Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The cyanobacterial polysaccharide sacran: characteristics, structures, and preparation of LC gels

Abstract

To shift from a petroleum-dependent society to a sustainable society using eco-friendly materials, polysaccharides from natural products are important candidates as alternative materials. We have researched one cyanobacterial polysaccharide, “sacran”, which is extracted from Aphanothece sacrum. In this review, the unique characteristics and structures of sacran and the preparation of liquid crystal gels are introduced: polymer properties such as megamolecular weight, that is, a weight > 107 g/mol; characteristic viscosity; liquid crystallinity (LC); fiber structures on the nanometer/micrometer scale; gel formation with heavy metal ions; photoshrinking in gels composed of metal ions; anisotropically swelling gels; orientation upon drying of the air-LC interface; meniscus splitting; and membrane formation with uniaxial orientation, which are the results of self-organization. These matters are discussed particularly from the perspectives of polymer science, colloidal science, gel science, etc. We expect that sacran will be applicable in a variety of fields, such as tissue engineering, pharmacodynamics, and biomedical materials, with possible contributions to the development of a sustainable material society.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Marchesault RH, Morehead FF, Walter NM. Liquid crystal systems from fibrillar polysaccharides. Nature. 1959;184:632–3.

    Google Scholar 

  2. Holzwarth G, Prestridge EB. Multistranded helix in xanthan polysaccharide. Science. 1977;197:757–9.

    CAS  PubMed  Google Scholar 

  3. Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci. 2007;52:1263–334.

    CAS  Google Scholar 

  4. Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharidenanocrystals in advanced functional nanomaterials: a review. Nanoscale. 2012;4:3274.

    CAS  PubMed  Google Scholar 

  5. Zhang R, Edgar KJ. Properties, chemistry, applications of the bioactive polysaccharide curdlan. Biomacromolecules. 2014;15:1079.

    CAS  PubMed  Google Scholar 

  6. Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, et al. Preparation of chitin nanofibers with a uniform width as alpha-chitin from crab shells. Biomacromolecules. 2009;10:1584–8.

    CAS  PubMed  Google Scholar 

  7. Kumagai H, Matsunaga R, Nishimura T, Yamamoto Y, Oaki Y, Inoue H, et al. CaCO3/chitin hybrids: effects of recombinant acidic peptides designed based on a peptide extracted from an exoskeleton of a crayfish on morphologies of the hybrids. Faraday Discuss. 2012;159:483–94.

    CAS  Google Scholar 

  8. Jono K, Nagao M, Oh T, Sonoda S, Hoshino Y, Miura Y. Controlling the lectin recognition of glycopolymers via distance arrangement of sugar blocks. Chem. Commun. 2018;54:82–5.

    CAS  Google Scholar 

  9. Danjo T, Enomoto Y, Shimada H, Nobukawa S, Yamaguchi M, Iwata T. Zero birefringence films of pullulan ester derivatives. Sci. Rep. 2017;7:46342.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yan G, Yamaguchi T, Suzuki T, Yanaka S, Sato S, Fujita M, et al. Hyper-assembly of self-assembled glycoclusters mediated by specific carbohydrate-carbohydrate interactions. Chem Asian J. 2017;12:968–72.

    CAS  PubMed  Google Scholar 

  11. Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale. 2011;3:71–85.

    CAS  PubMed  Google Scholar 

  12. Min BM, Lee SW, Lim JN, You Y, Lee TS, Kang PH, et al. Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer. 2004;45:7137.

    CAS  Google Scholar 

  13. Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec. 2010;10:366–76.

    CAS  PubMed  Google Scholar 

  14. Akiyoshi K Handbook of advanced glycoscience and glycoengineering. Tokyo: NTS; 2015.

  15. Fujishiro T, Ogawa T, Matsuoka M, Nagahama K, Takeshima Y, Hagiwara H. Establishment of a pure culture of the hitherto uncultured unicellular cyanobacterium Aphanothece sacrum, and phylogenetic position of the organism. Appl Environ Microbiol. 2004;70:3338–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Okajima MK, Ono M, Kabata K, Kaneko T. Extraction of Novel Sulfated Polysaccharide from Aphanothece sacrum (Sur.) Okada, and its Spectroscopic Characterization. Pure Appl. Chem. 2007;79:2039–46.

