Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Evolution of polyhydroxyalkanoate synthesizing systems toward a sustainable plastic industry

Abstract

Designing sustainable biobased and/or biodegradable plastics opens up opportunities to achieve a low-carbon society and overcome plastic pollution. Bioplastics manufactured from renewable resources are being designed to feature a minimal carbon footprint and complete biodegradability/compostability. Among them, naturally occurring polyhydroxyalkanoates (PHAs) have currently received increasing attention from academia and industry. A symbolic state-of-the-art PHA industry is a rapidly growing market of PHBHTM Kaneka polymers that display excellent marine biodegradability. From an academic perspective, there have been several major breakthroughs in the PHA research field starting with the pioneering works of genetically engineered platforms for the production of artificial PHAs. The discovery of a lactate-polymerizing enzyme enabled us to produce lactate-based PHAs in one-pot microbial systems, whereas polylactide and other relevant copolymers are currently synthesized via biological and chemical processes. This proof-of-concept has been implemented in practical integrated bioprocesses for carbon-neutral polymer production starting from renewable raw bioresources. Challengingly, the photosynthetic machinery RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), has also been applied to synthesize glycolate-based copolymers as a CO2 fixation model in the current project. Such game-changing technologies contribute to realizing a circular bioeconomy through the utilization of CO2. This review presents the current progress in evolving microbial polymerization systems, including the direct secretion of polymerized products and the creation of sequence-regulated polyesters, which have been considered nearly impossible biological events to date.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. RameshKumar S, Shaiju P, O’Connor KE, Babu PR. Bio-based and biodegradable polymers—state-of-the-art, challenges and emerging trends. Curr Opin Green Sustain. 2020;21:75–81.

    Google Scholar 

  2. Helanto K, Matikainen L, Talja R, Rojas OJ. Bio-based polymers for sustainable packaging and biobarriers: a critical review. Bioresources. 2019;14:4902–51.

    Google Scholar 

  3. Sato S, Maruyama H, Fujiki T, Matsumoto K. Regulation of 3-hydroxyhexanoate composition in PHBH synthesized by recombinant Cupriavidus necator H16 from plant oil by using butyrate as a co-substrate. J Biosci Bioeng. 2015;120:246–51.

    CAS  PubMed  Google Scholar 

  4. Zhang MX, Kurita S, Orita I, Nakamura S, Fukui T. Modification of acetoacetyl-CoA reduction step in Ralstonia eutropha for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from structurally unrelated compounds. Microb Cell Factories. 2019;18:147.

    Google Scholar 

  5. Nduko JM, Matsumoto K, Ooi T, Taguchi S. Enhanced production of poly(lactate-co-3-hydroxybutyrate) from xylose in engineered Escherichia coli overexpressing a galactitol transporter. Appl Microbiol Biotechnol. 2014;98:2453–60.

    CAS  PubMed  Google Scholar 

  6. Karmann S, Panke S, Zinn M. Fed-Batch cultivations of rhodospirillum rubrum under multiple nutrient-limited growth conditions on syngas as a novel option to produce poly(3-Hydroxybutyrate) (PHB). Front Bioeng Biotechnol. 2019;7:59.

    PubMed  PubMed Central  Google Scholar 

  7. Khosravi-Darani K, Mokhtari ZB, Amai T, Tanaka K. Microbial production of poly(hydroxybutyrate) from C-1 carbon sources. Appl Microbiol Biotechnol. 2013;97:1407–24.

    CAS  PubMed  Google Scholar 

  8. Ikada Y, Jamshidi K, Tsuji H, Hyon SH. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules. 1987;20:904–6.

    CAS  Google Scholar 

  9. Rehm BHA, Qi Q, Beermann BB, Hinz HJ, Steinbüchel A. Matrix-assisted in vitro refolding of Pseudomonas aeruginosa class II polyhydroxyalkanoate synthase from inclusion bodies produced in recombinant Escherichia coli. BiochemJ. 2001;358:263–8.

    CAS  Google Scholar 

  10. Matsumoto K, Aoki E, Takase K, Doi Y, Taguchi S. In vivo and in vitro characterization of Ser477X mutations in polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. 61-3: effects of beneficial mutations on enzymatic activity, substrate specificity, and molecular weight of PHA. Biomacromolecules. 2006;7:2436–42.

