Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

A rational entry to cyclic polymers via spontaneous and selective cyclization reactions

Abstract

This focus review describes the status quo of synthetic routes to cyclic compounds and cyclic polymers via spontaneous cyclization processes using (1) rotaxane chemistry and (2) dynamic covalent chemistry. Systems with rotaxane-based structures undergo spontaneous and selective cyclization of two self-complementary molecules and a macromolecular rotaxane switch, where the relative position of each component can be controlled, which results in a topology change from linear to cyclic. Systems based on dynamic covalent chemistry use exchange reactions of bis(2,2,6,6-tetramethylpiperidin-1-yl)disulfide (BiTEMPS) units that behave as stable linkages at r.t. and exchange disulfide bonds upon heating. Controlling the dynamic nature of BiTEMPS-based low-molecular-weight compounds and polymers thus provides cyclic topologies via spontaneous and selective cyclization processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4
Scheme 3
Fig. 5

Similar content being viewed by others

References

  1. Villiers A. Sur la fermentation de la fécule par l’action du ferment butyrique. Compt. Rend. 1891;112:536–40.

  2. Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev. 1998;98:1743–53.

    CAS  PubMed  Google Scholar 

  3. Pedersen CJ. Cyclic polyethers and their complexes with metal salts. J Am Chem Soc. 1967;89:2495–6.

    CAS  Google Scholar 

  4. Freeman WA, Mock WL, Shih NY. Cucurbituril. J Am Chem Soc. 1981;103:7367–8.

    CAS  Google Scholar 

  5. Ogoshi T, Yamagishi TA, Nakamoto Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem Rev. 2016;116:7937–8002.

    CAS  PubMed  Google Scholar 

  6. Antesberger J, Cave GWV, Ferrarelli MC, Heaven MW, Raston CL & Atwood JL. Solvent-free, direct synthesis of supramolecular nano-capsules. Chem Commun. 2005:892–4.

  7. Schneider HJ, Yatsimirsky AK. Selectivity in supramolecular host-guest complexes. Chem Soc Rev. 2008;37:263–77.

    CAS  PubMed  Google Scholar 

  8. Yu GC, Jie KC, Huang FH. Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem Rev. 2015;115:7240–303.

    CAS  PubMed  Google Scholar 

  9. Crowley JD, Goldup SM, Lee AL, Leigh DA, McBurney RT. Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. Chem Soc Rev. 2009;38:1530–41.

    CAS  PubMed  Google Scholar 

  10. Miyagawa N, Watanabe M, Matsuyama T, Koyama Y, Moriuchi T, Hirao T, et al. Successive catalytic reactions specific to Pd-based rotaxane complexes as a result of wheel translation along the axle. Chem Commun. 2010;46:1920–2.

    CAS  Google Scholar 

  11. Thordarson P, Bijsterveld EJA, Rowan AE, Nolte RJM. Epoxidation of polybutadiene by a topologically linked catalyst. Nature. 2003;424:915–8.

    CAS  PubMed  Google Scholar 

  12. Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Polymeric rotaxanes. Chem Rev. 2009;109:5974–6023.

    CAS  PubMed  Google Scholar 

  13. Haino T. Designer supramolecular polymers with specific molecular recognitions. Polym J. 2019;51:303–18.

    CAS  Google Scholar 

  14. Goto Y, Ohta A, Sako Y, Yamagishi Y, Murakami H, Suga H. Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem Biol. 2008;3:120–9.

    CAS  PubMed  Google Scholar 

  15. Zorzi A, Deyle K, Heinis C. Cyclic peptide therapeutics: past, present and future. Curr Opin Chem Biol. 2017;38:24–9.

    CAS  PubMed  Google Scholar 

  16. Laurent BA, Grayson SM. Synthetic approaches for the preparation of cyclic polymers. Chem Soc Rev. 2009;38:2202–13.

    CAS  PubMed  Google Scholar 

  17. Dong BT, Dong YQ, Du FS, Li ZC. Controlling polymer topology by atom transfer radical self-condensing vinyl polymerization of p-(2-bromoisobutyloylmethyl)styrene. Macromolecules. 2010;43:8790–8.