    Google Scholar 

  17. Okajima MK, Bamba T, Kaneso Y, Hirata K, Fukusaki E, Kajiyama S, et al. Supergiant ampholytic sugar chains with imbalanced charge ratio form saline ultra-absorbent hydrogels. Macromolecules. 2008;41:4061–4.

    CAS  Google Scholar 

  18. Okajima MK, Kaneko D, Mitsumata T, Kaneko T, Watanabe J. Cyanobacteria that produce megamolecules with efficient self-orientation. Macromolecules. 2009;42:3057–62.

    CAS  Google Scholar 

  19. Okajima MK, Miyazato S, Kaneko T. The cyanobacterial megamolecule sacran efficiently forms LC gels with very heavy metal ions. Langmuir. 2009;25:8526–31.

    CAS  PubMed  Google Scholar 

  20. Okajima MK, Higashi T, Asakawa R, Mitsumata T, Kaneko D, Kaneko T, et al. Cyanobacterial polysaccharide gels with efficient rare-earth-metal sorption. Biomacromolecules. 2010;11:3172.

    CAS  PubMed  Google Scholar 

  21. Okajima MK, Kumar A, Fujiwara A, Mitsumata T, Kaneko D, Ogawa T, et al. Anionic complexes of mwcnt with supergiant cyanobacterial polyanions. Biopolymers. 2013;99:1–9.

    CAS  PubMed  Google Scholar 

  22. Mitsumata T, Miura T, Takahashi N, Kawai M, Okajima MK, Kaneko T. Ionic state and chain conformation for aqueous solutions of supergiant cyanobacterial polysaccharide. Phys Rev E. 2013;87:042607.

    Google Scholar 

  23. Okajima MK, Mishima R, Amornwachirabodee K, Mitsumata T, Okeyoshi K, Kaneko T. Anisotropic swelling in hydrogels formed by cooperatively aligned megamolecules. RSC Adv. 2015;5:86723–9.

    CAS  Google Scholar 

  24. Amornwachirabodee K, Okajima MK, Kaneko T. Uniaxial swelling in lc hydrogels formed by two-step cross-linking. Macromolecules. 2015;48:8615.

    CAS  Google Scholar 

  25. Okeyoshi K, Okajima MK, Kaneko T. Milliscale self-Integration of megamolecule biopolymers on a drying gas-aqueous liquid crystalline interface. Biomacromolecules. 2016;17:2096–103.

    CAS  PubMed  Google Scholar 

  26. Shikinaka K, Okeyoshi K, Masunaga H, Okajima MK, Kaneko T. Solution structure of cyanobacterial polysaccharide, sacran. Polymer. 2016;99:767–70.

    CAS  Google Scholar 

  27. Joshi G, Okeyoshi K, Okajima MK, Kaneko T. Directional control of diffusion and swelling in megamolecular polysaccharide hydrogels. Soft Matter. 2016;12:5515–8.

    CAS  PubMed  Google Scholar 

  28. Okeyoshi K, Okajima MK, Kaneko T. Emergence of polysaccharide membrane walls through macro-space partitioning via interfacial instability. Sci Rep. 2017;7:5615.

    PubMed  PubMed Central  Google Scholar 

  29. Okeyoshi K, Joshi G, Rawat S, Sornkamnerd S, Amornwachirabodee K, Okajima MK, et al. Drying-induced self-similar assembly of megamolecular polysaccharides through nano and submicron layering. Langmuir. 2017;33:4954–9.

    CAS  PubMed  Google Scholar 

  30. Okeyoshi K, Osada K, Okajima MK, Kaneko T. Methods for self-integration of megamolecular biopolymers on the drying air-LC interface. J Vis Exp. 2017;122:e55274.

    Google Scholar 

  31. Okeyoshi K, Shinhama T, Budpud K, Joshi G, Okajima MK, Kaneko T. Micelle-mediated self-assembly of microfibers bridging millimeter-scale gap to form three-dimensional-ordered polysaccharide membranes. Langmuir. 2018;34:13965–70.

    CAS  PubMed  Google Scholar 

  32. Okeyoshi K, Okajima MK, Kaneko T. Drying-induced macro-space partitioning of supra-polysaccharides and membrane formation with uniaxial orientation. Kobunshi Ronbunshu. 2018;75:1–8.

    CAS  Google Scholar 

  33. Okeyoshi K. DRY & WET: in vitro dissipative structures of microtubules and polysaccharides by interfacial instability. Kobunshi Ronbunshu. 2018;75:396–405.