    CAS  PubMed  Google Scholar 

  11. Matsumoto K, Takase K, Aoki E, Doi Y, Taguchi S. Synergistic effects of Glu130Asp substitution in the type II polyhydroxyalkanoate (PHA) synthase: enhancement of PHA production and alteration of polymer molecular weight. Biomacromolecules. 2005;6:99–104.

    CAS  PubMed  Google Scholar 

  12. Taguchi S. Current advances in microbial cell factories for lactate-based polyesters driven by lactate-polymerizing enzymes: towards the further creation of new LA-based polyesters. Polym Degrad Stab. 2010;95:1421–8.

    CAS  Google Scholar 

  13. Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, et al. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci USA. 2008;105:17323–7.

    CAS  PubMed  Google Scholar 

  14. Goto S, Hokamura A, Shiratsuchi H, Taguchi S, Matsumoto K, Abe H, et al. Biosynthesis of novel lactate-based polymers containing medium-chain-length 3-hydroxyalkanoates by recombinant Escherichia coli strains from glucose. J Biosci Bioeng. 2019;128:191–7.

    CAS  PubMed  Google Scholar 

  15. Salamanca-Cardona L, Scheel RA, Mizuno K, Bergey NS, Stipanovic AJ, Matsumoto K, et al. Effect of acetate as a co-feedstock on the production of poly(lactate-co-3-hydroxyalkanoate) by pflA-deficient Escherichia coli RSC10. J Biosci Bioeng. 2017;123:547–54.

    CAS  PubMed  Google Scholar 

  16. Park SJ, Lee TW, Lim SC, Kim TW, Lee H, Kim MK, et al. Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol. 2012;93:273–83.

    PubMed  Google Scholar 

  17. Li ZJ, Qiao K, Che XM, Stephanopoulos G. Metabolic engineering of Escherichia coli for the synthesis of the quadripolymer poly(glycolate-co-lactate-co-3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metab Eng. 2017;44:38–44.

    CAS  PubMed  Google Scholar 

  18. Wittenborn EC, Jost M, Wei YF, Stubbe J, Drennan CL. Structure of the catalytic domain of the class i polyhydroxybutyrate synthase from cupriavidus necator. J Biol Chem. 2016;291:25264–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chek MF, Kim SY, Mori T, Arsad H, Samian MR, Sudesh K, et al. Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp USM2, producing biodegradable plastics. Sci Rep. 2017;7:5312.

    PubMed  PubMed Central  Google Scholar 

  20. Yamada M, Matsumoto K, Shimizu K, Uramoto S, Nakai T, Shozui F, et al. Adjustable mutations in lactate (LA)-polymerizing enzyme for the microbial production of LA-based polyesters with tailor-made monomer composition. Biomacromolecules. 2010;11:815–9.

    CAS  PubMed  Google Scholar 

  21. Nduko JM, Matsumoto K, Ooi T, Taguchi S. Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme. Metab Eng. 2013;15:159–66.

    CAS  PubMed  Google Scholar 

  22. Song YY, Matsumoto K, Yamada M, Gohda A, Brigham CJ, Sinskey AJ, et al. Engineered Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production. Appl Microbiol Biotechnol. 2012;93:1917–25.

    CAS  PubMed  Google Scholar 

  23. Matsumoto K, Morimoto K, Gohda A, Shimada H, Taguchi S. Improved polyhydroxybutyrate (PHB) production in transgenic tobacco by enhancing translation efficiency of bacterial PHB biosynthetic genes. J Biosci Bioeng. 2011;111:485–8.

    CAS  PubMed  Google Scholar 

  24. Kadoya R, Matsumoto K, Ooi T, Taguchi S. MtgA deletion-triggered cell enlargement of escherichia coli for enhanced intracellular polyester accumulation. PLoS One. 2015;10:e0125163.

    PubMed  PubMed Central  Google Scholar 

  25. Chen GQ, Jiang XR. Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis. Curr Opin Biotechnol. 2018;53:20–5.

    CAS  PubMed  Google Scholar 

  26. Kadoya R, Kodama Y, Matsumoto K, Ooi T, Taguchi S. Genome-wide screening of transcription factor deletion targets in Escherichia coli for enhanced production of lactate-based polyesters. J Biosci Bioeng. 2017;123:535–9.

    CAS  PubMed  Google Scholar 

  27. Kadoya R, Kodama Y, Matsumoto K, Taguchi S. Enhanced cellular content and lactate fraction of the poly(lactate-co-3-hydroxybutyrate) polyester produced in recombinant Escherichia coli by the deletion of sigma factor RpoN. J Biosci Bioeng. 2015;119:427–9.