    CAS  Google Scholar 

  18. Castro-Osma JA, Alonso-Moreno C, Garcia-Martinez JC, Fernandez-Baeza J, Sanchez-Barba LF, Lara-Sanchez A et al. Ring-opening (ROP) versus ring-expansion (REP) polymerization of epsilon-caprolactone to give linear or cyclic polycaprolactones. Macromolecules. 2013;46:6388–94.

    CAS  Google Scholar 

  19. Bielawski CW, Benitez D, Grubbs RH. Synthesis of cyclic polybutadiene via ring-opening metathesis polymerization: The importance of removing trace linear contaminants. J Am Chem Soc. 2003;125:8424–5.

    CAS  PubMed  Google Scholar 

  20. Kricheldorf HR. Cyclic polymers: synthetic strategies and physical properties. J Polym Sci Part A: Polym Chem. 2010;48:251–84.

    CAS  Google Scholar 

  21. Culkin DA, Jeong WH, Csihony S, Gomez ED, Balsara NR, Hedrick JL, et al. Zwitterionic polymerization of lactide to cyclic poly(lactide) by using N-heterocyclic carbene organocatalysts. Angew Chem Int Ed. 2007;46:2627–30.

    CAS  Google Scholar 

  22. Willans CE, Sinenkov MA, Fukin GK, Sheridan K, Lynam JM, Trifonov AA, et al. Lanthanide chloride complexes of amine-bis(phenolate) ligands and their reactivity in the ring-opening polymerization of epsilon-caprolactone. Dalton Trans. 2008:3592–8.

  23. Kammiyada H, Konishi A, Ouchi M, Sawamoto M. Ring-expansion living cationic polymerization via reversible activation of a hemiacetal ester bond. ACS Macro Lett. 2013;2:531–4.

    CAS  Google Scholar 

  24. Roland CD, Li H, Abboud KA, Wagener KB, Veige AS. Cyclic polymers from alkynes. Nat Chem. 2016;8:791–6.

    CAS  PubMed  Google Scholar 

  25. Li Z, Qu L, Zhu W, Liu JA, Chen JQ, Sun P, et al. Self-accelerating click reaction for preparing cyclic polymers from unconjugated vinyl monomers. Polymer. 2018;137:54–62.

    CAS  Google Scholar 

  26. Zhang K, Lackey MA, Wu Y, Tew GN. Universal cyclic polymer templates. J Am Chem Soc. 2011;133:6906–9.

    CAS  PubMed  Google Scholar 

  27. Honda S, Yamamoto T, Tezuka Y. Tuneable enhancement of the salt and thermal stability of polymeric micelles by cyclized amphiphiles. Nat Commun. 2013;4:1574–9.

    PubMed  PubMed Central  Google Scholar 

  28. Oike H, Mouri T, Tezuka Y. A cyclic macromonomer designed for a novel polymer network architecture having both covalent and physical linkages. Macromolecules. 2001;34:6229–34.

    CAS  Google Scholar 

  29. Chang YA, Waymouth RM. Recent progress on the synthesis of cyclic polymers via ring-expansion strategies. J Polym Sci Part A: Polym Chem. 2017;55:2892–902.

    CAS  Google Scholar 

  30. Yamaguchi G, Higaki Y, Otsuka H, Takahara A. Reversible radical ring-crossover polymerization of an alkoxyamine-containing dynamic covalent macrocycle. Macromolecules. 2005;38:6316–20.

    CAS  Google Scholar 

  31. Schulz M, Tanner S, Barqawi H, Binder WH. Macrocyclization of polymers via ring-closing metathesis and azide/alkyne-“click”-reactions: an approach to cyclic polyisobutylenes. J Polym Sci Part A: Polym Chem. 2010;48:671–80.

    CAS  Google Scholar 

  32. Thompson MC, Busch DH. Reactions of coordinated ligands .6. Metal ion control in synthesis of planar nickel(2) complexes of alpha-diketo-bis-mercaptoimines. J Am Chem Soc. 1964;86:213–7.

