Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Microbial prospection of an Amazonian blackwater lake and whole-genome sequencing of bacteria capable of polyhydroxyalkanoate synthesis

Abstract

Biopolymers are driving the plastic industry to the next generation of environmentally friendly bioproducts, considering green chemistry principles and contemporary economic concepts, such as environmental, social, and governance (ESG) criteria. Hence, microbial biopolymers arise in this context. Resulting from a natural carbon and energy storage process, polyhydroxyalkanoates are the raw material for a range of products based on plastic, with the advantage of being biodegradable in a short period of time. Discovering new biopolymers with different properties, carbon sources and PHA-related enzymes will facilitate market development as well as competition with petrochemical polymers. This work reports the experimental findings of PHA production and genomic data for two bacteria, Ralstonia pickettii and Aquitalea sp., isolated from a blackwater lake located in the ecological reserve of Tupé, Iranduba, AM, Brazil. They were able to produce PHB from carbon sources related to sugar, and R. pickettii also produced PHB from soybean oil and lignin derivatives. Whole-genome sequencing of these isolates enabled the identification of the genetic background to use other oxidizable carbon sources, such as lactic and malonic acids, amino acids, and lignin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pakalapati H, Chang CK, Show PL, Arumugasamy SK, Lan JC. Development of polyhydroxyalkanoates production from waste feedstocks and applications. J Biosci Bioeng. 2018;126:282–92. https://doi.org/10.1016/j.jbiosc.2018.03.016.

    Article  CAS  PubMed  Google Scholar 

  2. Możejko-Ciesielska J, Kiewisz R. Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res. 2016;192:271–82. https://doi.org/10.1016/j.micres.2016.07.010.

    Article  CAS  PubMed  Google Scholar 

  3. Sudesh K, Abe H, Doi Y. Synthesis structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000;25:1503–55. https://doi.org/10.1016/S0079-6700(00)00035-6.

    Article  CAS  Google Scholar 

  4. Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int J Biol Macromol. 2016;89:161–74. https://doi.org/10.1016/j.ijbiomac.2016.04.069.

    Article  CAS  PubMed  Google Scholar 

  5. Cruz MV, Araújo D, Alves VD, Freitas F, Reis MA. Characterization of medium chain length polyhydroxyalkanoate produced from olive oil deodorizer distillate. Int J Biol Macromol. 2016;82:243–8. https://doi.org/10.1016/j.ijbiomac.2015.10.043.

    Article  CAS  PubMed  Google Scholar 

  6. Noda I, Green PR, Satkowski MM, Schechtman LA. Preparation and properties of a novel class of polyhydroxyalkanoate copolymers. Biomacromolecules. 2005;6:580–6. https://doi.org/10.1021/bm049472m.

    Article  CAS  PubMed  Google Scholar 

  7. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbuchel A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol. 1999;171:73–80. https://doi.org/10.1007/s002030050681.

    Article  CAS  PubMed  Google Scholar 

  8. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jackman ShaunD, Benjamin PVandervalk, Hamid Mohamadi, Chu Justin, Yeo Sarah, Hammond SAustin, Inanc. et al. ABySS 2.0: Resource-efficient assembly of large genomes using a Bloom filter. Genome Res, Birol. 2017;27:768–77. https://doi.org/10.1101/gr.214346.116.

    Article  CAS  Google Scholar 

  10. Huang X, Madan A. CAP3: a DNA sequence assembly program. Genome Res. 1999;9:868–77. https://doi.org/10.1101/gr.9.9.868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Larsen MV, Cosentino S, Lukjancenko O, Saputra D, Rasmussen S, Hasman H, et al. Benchmarking of methods for genomic taxonomy. J Clin Microbiol. 2014;52:1529–39. https://doi.org/10.1128/JCM.02981-13.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hasman H, Saputra D, Sicheritz-Ponten T, Lund O, Svendsen CA, Frimodt-Møller N, et al. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol. 2014;52:139–46. https://doi.org/10.1128/jcm.02452-13.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Clausen PTLC, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinform. 2018;19:307. https://doi.org/10.1186/s12859-018-2336-6.