    CAS  PubMed  Google Scholar 

  28. Sun J, Utsunomia C, Sasaki S, Matsumoto K, Yamada T, Ooi T, et al. Microbial production of poly(lactate-co-3-hydroxybutyrate) from hybrid Miscanthus-derived sugars. Biosci Biotechnol Biochem. 2016;80:818–20.

    CAS  PubMed  Google Scholar 

  29. Takisawa K, Ooi T, Matsumoto K, Kadoya R, Taguchi S. Xylose-based hydrolysate from eucalyptus extract as feedstock for poly(lactate-co-3-hydroxybutyrate) production in engineered Escherichia coli. Process Biochem. 2017;54:102–5.

    CAS  Google Scholar 

  30. Kadoya R, Matsumoto K, Takisawa K, Ooi T, Taguchi S. Enhanced production of lactate-based polyesters in Escherichia coli from a mixture of glucose and xylose by Mlc-mediated catabolite derepression. J Biosci Bioeng. 2018;125:365–70.

    CAS  PubMed  Google Scholar 

  31. Salamanca-Cardona L, Scheel RA, Bergey NS, Stipanovic AJ, Matsumoto K, Taguchi S, et al. Consolidated bioprocessing of poly(lactate-co-3-hydroxybutyrate) from xylan as a sole feedstock by genetically-engineered Escherichia coli. J Biosci Bioeng. 2016;122:406–14. in press

    CAS  PubMed  Google Scholar 

  32. Yamada M, Matsumoto K, Uramoto S, Motohashi R, Abe H, Taguchi S. Lactate fraction dependent mechanical properties of semitransparent poly(lactate-co-3-hydroxybutyrate)s produced by control of lactyl-CoA monomer fluxes in recombinant Escherichia coli. J Biotechnol. 2011;154:255–60.

    CAS  PubMed  Google Scholar 

  33. Ishii D, Takisawa K, Matsumoto K, Ooi T, Hikima T, Takata M. et al.Effect of monomeric composition on the thermal, mechanical and crystalline properties of poly[(R)-lactate-co-(R)-3-hydroxybutyrate].Polymer.2017;122:169–73.

    CAS  Google Scholar 

  34. Shozui F, Matsumoto K, Motohashi R, Sun JA, Satoh T, Kakuchi T, et al. Biosynthesis of a lactate (LA)-based polyester with a 96 mol% LA fraction and its application to stereocomplex formation. Polym Degrad Stab. 2011;96:499–504.

    CAS  Google Scholar 

  35. Sun J, Matsumoto K, Nduko JM, Ooi T, Taguchi S. Enzymatic characterization of a depolymerase from the isolated bacterium Variovorax sp. C34 that degrades poly(enriched lactate-co-3-hydroxybutyrate). Polym Degrad Stab. 2014;110:44–9.

    CAS  Google Scholar 

  36. Sun J, Matsumoto K, Tabata Y, Kadoya R, Ooi T, Abe H, et al. Molecular weight-dependent degradation of D-lactate-containing polyesters by polyhydroxyalkanoate depolymerases from Variovorax sp. C34 and Alcaligenes faecalis T1. Appl Microbiol Biotechnol. 2015;99:9555–63.

    CAS  PubMed  Google Scholar 

  37. Hori C, Sugiyama T, Watanabe K, Sun J, Kamada Y, Ooi T, et al. Isolation of poly[d-lactate (LA)-co-3-hydroxybutyrate)]-degrading bacteria from soil and characterization of D-LA homo-oligomer degradation by the isolated strains. Polym Degrad Stab. 2020;179:109231.

  38. Utsunomia C, Matsumoto K, Taguchi S. Microbial secretion of D-lactate-based oligomers. Acs Sustain Chem Eng. 2017;5:2360–7.

    CAS  Google Scholar 

  39. Utsunomia C, Matsumoto K, Date S, Hori C, Taguchi S. Microbial secretion of lactate-enriched oligomers for efficient conversion into lactide: A biological shortcut to polylactide. J Biosci Bioeng. 2017;124:204–8.

    CAS  PubMed  Google Scholar 

  40. Utsunomia C, Hori C, Matsumoto K, Taguchi S. Investigation of the Escherichia coli membrane transporters involved in the secretion of D-lactate-based oligomers by loss-of-function screening. J Biosci Bioeng. 2017;124:635–40.