    CAS  Google Scholar 

  34. Okeyoshi K, Joshi G, Okajima MK, Kaneko T. Formation of polysaccharide membranes by splitting of evaporative air–LC interface. Adv Mater Interface. 2018;5:1701219.

    Google Scholar 

  35. Sornkamnerd S, Okajima MK, Kaneko T. Surface-selective control of cell-orientation on cyanobacterial liquid crystalline gels. ACS Omega. 2017;2:5304–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sornkamnerd S, Okajima MK, Matsumura K, Kaneko T. Micro-patterned cell orientation of cyanobacterial liquid-crystalline hydrogels. ACS Appl Mater Interfaces. 2018;10:44834–43.

    CAS  PubMed  Google Scholar 

  37. Okajima MK, Sornkamnerd S, Kaneko T. Development of functional bionanocomposites using cyanobacterial polysaccharides. Chem Rec. 2018;167:1–12.

    Google Scholar 

  38. Yusof NFAA, Yamaki M, Kawai M, Okajima M, Kaneko T, Mitsumata T. Rheopectic behavior for aqueous solutions of megamolecular polysaccharide, sacran. Biomolecules. 2020;10:155.

    CAS  Google Scholar 

  39. Budpud K, Okeyoshi K, Okajima MK, Kaneko T. Vapor-sensitive materials from polysaccharide fibers with self-assembling twisted microstructures. Small. 2020;16:2001993.

    CAS  Google Scholar 

  40. Okeyoshi K. DRY & WET: meniscus splitting from a mixture of polysaccharides and water. Polym J. 2020;52:1185–94.

    CAS  Google Scholar 

  41. De Gennes PG Scaling concepts in polymer physics. Ithaca, NY: Cornell, University Press; 1979.

    Google Scholar 

  42. Zhang YQ, Tanaka T, Shibayama M. Super-absorbency and phase transition of gels in physiological salt solutions. Nature. 1992;360:142.

    CAS  Google Scholar 

  43. Fraser JRE, Laurent TC, Laurent UBG. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242:27.

    CAS  PubMed  Google Scholar 

  44. Numata M, Asai M, Kaneko K, Bae AH, Hasegawa T, Sakurai K, et al. Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and Curdlan (β-1,3-glucans). J Am Chem Soc. 2005;127:5875–84.

    CAS  PubMed  Google Scholar 

  45. Maurstad G, Danielsen S, Stokke BT. Analysis of compacted semiflexible polyanions visualized by atomic force microscopy: influence of chain stiffness on the porphologies of polyelectrolyte complexes. J Phys Chem B. 2003;107:8172–80.

    CAS  Google Scholar 

  46. Maurstad G, Stokke BT. Metastable and stable states of xanthan polyelectrolyte complexes studied by atomic force microscopy. Biopolymers. 2004;74:199–213.

    CAS  PubMed  Google Scholar 

  47. Finlay IG, Mason MD, Shelley M. lancet Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Oncol. 2005;6:392–400.

    CAS  Google Scholar 

  48. Wengler G, Wengler G, Koschinski A. A short treatment of cells with the lanthanide ions La3+, Ce3+, Pr3+ or Nd3+ changes the cellular chemistry into a state in which RNA replication of flaviviruses is specifically blocked without interference with host-cell multiplication. J Gen Virol. 2007;88:3018–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. De Gennes PG, Brochard-Wyart F, Quere D Capillarity and wetting phenomena: drops, bubbles, pearls, waves. New York, NY: Springer; 2003.

    Google Scholar 

  50. De Luca G, Rey AD. Monodomain and polydomain helicoids in chiral liquid-crystalline phases and their biological analogues. Eur Phys J E. 2003;12:291–302.

    PubMed  Google Scholar 

  51. Liu J, Qi C, Tao K, Zhang J, Zhang J, Xu L, et al. Sericin/dextran injectable hydrogel as an optically trackable drug delivery system for malignant melanoma treatment. ACS Appl Mater Interfaces. 2016;8:6411–22.

    CAS  PubMed  Google Scholar 

  52. Weaver CL, LaRosa JM, Luo X, Cui XT. Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano. 2014;8:1834–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yuan X, Marcano DC, Shin CS, Hua X, Isenhart LC, Pflugfelder SC, et al. Ocular drug delivery nanowafer with enhanced therapeutic efficacy. ACS Nano. 2015;9:1749–58.

