Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Poly[di(ethylene glycol) vinyl ether]-stabilized poly(vinyl acetate) nanoparticles with various morphologies via RAFT aqueous emulsion polymerization of vinyl acetate

Abstract

Reversible addition fragmentation chain transfer (RAFT) aqueous emulsion polymerization of vinyl acetate (VAc) is performed using poly[di(ethylene glycol) vinyl ether] (PDEGV) macromolecular chain transfer agents (macro-CTAs) including RAFT end-unfunctionalized PDEGV (up to 32%). Emulsion polymerization directly induces PDEGV-b-PVAc diblock copolymer assemblies in water. This facile formulation enables the production of various particle morphologies, such as spheres, rods (ellipsoids), and vesicles, depending on the composition of the block copolymer. Many other examples of RAFT emulsion polymerization syntheses only result in the formation of kinetically trapped spheres, even when targeting highly asymmetric diblock compositions. However, despite being stabilized only by homopolymer PDEGV macro-CTAs, including PDEGV, PVAc-based nanoparticles with various morphologies can be obtained as PDEGV-b-PVAc assemblies. RAFT aqueous emulsion polymerization owes its success to recent RAFT polymerizations of hydroxy-functionalized vinyl ethers. We investigated the RAFT polymerization of DEGV, analyzed the kinetics of PDEGV-b-PVAc nanoparticle formation, and observed the morphology of resultant particles in detail. We also developed a phase diagram for this RAFT aqueous emulsion polymerization formulation that reliably predicts the precise block compositions associated with well-defined particle morphologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sugihara S. In: Yamamoto H, Kato T, editors. Molecular technology, volume 4: synthesis innovation. Weinheim: Wiley-VCH; 2019, Vol. 4, p. 1–29.

  2. Wang X, An Z. New insights into RAFT dispersion polymerization-induced self-Assembly: from monomer library, morphological control, and stability to driving forces. Macromol Rapid Commun. 2019;40:1800325.

    Google Scholar 

  3. Derry MJ, Fielding LA, Armes SP. Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog Polym Sci. 2016;52:1–18.

    CAS  Google Scholar 

  4. Lowe AB. RAFT alcoholic dispersion polymerization with polymerization-induced self-assembly. Polymer. 2016;106:161–81.

    CAS  Google Scholar 

  5. Canning SL, Smith GN, Armes SP. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules. 2016;49:1985–2001.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Warren NJ, Armes SP. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J Am Chem Soc. 2014;136:10174–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun JT, Hong CY, Pan CY. Recent advances in RAFT dispersion polymerization for preparation of block copolymer aggregates. Polym Chem. 2013;4:873–81.

    CAS  Google Scholar 

  8. Charleux B, Delaittre G, Rieger J, D’Agosto F. Polymerization-induced self-assembly: from soluble macromolecules to block copolymer nano-objects in one step. Macromolecules. 2012;45:6753–65.

    CAS  Google Scholar 

  9. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffrey J, Le TP, et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules. 1998;31:5559–62.

    CAS  Google Scholar 

  10. Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process. Aust J Chem. 2005;58:379–410.

    CAS  Google Scholar 

  11. Zetterlund PB, Thickett SC, Perrier S, Bourgeat-Lami E, Lansalot M. Controlled/living radical polymerization in dispersed systems: an update. Chem Rev. 2015;115:9745–800.

    CAS  PubMed  Google Scholar 

  12. Sugihara S, Ma’Radzi AH, Ida S, Irie S, Kikukawa T, Maeda Y. In situ nano-objects via RAFT aqueous dispersion polymerization of 2-methoxyethyl acrylate using poly(ethylene oxide) macromolecular chain transfer agent as steric stabilizer. Polymer. 2015;76:17–24.

    CAS  Google Scholar 

  13. Sugihara S, Blanazs A, Armes SP, Ryan AJ, Lewis AL. Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution. J Am Chem Soc. 2011;133:15707–13.

    CAS  PubMed  Google Scholar 

  14. Warren NJ, Mykhaylyk OO, Mahmood D, Ryan AJ, Armes SP. RAFT aqueous dispersion polymerization yields poly(ethylene glycol)-based diblock copolymer nano-objects with predictable single phase morphologies. J Am Chem Soc. 2014;136:1023–33.

    CAS  PubMed  Google Scholar 

  15. Blanazs A, Madsen J, Battaglia G, Ryan AJ, Armes SP. Mechanistic insights for block copolymer morphologies: how do worms form vesicles? J Am Chem Soc. 2011;133:16581–7.

    CAS  PubMed  Google Scholar 

  16. Sugihara S, Sudo M, Maeda Y. Synthesis and nano-object assembly of biomimetic block copolymers for catalytic silver nanoparticles. Langmuir. 2019;35:1346–56.