    CAS  Google Scholar 

  33. Mandolini L, Masci B. Kinetic evidence for template effect of added cations on rate of formation of benzo-18-crown-6 in water solution. J Am Chem Soc. 1977;99:7709–10.

    CAS  Google Scholar 

  34. Jiang Y, Zhang Z, Wang D, Hadjichristidis N. An efficient and general strategy toward the synthesis of polyethylene-based cyclic polymers. Macromolecules. 2018;51:3193–202.

    CAS  Google Scholar 

  35. Sun P, Chen JQ, Liu JA, Zhang K. Self-accelerating click reaction for cyclic polymer. Macromolecules. 2017;50:1463–72.

    CAS  Google Scholar 

  36. Josse T, De Winter J, Gerbaux P, Coulembier O. Cyclic polymers by ring-closure strategies. Angew Chem Int Ed. 2016;55:13944–58.

    CAS  Google Scholar 

  37. Laurent BA, Grayson SM. An efficient route to well-defined macrocyclic polymers via “Click” cyclization. J Am Chem Soc. 2006;128:4238–9.

    CAS  PubMed  Google Scholar 

  38. Tezuka Y, Oike H. Topological polymer chemistry: systematic classification of nonlinear polymer topologies. J Am Chem Soc. 2001;123:11570–6.

    CAS  PubMed  Google Scholar 

  39. Yamamoto T, Hosokawa M, Nakamura M, Sato S, Isono T, Tajima K, et al. Synthesis, isolation, and properties of all head-to-tail cyclic poly(3-hexylthiophene): fully delocalized exciton over the defect-free ring polymer. Macromolecules. 2018;51:9284–93.

    CAS  Google Scholar 

  40. Takahashi A, Yuzaki R, Ishida Y & Kameyama A. Controlled ring-expansion polymerization of thiiranes based on cyclic aromatic thiourethane initiator. J. Polym. Sci. Part A: Polym. Chem. 2019;57:2442–9.

  41. Narumi A, Yamada M, Unno Y, Kumaki J, Binder WH, Enomoto K, et al. Evaluation of ring expansion-controlled radical polymerization system by AFM observation. ACS Macro Lett. 2019;8:634–8.

    Google Scholar 

  42. Kricheldorf HR, Weidner SM, Scheliga F. Ring-expansion polymerization (REP) of L-lactide with cyclic tin(II) bisphenoxides. Eur Polym J. 2019;116:256–64.

    CAS  Google Scholar 

  43. Narumi A, Hasegawa S, Yanagisawa R, Tomiyama M, Yamada M, Binder WH, et al. Ring expansion-controlled radical polymerization: Synthesis of cyclic polymers and ring component quantification based on SEC-MALS analysis. React Funct Polym. 2016;104:1–8.

    CAS  Google Scholar 

  44. Zhang K, Lackey MA, Cui J, Tew GN. Gels based on cyclic polymers. J Am Chem Soc. 2011;133:4140–8.

    CAS  PubMed  Google Scholar 

  45. Boydston AJ, Xia Y, Kornfield JA, Gorodetskaya IA, Grubbs RH. Cyclic ruthenium-alkylidene catalysts for ring-expansion metathesis polymerization. J Am Chem Soc. 2008;130:12775–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Haque FM, Grayson SM. The synthesis, properties and potential applications of cyclic polymers. Nat Chem. 2020;12:433–44.

    CAS  PubMed  Google Scholar 

  47. Zhang SS, Tezuka Y, Zhang ZBA, Li N, Zhang W, Zhu XL. Recent advances in the construction of cyclic grafted polymers and their potential applications. Polym Chem. 2018;9:677–86.

    CAS  Google Scholar 

  48. Yamamoto T, Tezuka Y. Topological polymer chemistry: a cyclic approach toward novel polymer properties and functions. Polym Chem. 2011;2:1930–41.

    CAS  Google Scholar 

  49. Xue M, Yang Y, Chi XD, Yan XZ, Huang FH. Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications. Chem Rev. 2015;115:7398–501.