    Article  CAS  Google Scholar 

  14. Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT. Reordering contigs of draft genomes using the Mauve Aligner. Bioinformatics. 2009;v.25:2071–3. https://doi.org/10.1093/bioinformatics/btp356.

    Article  CAS  Google Scholar 

  15. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9. https://doi.org/10.1093/bioinformatics/btu153.

    Article  CAS  PubMed  Google Scholar 

  16. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al., The RAST server: rapid annotations using subsystems technology. BMC Genomics, 2008;9. https://doi.org/10.1186/1471-2164-9-75.

  17. Ng L, Sudesh K. Identification of a new polyhydroxyalkanoate (PHA) producer Aquitalea sp. USM4 (JCM 19919) and characterization of its PHA synthase. J Biosc Bioeng. 2016;122:550–7. https://doi.org/10.1016/j.jbiosc.2016.03.024.

    Article  CAS  Google Scholar 

  18. Teh A, Chiam N, Furusawa G, Sudesh K. Modelling of polyhydroxyalkanoate synthase from Aquitalea sp. USM4 suggests a novel mechanism for polymer elongation. Int J Biol Macromol. 2018;119:438–45. https://doi.org/10.1016/j.ijbiomac.2018.07.147.

    Article  CAS  PubMed  Google Scholar 

  19. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25:1307–20. https://doi.org/10.1093/molbev/msn067.

    Article  CAS  PubMed  Google Scholar 

  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91. https://doi.org/10.2307/2408678.

    Article  PubMed  Google Scholar 

  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9. https://doi.org/10.1093/molbev/msy096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matias F, de Andrade Rodrigues MF. New PHA products using unrelated carbon sources. Braz J Microbiol. 2011;42:1354–63. https://doi.org/10.1590/S1517-838220110004000017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tomizawa S, Chuah JA, Matsumoto K, Doi Y, Numata K. Understanding the limitations in the biosynthesis of polyhydroxyalkanoate (PHA) from lignin derivatives. ACS Sust Chem Eng. 2014;2:1106–13. https://doi.org/10.1021/sc500066f.

    Article  CAS  Google Scholar 

  24. Kato M, Bao HJ, Kang CK, Fukui T, Doi Y. Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars. Appl Micro Biotec. 1996;45:363–70. https://doi.org/10.1007/s002530050697.

    Article  CAS  Google Scholar 

  25. Kahar P, Tsuge T, Taguchi K, Doi Y. High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Pol Degrad Stabil. 2004;83:79–86. https://doi.org/10.1016/S0141-3910(03)00227-1.

    Article  CAS  Google Scholar 

  26. Doi Y, Kitamura S, Abe H. Microbial synthesis and characterization of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules. 1995;28:4822–8. https://doi.org/10.1021/ma00118a007.

    Article  CAS  Google Scholar 

  27. Higuchi-Takeuchi M, Morisaki K, Toyooka K, Numata K. Synthesis of high-molecular-weight polyhydroxyalkanoates by marine photosynthetic purple bacteria. PLoS ONE. 2016;11. https://doi.org/10.1371/journal.pone.0160981.

  28. Numata K, Morisaki K. Screening of marine bacteria to synthesize polyhydroxyalkanoate from lignin: Contribution of lignin derivatives to biosynthesis by Oceanimonas doudoroffii. ACS Sust Chem Eng. 2015;3:569–73. https://doi.org/10.1021/acssuschemeng.5b00031.

    Article  CAS  Google Scholar 

  29. Numata K, Hirota T, Kikkawa Y, Tsuge T, Iwata T, Abe H, et al. Enzymatic degradation processes of lamellar crystals in thin films for poly[(R)-3-hydroxybutyric acid] and its copolymers revealed by real-time atomic force microscopy. Biomacromolecules. 2004;5:2186–94. https://doi.org/10.1021/bm0497670.