    CAS  PubMed  Google Scholar 

  17. Ferguson CJ, Hughes RJ, Pham BTT, Hawkett BS, Gilbert RG, Serelis AK, et al. Effective ab initio emulsion polymerization under RAFT control. Macromolecules. 2002;35:9243–5.

    CAS  Google Scholar 

  18. Sugihara S, Sudo M, Hirogaki K, Irie S, Maeda Y. Synthesis of various poly(2-hydroxyethyl vinyl ether)-stabilized latex particles via surfactant-free emulsion polymerization in water. Macromolecules. 2018;51:1260–71.

    CAS  Google Scholar 

  19. Truong NP, Dussert MV, Whittaker MR, Quinn JF, Davis TP. Rapid synthesis of ultrahigh molecular weight and low polydispersity polystyrene diblock copolymers by RAFT-mediated emulsion polymerization. Polym Chem. 2015;6:3865–74.

    CAS  Google Scholar 

  20. Cunningham VJ, Alswieleh AM, Thompson KL, Williams M, Leggett GJ, Armes SP, et al. Poly(glycerol monomethacrylate)–poly(benzyl methacrylate) diblock copolymer nanoparticles via RAFT emulsion polymerization: synthesis, characterization, and interfacial activity. Macromolecules. 2014;47:5613–23.

    CAS  Google Scholar 

  21. Chaduc I, Crepet A, Boyron O, Charleux B, D’Agosto F, Lansalot M. Effect of the pH on the RAFT polymerization of acrylic acid in water. application to the synthesis of poly(acrylic acid)-stabilized polystyrene particles by RAFT emulsion polymerization. Macromolecules. 2013;46:6013–23.

    CAS  Google Scholar 

  22. Zhang W, D’Agosto F, Boyron O, Rieger J, Charleux B. One-pot synthesis of poly(methacrylic acid-co-poly(ethylene oxide) methyl ether methacrylate)-b-polystyrene amphiphilic block copolymers and their self-assemblies in water via RAFT-mediated radical emulsion polymerization. a kinetic study. Macromolecules. 2011;44:7584–93.

    CAS  Google Scholar 

  23. Boisse S, Rieger J, Belal K, Di-Cicco A, Beaunier P, Li MH, et al. Amphiphilic block copolymer nano-fibers via RAFT-mediated polymerization in aqueous dispersed system. Chem Commun. 2010;46:1950–2.

    CAS  Google Scholar 

  24. Zhang X, Boisse S, Zhang W, Beaunier P, D’Agosto F, Rieger J, et al. Well-defined amphiphilic block copolymers and nano-objects formed in situ via RAFT-mediated aqueous emulsion polymerization. Macromolecules. 2011;44:4149–58.

    CAS  Google Scholar 

  25. Boisse S, Rieger J, Pembouong G, Beaunier P, Charleux B. Influence of the stirring speed and CaCl2 concentration on the nano-object morphologies obtained via RAFT-mediated aqueous emulsion polymerization in the presence of a water-soluble macroRAFT agent. J Polym Sci Part A Polym Chem. 2011;49:3346–54.

    CAS  Google Scholar 

  26. Zhang W, D’Agosto F, Boyron O, Rieger J, Charleux B. Toward a better understanding of the parameters that lead to the formation of nonspherical polystyrene particles via RAFT-mediated one-pot aqueous emulsion polymerization. Macromolecules. 2012;45:407–4084.

    Google Scholar 

  27. Khor SY, Truong NP, Quinn JF, Whittaker MR, Davis TP. Polymerization-induced self-assembly: the effect of end group and initiator concentration on morphology of nanoparticles prepared via RAFT aqueous emulsion polymerization. ACS Macro Lett. 2017;6:1013–9.

    CAS  Google Scholar 

  28. Truong NP, Quinn JF, Anastasaki A, Haddleton DM, Whittaker MR, Davis TP. Facile access to thermoresponsive filomicelles with tuneable cores. Chem Commun. 2016;52:4497–500.

    CAS  Google Scholar 

  29. Truong NP, Whittaker MR, Anastasaki A, Haddleton DM, Quinn JF, Davis TP. Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA). Polym Chem. 2016;7:430–40.

    CAS  Google Scholar 

  30. Truong NP, Quinn JF, Anastasaki A, Rolland M, Vu MN, Haddleton DM, et al. Surfactant-free RAFT emulsion polymerization using a novel biocompatible thermoresponsive polymer. Polym Chem. 2017;8:1353–63.

    CAS  Google Scholar 

  31. Zhou J, Yao H, Ma J. Recent advances in RAFT-mediated surfactant-free emulsion polymerization. Polym Chem. 2018;9:2532–61.