    CAS  PubMed  Google Scholar 

  54. Li Z, Zheng Z, Su S, Yu L, Wang X. Preparation of a high-strength hydrogel with slidable and tunable potential functionalization sites. Macromolecules. 2016;49:373–86.

    CAS  Google Scholar 

  55. Zhao Y, Zhang Y, Liu A, Wei Z, Liu S. Construction of three-dimensional hemin-functionalized graphene hydrogel with high mechanical stability and adsorption capacity for enhancing photodegradation of methylene blue. ACS Appl MaterInterfaces. 2017;9:4006–14.

    CAS  Google Scholar 

  56. Liu H, Zuo K, Vecitis CD. Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption. Environ Sci Technol. 2014;48:13871–9.

    CAS  PubMed  Google Scholar 

  57. Wang H, Zhang L, Li Y, Hu C. Influence of filtration aids on continuous filtration in membrane bioreactors. Ind Eng Chem Res. 2014;53:7202–8.

    CAS  Google Scholar 

  58. Brzoska JB, Brochard-Wyard F, Rondelez F. Exponential growth of fingering instabilities of spreading films under horizontal thermal gradients. Europhys Lett. 1992;19:97–102.

    CAS  Google Scholar 

  59. Shikinaka K, Okeyoshi K, Masunaga H, Okajima MK, Kaneko T. Structure of cyanobacterial polysaccharide, sacran. Polymer. 2017;99:767–70.

    Google Scholar 

  60. Zhao Y, Hien KTT, Mizutani G, Rutt HN, Amornwachirabodee K, Okajima MK, et al. Optical second-harmonic images of sacran megamolecules aggregates. J Opt Sci Am A. 2017;34:146.

    Google Scholar 

  61. Ngatu NR, Okajima MK, Yokogawa M, Hirota R, Eitoku M, Muzembo BA, et al. Anti-inflammatory effects of sacran, a novel polysaccharide from aphanothece sacrum,on 2,4,6-Trinitrochlorobenzene induced allergic dermatitis in vivo. Ann Aller Asthma Immunol. 2012;108:117.

    CAS  Google Scholar 

  62. Wathoni N, Motoyama K, Higashi T, Okajima MK, Kaneko T, Arima H. Physically crosslinked-sacran hydrogel films for wound dressing application. Int J Biol Macromol. 2016;89:465.

    CAS  PubMed  Google Scholar 

  63. Fukushima S, Motoyama K, Tanida Y, Higashi T, Ishitsuka Y, Kondo Y, et al. Clinical evaluation of novel natural polysaccharides sacran as a skincare material for atopic dermatitis patients. J Cosm Derm Sci Appl. 2016;6:9–16.

    CAS  Google Scholar 

  64. Motoyama K, Tanida Y, Hata K, Hayashi T, AbuHashim II, Higashi T, et al. Cholesterol-lowering effect of Octaarginine-Appended β-Cyclodextrin in Npc1-Trap-CHO cells. Biol Pharma Bull. 2016;39:1172–8.

    CAS  Google Scholar 

  65. Fujishiro T, Ogawa T, Matsuoka M, Nagahama K, Takeshima Y, Hagiwara H. Establishment of a pure culture of the hitherto uncultured unicellular cyanobacterium Aphanothece sacrum, and phylogenetic position of the organism. Appl Environ Microbiol. 2004;70:3338.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate the great efforts of Dr. Kittima Amornwachirabodee, Dr. Saranyoo Sornkamnerd, Dr. Gargi Joshi, and Ph.D. students. The authors gratefully acknowledge Green Science Material, Inc. (Kumamoto, Japan), Kisendou Corporation (Asakura, Japan), and Kawatake Ganso Endo Kanagawado G.K. (Asakura, Japan) for gifting Aphanothece sacrum biomaterials. The research was financially supported by a Grant-in-Aid from A-step, (AS2915173U) of JST, Japan, and a Grant-in-Aid for Scientific Research on Innovative Areas (JP20H05213) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Kaneko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okeyoshi, K., Okajima, M.K. & Kaneko, T. The cyanobacterial polysaccharide sacran: characteristics, structures, and preparation of LC gels. Polym J 53, 81–91 (2021). https://doi.org/10.1038/s41428-020-00426-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00426-2

This article is cited by

Search

Quick links