    Article  CAS  PubMed  Google Scholar 

  30. Numata K, Kikkawa Y, Tsuge T, Iwata T, Doi Y, Abe H. Enzymatic degradation processes of poly[(R)-3-hydroxybutyric acid] and poly[(R)-3-hydroxybutyric acid-co-(R)-3-hydroxyvaleric acid] single crystals revealed by atomic force microscopy: effects of molecular weight and second-monomer composition on erosion rates. Biomacromolecules. 2005;6:2018–16. https://doi.org/10.1021/bm0501151.

    Article  CAS  Google Scholar 

  31. Ertel JR, Hedges JI, Devol AH, Richey JE, Ribeiro MNG. Dissolved humic substances of the Amazon River system. Limnol Ocean. 1986;31:739–54. https://doi.org/10.4319/lo.1986.31.4.0739.

    Article  CAS  Google Scholar 

  32. Dos Santos AR, Nelson BW. Leaf decomposition and fine fuels in floodplain forests of the Rio Negro in the Brazilian Amazon. J Tropical Ecol. 2013;29:455–8. https://doi.org/10.1017/S0266467413000485.

    Article  Google Scholar 

  33. Medina E, Cuevas E. Patterns of nutrient accumulation and release in Amazonian forests of the upper Rio Negro basin. In: Mineral nutrients in tropical forest and savanna ecosystems. Oxford: Blackwell Scientific; 1989. pp. 217–40.

  34. Kukor JJ, Olsen RH, Ballou DP. Cloning and expression of the catA and catBC gene clusters from Pseudomonas aeruginosa PAO. J Bacteriol. 1988;170:4458–65. https://doi.org/10.1128/jb.170.10.4458-4465.1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamada K, Mukai K, Doi Y. Enzymatic degradation of poly(hydroxyalkanoates) by Pseudomonas pickettii. Int J Biol Macromol. 1993;15:215–20. https://doi.org/10.1016/0141-8130(93)90040-s.

    Article  CAS  PubMed  Google Scholar 

  36. Yamashita K, Funato T, Suzuki Y, Teramachi S, Doi Y. Characteristic interactions between poly(hydroxybutyrate) depolymerase and poly [(R)-3-hydroxybutyrate] film studied by a quartz crystal microbalance. Macromol Biosci. 2003;3:694–702. https://doi.org/10.1002/mabi.200300004.

    Article  CAS  Google Scholar 

  37. Hiraishi T, Hirahara Y, Doi Y, Maeda M, Taguchi S. Effects of mutations in the substrate-binding domain of poly[(R)-3-hydroxybutyrate] (PHB) depolymerase from Ralstonia pickettii T1 on PHB degradation. Appl Envir Micro. 2006;72:7331–8. https://doi.org/10.1128/aem.01187-06.

    Article  CAS  Google Scholar 

  38. Numata K, Yamashita K, Fujita M, Tsuge T, Kasuya K, Iwata T, et al. Adsorption and Hydrolysis Reactions of Poly(hydroxybutyric acid) Depolymerases Secreted from Ralstonia pickettii T1 and Penicillium funiculosum onto Poly[(R)-3-hydroxybutyric acid]. Biomacromolecules. 2007;8:2276–81. https://doi.org/10.1021/bm070231z.

    Article  CAS  PubMed  Google Scholar 

  39. Yabannavar AV, Zylstra GJ. Cloning and characterization of the genes for p-nitrobenzoate degradation from Pseudomonas pickettii YH105. Appl Envir Micro. 1995;61:4284–90.

    Article  CAS  Google Scholar 

  40. Bonatto D, Matias F, Lisbôa MP, Bogdawa HM, Henriques JAP. Production of short side chain-Poly[Hydroxyalkanoate] by a newly isolated Ralstonia Pickettii strain. W J Microbiol Biotec. 2004;20:395–403. https://doi.org/10.1023/B:WIBI.0000033063.55133.e1.