    CAS  Google Scholar 

  32. Cockram AA, Neal TJ, Derry MJ, Mykhaylyk OO, Williams NS, Murray MW, et al. Effect of monomer solubility on the evolution of copolymer morphology during polymerization-induced self-assembly in aqueous solution. Macromolecules. 2017;50:796–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Brotherton EE, Hatton FL, Cockram AA, Derry MJ, Czajka A, Cornel EJ, et al. In situ small-angle X-ray scattering studies during reversible addition–fragmentation chain transfer aqueous emulsion polymerization. J Am Chem Soc. 2019;141:13664–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dai X, Yu L, Zhang Y, Zhang L, Tan J. Polymerization-induced self-assembly via RAFT-mediated emulsion polymerization of methacrylic monomers. Macromolecules.2019;52:7468–76.

    CAS  Google Scholar 

  35. de la Haye JL, Zhang X, Chaduc I, Brunel F, Lansalot M, D’Agosto F. The effect of hydrophile topology in RAFT-mediated polymerization-induced self-assembly. Angew Chem Int Ed. 2016;55:3739–43.

    Google Scholar 

  36. Brunel F, de la Haye JL, Lansalot M, D’Agosto F. New insight into cluster aggregation mechanism during polymerization-induced self-assembly by molecular dynamics simulation. J Phys Chem B. 2019;123:6609–17.

    CAS  PubMed  Google Scholar 

  37. Sugihara S, Kawamoto Y, Maeda Y. Direct radical polymerization of vinyl ethers: reversible addition-fragmentation chain transfer polymerization of hydroxy-functional vinyl ethers. Macromolecules. 2016;49:1563–74.

    CAS  Google Scholar 

  38. Sugihara S, Yoshida A, Fujita S, Maeda Y. Design of hydroxy-functionalized thermoresponsive copolymers: improved direct radical polymerization of hydroxy-functional vinyl ethers. Macromolecules. 2017;50:8346–56.

    CAS  Google Scholar 

  39. Sugihara S, Yoshida A, Kono T, Takayama T, Maeda Y. Controlled radical homopolymerization of representative cationically-polymerizable vinyl ethers. J Am Chem Soc. 2019;141:13954–61.

    CAS  PubMed  Google Scholar 

  40. Palmiero UC, Agostini A, Gatti S, Sponchioni S, Valenti V, Brunel L, et al. RAFT macro-surfmers and their use in the ab initio RAFT emulsion polymerization to decouple nanoparticle size and polymer molecular weight. Macromolecules. 2016;49:8387–96.

    CAS  Google Scholar 

  41. Griffin WC. Calculation of HLB values of non-ionic surfactants. J Soc Cosmet Chem. 1954;5:249–56.

  42. Harrisson S, Liu X, Ollagnier J-N, Coutelier O, Marty J-D, Destarac M. RAFT polymerization of vinyl esters: synthesis and applications. Polymers. 2014;6:1437–88.

    Google Scholar 

  43. Tobita H. RAFT miniemulsion polymerization kinetics, 2—molecular weight distribution. Macromol Theory Simul. 2009;18:120–6.

    CAS  Google Scholar 

  44. Suzuki K, Kanematsu Y, Miura T, Minami M, Satoh S, Tobita H. Experimental method to discriminate RAFT models between intermediate termination and slow fragmentation via comparison of rates of miniemulsion and bulk polymerization. Macromol Theory Simul. 2014;23:136–46.

    CAS  Google Scholar 

  45. Cunningham VJ, Alswieleh AM, Thompson KL, Williams M, Leggett GJ, Armes SP. Poly(glycerol monomethacrylate)-poly(benzyl methacrylate) diblock copolymer nanoparticles via RAFT emulsion polymerization: synthesis, characterization, and interfacial activity. Macromolecules. 2014;47:5613–23.

    CAS  Google Scholar 

  46. Nicolai T, Colombani O, Chassenieux C. Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter. 2010;6:311–3118.

    Google Scholar 

  47. Israelachvili JN. Intermolecular and surface forces. London: Academic Press; 1991.

    Google Scholar 

  48. Antonietti M, Förster S. Vesicles and liposomes: a self-assembly principle beyond lipids. Adv Mater. 2003;15:1323–33.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a JSPS Grant-in-Aid for Scientific Research (B) 19H02762. We acknowledge Maruzen Petrochemical Co., Ltd, for supplying the vinyl ether monomers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Sugihara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugihara, S., Kawakami, R., Irie, S. et al. Poly[di(ethylene glycol) vinyl ether]-stabilized poly(vinyl acetate) nanoparticles with various morphologies via RAFT aqueous emulsion polymerization of vinyl acetate. Polym J 53, 309–321 (2021). https://doi.org/10.1038/s41428-020-00417-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00417-3

This article is cited by

Search

Quick links