    CAS  PubMed  Google Scholar 

  50. Raymo FM, Stoddart JF. Interlocked macromolecules. Chem Rev. 1999;99:1643–63.

    CAS  PubMed  Google Scholar 

  51. Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. Artificial molecular machines. Chem Rev. 2015;115:10081–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Arunachalam M, Gibson HW. Recent developments in polypseudorotaxanes and polyrotaxanes. Prog Polym Sci. 2014;39:1043–73.

    CAS  Google Scholar 

  53. Forgan RS, Sauvage JP, Stoddart JF. Chemical topology: complex molecular knots, links, and entanglements. Chem Rev. 2011;111:5434–64.

    CAS  PubMed  Google Scholar 

  54. Takata T. Polyrotaxane and polyrotaxane network: supramolecular architectures based on the concept of dynamic covalent bond chemistry. Polym J. 2006;38:1–20.

    CAS  Google Scholar 

  55. Dietrichbuchecker CO, Sauvage JP. Interlocking of molecular threads—from the statistical approach to the templated synthesis of catenands. Chem Rev. 1987;87:795–810.

    CAS  Google Scholar 

  56. Jin YH, Yu C, Denman RJ, Zhang W. Recent advances in dynamic covalent chemistry. Chem Soc Rev. 2013;42:6634–54.

    CAS  PubMed  Google Scholar 

  57. Rowan SJ, Cantrill SJ, Cousins GRL, Sanders JKM, Stoddart JF. Dynamic covalent chemistry. Angew Chem Int Ed. 2002;41:898–952.

    Google Scholar 

  58. Otsuka H. Reorganization of polymer structures based on dynamic covalent chemistry: polymer reactions by dynamic covalent exchanges of alkoxyamine units. Polym J. 2013;45:879–91.

    CAS  Google Scholar 

  59. Sauvage JP, Dietrichbuchecker CO. Molecular catenanes, rotaxanes and knots; New York: Wiley; 1999.

  60. Badjic JD, Balzani V, Credi A, Silvi S, Stoddart JF. A molecular elevator. Science. 2004;303:1845–9.

    CAS  PubMed  Google Scholar 

  61. Bruns CJ, Stoddart JF. The nature of the mechanical bond: from molecules to machines. Hoboken, NJ: Wiley; 2016. https://doi.org/10.1002/9781119044123.

  62. Takata T. Switchable polymer materials controlled by rotaxane macromolecular switches. ACS Cent Sci. 2020;6:129–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Aoki D, Takata T. Mechanically linked supramolecular polymer architectures derived from macromolecular [2]rotaxanes: synthesis and topology transformation. Polymer. 2017;128:276–96.

    CAS  Google Scholar 

  64. Takata T, Aoki D. Topology-transformable polymers: linear-branched polymer structural transformation via the mechanical linking of polymer chains. Polym J. 2018;50:127–47.

    CAS  Google Scholar 

  65. Aoki D, Uchida S, Nakazono K, Koyama Y, Takata T. Macromolecular [2]rotaxanes: effective synthesis and characterization. ACS Macro Lett. 2013;2:461–5.

    CAS  Google Scholar 

  66. De BoG, De Winter J, Gerbaux P, Fustin CA. Rotaxane-based mechanically linked block copolymers. Angew Chem Int Ed. 2011;50:9093–6.

    Google Scholar 

  67. Chen Z, Aoki D, Uchida S, Marubayashi H, Nojima S, Takata T. Effect of component mobility on the properties of macromolecular [2] rotaxanes. Angew Chem Int Ed. 2016;55:2778–81.

    CAS  Google Scholar 

  68. Makiguchi K, Satoh T, Kakuchi T. Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of delta-valerolactone and epsilon-caprolactone. Macromolecules. 2011;44:1999–2005.

    CAS  Google Scholar 

  69. Nakazono K, Ogawa T, Takata T. Synthesis of a cyclic poly(methyl acrylate) via topological transformation of a [1]rotaxane. Mater Chem Front. 2019;3:2716–20.

