. Saper G, Hess H. Synthetic systems powered by biological molecular motors. Chem Rev. 2019;120:288–309.

    PubMed  Google Scholar 

  55. Kabir AMR, Inoue D, Kakugo A. Molecular swarm robots: recent progress and future challenges. Sci Technol Adv Mater. 2020;21:323–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Keya JJ, Kabir AMR, Kakugo A. Synchronous operation of biomolecular engines. Biophysical Rev. 2020;12:401–9.

    Google Scholar 

  57. Sasaki R, Kabir AMR, Inoue D, Anan S, Kimura AP, Konagaya A, et al. Construction of artificial cilia from microtubules and kinesins through a well-designed bottom-up approach. Nanoscale. 2018;10:6323–32.

    CAS  PubMed  Google Scholar 

  58. Inaba H, Yamamoto T, Kabir AMR, Kakugo A, Sada K, Matsuura K. Molecular encapsulation inside microtubules based on Tau-derived peptides. Chem-A Eur J. 2018;24:14958–67.

    CAS  Google Scholar 

  59. Matsuda K, Kabir AMR, Akamatsu N, Saito A, Ishikawa S, Matsuyama T, et al. Artificial smooth muscle model composed of hierarchically ordered microtubule asters mediated by DNA origami nanostructures. Nano Lett. 2019;19:3933–8.

    CAS  PubMed  Google Scholar 

  60. Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers. J Mater Chem. 2007;17:1543–58.

    CAS  Google Scholar 

  61. Meng H, Li G. A review of stimuli-responsive shape memory polymer composites. Polymer. 2013;54:2199–221.

    CAS  Google Scholar 

  62. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, et al. Stimulus-responsive shape memory materials: a review. Mater Des. 2012;33:577–640.

    CAS  Google Scholar 

  63. Leng J, Lan X, Liu Y, Du S. Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci. 2011;56:1077–135.

    CAS  Google Scholar 

  64. Pringpromsuk S, Xia H, Ni QQ. Multifunctional stimuli-responsive shape memory polyurethane gels for soft actuators. Sens Actuators A: Phys. 2020;313:112207.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a Grant-in-Aid for Young Scientists (B) to AMRK (JSPS KAKENHI Grant Number JP16K16383); a Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Engine” (JSPS KAKENHI Grant Number JP18H05423), and a Grant-in-Aid for Scientific Research (A) (JSPS KAKENHI Grant Number JP18H03673) to AK from the Japan Society for the Promotion of Science (JSPS); and a research grant from the Hirose International Scholarship Foundation to AMRK (PK22181027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Md. Rashedul Kabir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, A.M.R., Kakugo, A. A new approach to explore the mechanoresponsiveness of microtubules and its application in studying dynamic soft interfaces. Polym J 53, 299–308 (2021). https://doi.org/10.1038/s41428-020-00415-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00415-5

Search

Quick links