Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Rapid Communication
  • Published:

Polycarbonate-block-polycycloalkenes via epoxide/carbon dioxide copolymerization and ring-opening metathesis polymerization

Abstract

Aliphatic polycarbonate (APC) macromolecular chain-transfer agents (macro-CTAs) with an allyl end group were successfully synthesized by cobalt-catalyzed epoxide/carbon dioxide copolymerization in the presence of allyl alcohol as a chain-transfer agent. The ring-opening metathesis polymerization of cycloalkene monomers using the obtained APC macro-CTAs yielded the corresponding APC-block-polycycloalkene copolymers. Thermal degradation temperatures of the APC blocks were found to be slightly higher (≈20 ºC) than those of the block copolymers containing APC and vinyl-polymer blocks we have previously reported.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Scheme 2

References

  1. Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide. J Polym Sci Polym Lett. 1969;7:287–92.

    Article  CAS  Google Scholar 

  2. Coates GW, Moore DR. Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed. 2004;43:6618–39.

    Article  CAS  Google Scholar 

  3. Poland SJ, Darensbourg DJ. A quest for polycarbonates provided via sustainable epoxide/CO2 copolymerization processes. Green Chem. 2017;19:4990–5011.

    Article  CAS  Google Scholar 

  4. Liu Y, Wang M, Ren W-M, He K-K, Xu Y-C, Liu J, Lu X-B. Stereospecific CO2 copolymers from 3,5-dioxaepoxides: crystallization and functionallization. Macromolecules. 2014;47:1269–76.

    Article  CAS  Google Scholar 

  5. Arai R, Seto K, Bell A, Sugimoto H. Synthesis of CO2-derived polycarbonates with high glass transition temperatures. Polym J. 2018;50:301–7.

    Article  CAS  Google Scholar 

  6. Geschwind J, Frey H. Poly(1,2-glycerol carbonate): a fundamental polymer structure synthesized from CO2 and glycidyl ethers. Macromolecules. 2013;46:3280–7.

    Article  CAS  Google Scholar 

  7. Jeske RC, Rowley JM, Coates GW. Pre-rate-determining selectivity in the terpolymerization of epoxides, cyclic anhydrides, and CO2: a one-step route to diblock copolymers. Angew Chem Int Ed. 2008;47:6041–4.

    Article  CAS  Google Scholar 

  8. Cyriac A, Lee SH, Varghese JK, Park ES, Park JH, Lee BY. Immortal CO2/propylene oxide copolymerization: precise control of molecular weight and architecture of various block copolymers. Macromolecules. 2010;43:7398–401.

    Article  CAS  Google Scholar 

  9. Cowman CD, Padgett E, Tan KW, Hovden R, Gu Y, Andrejevic N, Muller D, Coates GW, Wiesner U. Multicomponent nanomaterials with complex networked architectures from orthogonal degradation and binary metal backfilling in ABC triblock terpolymers. J Am Chem Soc. 2015;137:6026–33.

    Article  CAS  Google Scholar 

  10. Zhao Y, Wang Y, Zhou X, Xue Z, Wang X, Xie X, Poli R. Oxygen-triggered switchable polymerization for the one-pot synthesis of CO2-based block copolymers from monomer mixtures. Angew Chem Int Ed. 2019;58:14311–8.

    Article  CAS  Google Scholar 

  11. Denk A, Kernbichl S, Schaffer A, Kränzlein M, Pehl T, Rieger B. Heteronuclear, monomer-selective Zn/Y catalyst combines copolymerization of epoxides and CO2 with group-transfer polymerization of Michael-type monomers. ACS Macro Lett. 2020;9:571–5.

    Article  CAS  Google Scholar 

  12. Wang Y, Zhao Y, Ye Y, Peng H, Zhou X, Xie X, Wang X, Wang F. A one-step route to CO2-based block copolymers by simultaneous ROCOP of CO2/epoxides and RAFT polymerization of vinyl monomers. Angew Chem Int Ed. 2018;57:3593–7.

    Article  CAS  Google Scholar 

  13. Zhang Y-Y, Yang G-W, Wu G-P. A bifunctional β-diiminate zinc catalyst with CO2/epoxides copolymerization and RAFT polymerization capacities for versatile block copolymers construction. Macromolecules. 2018;51:3640–6.

    Article  CAS  Google Scholar 

  14. Kember MR, Copley J, Buchard A, Williams CK. Triblock copolymers from lactide and telechelic poly(cyclohexene carbonate). Polym Chem. 2012;3:1196–201.

    Article  CAS  Google Scholar 

  15. Wu GP, Darensbourg DJ, Lu XB. Tandem metal-coordination copolymerization and organocatalytic ring-opening polymerization via water to synthesize diblock copolymers of styrene oxide/CO2 and lactide. J Am Chem Soc. 2012;134:17739–45.

    Article  CAS  Google Scholar 

  16. Mizuno Y, Nakano K. Block copolymers of aliphatic polycarbonates: combination of immortal epoxide/carbon-dioxide copolymerization and atom transfer radical polymerization of vinyl monomers. Chem Lett. 2018;47:580–3.

    Article  CAS  Google Scholar 

  17. Bielawski CW, Grubbs RH. Living ring-opening metathesis polymerization. Prog Polym Sci. 2007;32:1–29.

    Article  CAS  Google Scholar 

  18. Radano CP, Scherman OA, Stingelin-Stutzmann N, Müller C, Breiby DW, Smith P, Janssen RAJ, Meijer EW. Crystalline–crystalline block copolymers of regioregular poly(3-hexylthiophene) and polyethylene by ring-opening metathesis polymerization. J Am Chem Soc. 2005;127:12502–3.

    Article  CAS  Google Scholar 

  19. Kirschvink F, Gall BT, Vielhauer M, Lutz PJ, Mülhaupt R. Semicrystalline rubber diblock copolymers via cyclooctene ROMP and chain transfer with vinyl-terminated isotactic polystyrene. J Polym Sci Part A: Polym Chem. 2016;54:2271–5.

    Article  CAS  Google Scholar 

  20. Monfette S, Fogg DE. Equilibrium ring-closing metathesis. Chem Rev. 2009;109:3783–816.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research paper is dedicated to Prof. Shohei Inoue, a great Japanese polymer chemist who pioneered epoxide/CO2 copolymerization and passed away on March 19, 2020. This work was supported by MEXT KAKENHI Grant Number 20K05599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Nakano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakabayashi, Y., Nakano, K. Polycarbonate-block-polycycloalkenes via epoxide/carbon dioxide copolymerization and ring-opening metathesis polymerization. Polym J 53, 203–208 (2021). https://doi.org/10.1038/s41428-020-00423-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00423-5

This article is cited by

Search

Quick links