    Article  CAS  Google Scholar 

  41. De Almeida A, Giordano AM, Nikel PI, Pettinari MJ. Effects of aeration on the synthesis of poly(3-hydroxybutyrate) from glycerol and glucose in recombinant Escherichia coli. Appl Environ Microbiol. 2010;76:2036–40. https://doi.org/10.1128/AEM.02706-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raiger-Iustman LJ, Ruiz JA. The alternative sigma factor, σS, affects polyhydroxyalkanoate metabolism in Pseudomonas putida. FEMS Microbiol Lett. 2008;284:218–24. https://doi.org/10.1111/j.1574-6968.2008.01203.x.

    Article  CAS  PubMed  Google Scholar 

  43. He W, Tian W, Zhang G, Chen GQ, Zhang Z. Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiol Lett. 1998;169:45–49. https://doi.org/10.1111/j.1574-6968.1998.tb13297.x.

    Article  CAS  Google Scholar 

  44. Rehm BH, Mitsky TA, Steinbüchel A. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol. 2001;67:3102–9. https://doi.org/10.1128/AEM.67.7.3102-3109.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu J, Tappel RC, Nomura CT. Mini-review: biosynthesis of Poly(hydroxyalkanoates). Polym Rev. 2009;49:226–48. https://doi.org/10.1080/15583720903048243.

    Article  CAS  Google Scholar 

  46. Jiang G, Hill DJ, Kowalczuk M, Johnston B, Adamus G, Irorere V, et al. Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci. 2016;17:1157. https://doi.org/10.3390/ijms17071157.

    Article  CAS  PubMed Central  Google Scholar 

  47. Mohapatra S, Maity S, Dash HR, Das S, Pattnaik S, Rath CC, et al. Bacillus and biopolymer: prospects and challenges. Biochem Biophys Rep. 2017;12:206–13. https://doi.org/10.1016/j.bbrep.2017.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hemachander C, Puvanakrishnan R. Lipase from Ralstonia pickettii as an additive in laundry detergent formulations. Process Biochem. 2000;35:809–14. https://doi.org/10.1016/S0032-9592(99)00140-5.

    Article  CAS  Google Scholar 

  49. Ohtsubo Y, Fujita N, Nagata Y, Tsuda M, Iwasaki T, Hatta T. Complete genome sequence of Ralstonia pickettii DTP0602, a 2,4,6-Trichlorophenol Degrader. Genome Announc. 2013;1. https://doi.org/10.1128/genomeA.00903-13.

  50. Tao Y, Fishman A, Bentley WE, Wood TK. Oxidation of benzene to phenol, catechol, and 1,2,3-Trihydroxybenzene by Toluene 4-Monooxygenase of Pseudomonas mendocina KR1 and Toluene 3-Monooxygenase of Ralstonia pickettii PKO1. Appl Environ Microbiol. 2004;70:3814–20. 10.1128AEM.70.7.3814-3820.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ryan MP, Pembroke JT, Adley CC. Ralstonia pickettii in environmental biotechnology: potential and applications. J Appl Microbiol. 2007;103:754–64. https://doi.org/10.1111/j.1365-2672.2007.03361.x.

    Article  CAS  PubMed  Google Scholar 

  52. Wang W, Shihui Y, Hunsinger GB, Pienkos PT, Johnson DK. Connecting lignin-degradation pathway with pre-treatment inhibitor sensitivity of Cupriavidus necator. Front Microbiol. 2014;V:247. https://doi.org/10.3389/fmicb.2014.00247.

    Article  Google Scholar 

  53. Kshirsagar P, Suttar R, Nilegaonkar S, Kulkarni S, Kanekar P. Scale up production of polyhydroxyalkanoate (PHA) at different aeration, agitation and controlled dissolved oxygen levels in fermenter using Halomonas campisalis MCM B-1027. J Bioch Tech. 2012;4:512–7.

    CAS  Google Scholar 

  54. Możejko-Ciesielska J, Pokoj T. Exploring nutrient limitation for polyhydroxyalkanoates synthesis by newly isolated strains of Aeromonas sp. using biodiesel-derived glycerol as a substrate. PeerJ, 2018;6. https://doi.org/10.7717/peerj.5838.