    CAS  PubMed  Google Scholar 

  41. Utsunomia C, Saito T, Matsumoto K, Hori C, Isono T, Satoh T, et al. Synthesis of lactate (LA)-based poly(ester-urethane) using hydroxyl-terminated LA-based oligomers from a microbial secretion system. J Polym Res. 2017;24:167.

  42. Utsunomia C, Taguchi S/ Microbial secretion system of lactate-based oligomers and its application. In: Green polymer chemistry: new products, processes, and applications (eds cheng HN, Gross RA, Smith PB). American Chemical Society (2018).

  43. Abe H, Doi Y, Fukushima T, Eya H. Biosynthesis from gluconate of a random copolyester consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. 61-3. Int J Biol Macromol. 1994;16:115–9.

    CAS  PubMed  Google Scholar 

  44. Utsunomia C, Ren Q, Zinn M. Poly(4-Hydroxybutyrate): current state and perspectives. Front Bioeng Biotechnol. 2020;8:257.

    PubMed  PubMed Central  Google Scholar 

  45. Matsumoto K, Ishiyama A, Sakai K, Shiba T, Taguchi S. Biosynthesis of glycolate-based polyesters containing medium-chain-length 3-hydroxyalkanoates in recombinant Escherichia coli expressing engineered polyhydroxyalkanoate synthase. J Biotechnol. 2011;156:214–7.

    CAS  PubMed  Google Scholar 

  46. Matsumoto KI, Shiba T, Hiraide Y, Taguchi S. Incorporation of glycolate units promotes hydrolytic degradation in flexible poly(glycolate-co-3-hydroxybutyrate) synthesized by engineered Escherichia coli. Acs Biomater Sci Eng. 2017;3:3058–63.

    CAS  Google Scholar 

  47. Chen HH, Lu IL, Liu TI, Tsai YC, Chiang WH, Lin SC, et al. Indocyanine green/doxorubicin-encapsulated functionalized nanoparticles for effective combination therapy against human MDR breast cancer. Colloids Surf B Biointerfaces. 2019;177:294–305.

    CAS  PubMed  Google Scholar 

  48. Ceonzo K, Gaynor A, Shaffer L, Kojima K, Vacanti CA, Stahl GL. Polyglycolic acid-induced inflammation: role of hydrolysis and resulting complement activation. Tissue Eng. 2006;12:301–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Basnett P, Marcello E, Lukasiewicz B, Panchal B, Nigmatullin R, Knowles JC, et al. Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source. J Mater Sci Mater Med. 2018;29:179.

    PubMed  Google Scholar 

  50. Choi SY, Park SJ, Kim WJ, Yang JE, Lee H, Shin J, et al. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat Biotechnol. 2016;34:435–40.

    CAS  PubMed  Google Scholar 

  51. Li ZJ, Qiao K, Shi W, Pereira B, Zhang H, Olsen BD, et al. Biosynthesis of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose by metabolically engineered Escherichia coli. Metab Eng. 2016;35:1–8.

    PubMed  Google Scholar 

  52. Choi SY, Chae TU, Shin J, Im JA, Lee SY. Biosynthesis and characterization of poly(d-lactate-co-glycolate-co-4-hydroxybutyrate). Biotechnol Bioeng. 2020;117:2187–97.

    CAS  PubMed  Google Scholar 

  53. Yin M, Baker GL. Preparation and characterization of substituted polylactides. Macromolecules. 1999;32:7711–8.

    CAS  Google Scholar 

  54. Tsuji H, Okumura A. Stereocomplex formation between enantiomeric substituted poly(lactide)s: blends of poly[(S)-2-hydroxybutyrate] and poly[(R)-2-hydroxybutyrate]. Macromolecules. 2009;42:7263–6.

    CAS  Google Scholar 

  55. Tsuji H, Yamamoto S, Okumura A, Sugiura Y. Heterostereocomplexation between biodegradable and optically active polyesters as a versatile preparation method for biodegradable materials. Biomacromolecules. 2010;11:252–8.

    CAS  PubMed  Google Scholar 

  56. Tsuji H, Osanai K, Arakawa Y. Stereocomplex crystallization between L- and D-configured staggered asymmetric random copolymers based on 2-hydroxyalkanoic acids. Cryst Growth Des. 2018;18:6009–19.