    CAS  Google Scholar 

  70. Valentina S, Ogawa T, Nakazono K, Aoki D, Takata T. Efficient synthesis of cyclic block copolymers by rotaxane protocol by linear/cyclic topology transformation. Chem Eur J. 2016;22:8759–62.

    CAS  PubMed  Google Scholar 

  71. Sato H, Aoki D, Takata T. Synthesis and star/linear topology transformation of a mechanically linked ABC terpolymer. ACS Macro Lett. 2016;5:699–703.

    CAS  Google Scholar 

  72. Aoki D, Uchida S, Takata T Angew. Chem. Int. Ed. 2015;54:6770.

  73. Aoki D, Uchida S, Takata T. Synthesis and characterization of a mechanically linked transformable polymer. Polym J. 2014;46:546–52.

    CAS  Google Scholar 

  74. Aoki D, Aibara G, Uchida S, Takata T. A rational entry to cyclic polymers via selective cyclization by self-assembly and topology transformation of linear polymers. J Am Chem Soc. 2017;139:6791–4.

    CAS  PubMed  Google Scholar 

  75. Schneiderman DK, Hillmyer MA. Aliphatic polyester block polymer design. Macromolecules. 2016;49:2419–28.

    CAS  Google Scholar 

  76. Hodge P. Entropically driven ring-opening polymerization of strainless organic macrocycles. Chem Rev. 2014;114:2278–312.

    CAS  PubMed  Google Scholar 

  77. Amador AG, Watts A, Neitzel AE, Hillmyer MA. Entropically driven macrolide polymerizations for the synthesis of aliphatic polyester copolymers using titanium isopropoxide. Macromolecules. 2019;52:2371–83.

    CAS  Google Scholar 

  78. llarduya AM & Guerra SM Ring opening polymerization of macrocyclic oligoesters derived from renewable sources. Polym. Chem. 2020;11:4850–60.

  79. Takahashi A, Goseki R, Otsuka H. Thermally adjustable dynamic disulfide linkages mediated by highly air-stable 2,2,6,6-tetramethyl-piperidine-1-sulfanyl (TEMPS) radicals. Angew Chem Int Ed. 2017;56:2016–21.

    CAS  Google Scholar 

  80. Hoyle CE, Lowe AB, Bowman CN. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev. 2010;39:1355–87.

    CAS  PubMed  Google Scholar 

  81. Iha RK, Wooley KL, Nystrom AM, Burke DJ, Kade MJ, Hawker CJ. Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem Rev. 2009;109:5620–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsurumi N, Takashima R, Aoki D, Kuwata S, Otsuka H. A strategy toward cyclic topologies based on the dynamic behavior of a bis(hindered amino)disulfide linker. Angew Chem Int Ed. 2020;59:4269–73.

    CAS  Google Scholar 

  83. Takashima R, Aoki D, Otsuka H. Rational entry to cyclic polymers via thermally induced radical ring-expansion polymerization of macrocycles with one bis(hindered amino)disulfide linkage. Macromolecules. 2020;53:4670–7.

    CAS  Google Scholar 

  84. Yokochi H, Takashima R, Aoki D, Otsuka H. Using the dynamic behavior of macrocyclic monomers with a bis(hindered amino)disulfide linker for the preparation of end-functionalized polymers. Polym Chem. 2020;11:3557–63.

    CAS  Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to all his past and present colleagues for their valuable contributions to this focus review. The author is deeply indebted to Prof. Toshikazu Takata (Hiroshima University) and Prof. Hideyuki Otsuka (Tokyo Institute of Technology) for their continuous encouragement and constructive discussions. This research was supported by KAKENHI grants 16K17910, 18K14272, and 20H02783 from the Japan Society for the Promotion of Science (JSPS), the Mizuho Foundation for the Promotion of Science, the Eno Scientific Foundation, the Iketani Science and Technology Foundation, and JST PRESTO grant JPMJPR18L1 (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Aoki.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, D. A rational entry to cyclic polymers via spontaneous and selective cyclization reactions. Polym J 53, 257–269 (2021). https://doi.org/10.1038/s41428-020-00422-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00422-6

This article is cited by

Search

Quick links