  55. Fradinho JC, Domingos JMB, Carvalho G, Oehmen A, Reis MAM. Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresour Technol. 2013;132:146–53. https://doi.org/10.1016/j.biortech.2013.01.050.

    Article  CAS  PubMed  Google Scholar 

  56. Singh AK, Mallick N. Advances in cyanobacterial polyhydroxyalkanoates production. FEMS Microbiol Lett, 2017;364: https://doi.org/10.1093/femsle/fnx189.

  57. Chen GQ Plastics Completely Synthesized by Bacteria: Polyhydroxyalkanoates. In: Chen GQ (ed) Plastics from bacteria. Microbiology Monographs. Berlin: Springer; 2010. Vol. 14, p. 17–3. https://doi.org/10.1007/978-3-642-03287-5_2.

  58. Buis JM, Broderick JB. Pyruvate formate-lyase activating enzyme: elucidation of a novel mechanism for glycyl radical formation. Arch Biochem Biophys. 2005;433:288–96. https://doi.org/10.1016/j.abb.2004.09.028.

    Article  CAS  PubMed  Google Scholar 

  59. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.

    Article  CAS  PubMed  Google Scholar 

  60. Guo Z, Houghton JE. PcaR-mediated activation and repression of pca genes from Pseudomonas putida are propagated by its binding to both the -35 and the -10 promoter elements. Mol Microbiol. 1999;32:253–63. https://doi.org/10.1046/j.1365-2958.1999.01342.x

    Article  CAS  PubMed  Google Scholar 

  61. Xu Z, Lei P, Zhai R, Wen Z, Jin M Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. Biotechnol Biofuels. 2019;12. https://doi.org/10.1186/s13068-019-1376-0.

  62. Beckers V, Poblete-Castro I, Tomasch J, Wittmann C. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Micro Cell Fact. 2016;15:73. https://doi.org/10.1186/s12934-016-0470-2.

    Article  CAS  Google Scholar 

  63. Han J, Hou J, Zhang F, Ai G, Li M, Cai S, et al. Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei. Appl Environ Microbiol. 2013;79:2922–31. https://doi.org/10.1128/AEM.03915-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, et al. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci USA. 2008;105:17323–7. https://doi.org/10.1073/pnas.0805653105.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang Y, Lin Z, Liu Q, Li Y, Wang Z, Ma H, et al. Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli. Micro Cell Fact. 2014;13:172. https://doi.org/10.1186/s12934-014-0172-6.

    Article  CAS  Google Scholar 

  66. Poblete-Castro I, Becker J, Dohnt K, dos Santos VM, Wittmann C. Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol. 2012;93:2279–90. https://doi.org/10.1007/s00253-012-3928-0.

    Article  CAS  PubMed  Google Scholar 

  67. Zhou Y, Lin L, Wang H, Zhang Z, Zhou J, Jiao N. Development of a CRISPR/Cas9n-based tool for metabolic engineering of Pseudomonas putida for ferulic acid-to-polyhydroxyalkanoate bioconversion. Commun Biol. 2020;3. https://doi.org/10.1038/s42003-020-0824-5.

  68. Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, et al. Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol. 2006;24:1257–62. https://doi.org/10.1038/nbt1244.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by MCTIC/PROPESP/UFAM 041/2016 through a grant for AJ Mota and also by JST ERATO (grant number JPMJER1602). We are grateful for the financial and logistical support provided by RIKEN through a grant for LM Castro. We also thank Cheris Williams for revising the English grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo J. Mota.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, L.M., Foong, C.P., Higuchi-Takeuchi, M. et al. Microbial prospection of an Amazonian blackwater lake and whole-genome sequencing of bacteria capable of polyhydroxyalkanoate synthesis. Polym J 53, 191–202 (2021). https://doi.org/10.1038/s41428-020-00424-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00424-4

This article is cited by

Search

Quick links