    CAS  Google Scholar 

  57. Matsumoto K, Terai S, Ishiyama A, Sun J, Kabe T, Song Y, et al. One-pot microbial production, mechanical properties and enzymatic degradation of isotactic P[(R)-2-hydroxybutyrate] and its copolymer with (R)-lactate. Biomacromolecules. 2013;14:1913–8.

    CAS  PubMed  Google Scholar 

  58. Yamada M, Matsumoto K, Nakai T, Taguchi S.R)-lactate-co-(R)-3-hydroxybutyrate] with novel thermal properties.Biomacromolecules.2009;10:677–81.

    CAS  PubMed  Google Scholar 

  59. Matsumoto K, Kageyama Y. Increased production and molecular weight of artificial polyhydroxyalkanoate poly(2-hydroxybutyrate) above the glass transition temperature threshold. Front Bioeng Biotechnol. 2019;7:177.

    PubMed  PubMed Central  Google Scholar 

  60. Mizuno S, Enda Y, Saika A, Hiroe A, Tsuge T. Biosynthesis of polyhydroxyalkanoates containing 2-hydroxy-4-methylvalerate and 2-hydroxy-3-phenylpropionate units from a related or unrelated carbon source. J Biosci Bioeng. 2018;125:295–300.

    CAS  PubMed  Google Scholar 

  61. Saika A, Watanabe Y, Sudesh K, Tsuge T. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) by recombinant Escherichia coli expressing leucine metabolism-related enzymes derived from Clostridium difficile. J Biosci Bioeng. 2014;117:670–5.

    CAS  PubMed  Google Scholar 

  62. Satoh H, Mino T, Matsuo T. Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes. Water Sci Technol. 1992;26:933–42.

    CAS  Google Scholar 

  63. Inoue Y, Sano F, Nakamura K, Yoshie N, Saito Y, Satoh H, et al. Microstructure of copoly(3-hydroxyalkanoates) produced in the anaerobic-aerobic activated sludge process. Polym Int. 1996;39:183–9.

    CAS  Google Scholar 

  64. Dai Y, Lambert L, Yuan ZG, Keller J. Microstructure of copolymers of polyhydroxyalkanoates produced by glycogen accumulating organisms with acetate as the sole carbon source. Process Biochem. 2008;43:968–77.

    CAS  Google Scholar 

  65. Lemos PC, Serafim LS, Reis MAM. Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. J Biotechnol. 2006;122:226–38.

    CAS  PubMed  Google Scholar 

  66. Watanabe Y, Ishizuka K, Furutate S, Abe H, Tsuge T. Biosynthesis and characterization of novel poly(3-hydroxybutyrate-co-3-hydroxy-2-methylbutyrate): thermal behavior associated with alpha-carbon methylation. RSC Adv. 2015;5:58679–85.

    CAS  Google Scholar 

  67. Furutate S, Nakazaki H, Maejima K, Hiroe A, Abe H, Tsuge T. Biosynthesis and characterization of novel polyhydroxyalkanoate copolymers consisting of 3-hydroxy-2-methylbutyrate and 3-hydroxyhexanoate. J Polym Res. 2017;24:221.

  68. Matsumoto K, Saito J, Yokoo T, Hori C, Nagata A, Kudoh Y, et al. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)-mediated de novo synthesis of glycolate-based polyhydroxyalkanoate in Escherichia coli. J Biosci Bioeng. 2019;128:302–6.

    CAS  PubMed  Google Scholar 

  69. Nunez MF, Pellicer MT, Badia J, Aguilar J, Baldoma L. Biochemical characterization of the 2-ketoacid reductases encoded by ycdW and yiaE genes in Escherichia coli. Biochem J. 2001;354:707–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang YY, Xu JZ, Zhang WG. Metabolic engineering of l-leucine production in Escherichia coli and Corynebacterium glutamicum: a review. Crit Rev Biotechnol. 2019;39:633–47.

    CAS  PubMed  Google Scholar 

  71. Sudo M, Hori C, Ooi T, Mizuno S, Tsuge T, Matsumoto K. Synergy of valine and threonine supplementation on poly(2-hydroxybutyrate-block-3-hydroxybutyrate) synthesis in engineered Escherichia coli expressing chimeric polyhydroxyalkanoate synthase. J Biosci Bioeng. 2020;129:302–6.

    CAS  PubMed  Google Scholar 

  72. Park SJ, Kang KH, Lee H, Park AR, Yang JE, Oh YH, et al. Propionyl-CoA dependent biosynthesis of 2-hydroxybutyrate containing polyhydroxyalkanoates in metabolically engineered Escherichia coli. J Biotechnol. 2013;165:93–8.

    CAS  PubMed  Google Scholar 

  73. de Kok A, Hengeveld AF, Martin A, Westphal AH. The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria. Biochim Biophys Acta. 1998;1385:353–66.

    PubMed  Google Scholar 

  74. Kelley AS, Mantzaris NV, Daoutidis P, Srienc F. Controlled synthesis of polyhydroxyalkanoic (PHA) nanostructures in R. eutropha. Nano Lett. 2001;1:481–5.

    CAS  Google Scholar 

  75. Ferre-Guell A, Winterburn J. Biosynthesis and characterization of polyhydroxyalkanoates with controlled composition and microstructure. Biomacromolecules. 2018;19:996–1005.

    CAS  PubMed  Google Scholar 

  76. Buckley RM, Stubbe J. Chemistry with an artificial primer of polyhydroxybutyrate synthase suggests a mechanism for chain termination. Biochemistry. 2015;54:2117–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pederson EN, McChalicher CWJ, Srienc F. Bacterial synthesis of PHA block copolymers. Biomacromolecules. 2006;7:1904–11.

    CAS  PubMed  Google Scholar 

  78. Nakaoki T, Yasui J, Komaeda T. Biosynthesis of P3HBV-b-P3HB-b-P3HBV Triblock Copolymer by Ralstonia eutropha. J Polym Environ. 2019;27:2720–7.

    CAS  Google Scholar 

  79. Matsumoto K, Hori C, Fujii R, Takaya M, Ooba T, Ooi T, et al. Dynamic changes of intracellular monomer levels regulate block sequence of polyhydroxyalkanoates in engineered Escherichia coli. Biomacromolecules. 2018;19:662–71.

    CAS  PubMed  Google Scholar 

  80. Oyama T, Kobayashi S, Okura T, Sato S, Tajima K, Isono T, et al. Biodegradable compatibilizers for poly(hydroxyalkanoate)/poly(epsilon-caprolactone) blends through click reactions with end-functionalized microbial poly(hydroxyalkanoate)s. ACS Sustain Chem Eng. 2019;7:7969-+.

    CAS  Google Scholar 

  81. Tajima K, Iwamoto K, Satoh Y, Sakai R, Satoh T, Dairi T. Advanced functionalization of polyhydroxyalkanoate via the UV-initiated thiol-ene click reaction. Appl Microbiol Biotechnol. 2016;100:4375–83.

    CAS  PubMed  Google Scholar 

  82. Levine AC, Heberlig GW, Nomura CT. Use of thiol-ene click chemistry to modify mechanical and thermal properties of polyhydroxyalkanoates (PHAs). Int J Biol Macromol. 2016;83:358–65.

    CAS  PubMed  Google Scholar 

  83. Hazer B, Steinbüchel A. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol. 2007;74:1–12.

    CAS  PubMed  Google Scholar 

  84. Levine AC, Sparano A, Twigg FF, Numata K, Nomura CT. Influence of cross-linking on the physical properties and cytotoxicity of polyhydroxyalkanoate (PHA) scaffolds for tissue engineering. Acs Biomater Sci Eng. 2015;1:567–76.

    CAS  Google Scholar 

  85. Matsumoto K, Taguchi S. Enzyme and metbolic engineering for the production of novel biopolymers: crossover of biological and chemical processes. Curr Opin Biotechnol. 2013;24:1054–60.

    CAS  PubMed  Google Scholar 

  86. Taguchi S. Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst. Front Chem Sci Eng. 2017;11:139–42.

    CAS  Google Scholar 

Download references

Acknowledgements

The works introduced in this review have been financially supported in part by the Japan Science and Technology Agency (JST), CREST program (JPMJCR12B4 to S. Taguchi), and A-Step program (JPMJTM19YC to S. Taguchi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichi Taguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taguchi, S., Matsumoto, K. Evolution of polyhydroxyalkanoate synthesizing systems toward a sustainable plastic industry. Polym J 53, 67–79 (2021). https://doi.org/10.1038/s41428-020-00420-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00420-8

Search

Quick links