Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Glass transition and fragility of nanosized polymeric fibers and spheres predicted from a surface-controlled model

Abstract

In a previous article, we proposed a surface-controlled cooperatively rearranging region (SCC) model that mimics the segmental dynamics of supercooled liquids, including polymeric materials. By introducing surface/interface effects into the SCC model, the size-dependent dynamics of nanosized polymer materials such as ultrathin films can be predicted. In this study, the SCC model is extended to various nanomaterial geometries, i.e., filled fibers (cylinders), filled spheres, hollow fibers, hollow spheres, core/shell fibers, core/shell spheres, and thin films and spheres embedded in a substrate. We formulated temperature-dependent hole (free-volume) fraction profiles with respect to local position in the nanomaterials, and evaluated the weighted average of the hole fraction to consider the coupled dynamics in nanoconfined systems. The predicted glass transition temperature (Tg) and fragility (m) of filled spheres of polystyrene coincide qualitatively with experimental observations reported in literature. The geometry dependence of the dynamics was also investigated, and it was revealed that Tg (filled sphere) > Tg(filled fiber) > Tg (free-standing film) when compared at the same surface area to volume ratio, whereas for fragility, the opposite trend was found, i.e., m (free-standing film) > m (filled fiber) > m (filled sphere).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Napolitano S, Glynos E, Tito NB. Glass transition of polymers in bulk, confined geometries, and near interfaces. Rep Prog Phys. 2017;80:036602.

    PubMed  Google Scholar 

  2. Priestley RD, Ellison CJ, Broadbelt LJ, Torkelson JM. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science. 2005;309:456–9.

    CAS  PubMed  Google Scholar 

  3. Akabori K, Tanaka K, Nagamura T, Takahara A, Kajiyama T. Molecular motion in ultrathin polystyrene films: Dynamic mechanical analysis of surface and interfacial effects. Macromolecules. 2005;38:9735–41.

    CAS  Google Scholar 

  4. Stevenson JD, Wolynes PG. On the surface of glasses. J Chem Phys. 2008;129:234514.

    PubMed  PubMed Central  Google Scholar 

  5. Ediger MD, Forrest JA. Dynamics near free surfaces and the glass transition in thin polymer films: A view to the future. Macromolecules. 2014;47:471–8.

    CAS  Google Scholar 

  6. Keddie JL, Jones RAL, Cory RA. Size-dependent depression of the glass transition temperature in polymer films. Europhys Lett. 1994;27:59–64.

    CAS  Google Scholar 

  7. Keddie JL, Jones RAL, Cory RA. Interface and surface effects on the glass-transition temperature in thin polymer films. Faraday Disc. 1994;98:219–30.

    CAS  Google Scholar 

  8. Efremov MY, Olson EA, Zhang M, Zhang Z, Allen LH. Probing glass transition of ultrathin polymer films at a time scale of seconds using fast differential scanning calorimetry. Macromolecules. 2004;37:4607–16.

    CAS  Google Scholar 

  9. Koh YP, McKenna GB, Simon SL. Calorimetric glass transition temperature and absolute heat capacity of polystyrene ultrathin films. J Polym Sci B Polym Phys. 2006;44:3518–27.

    CAS  Google Scholar 

  10. Fukao K, Miyamoto Y. Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene. Phys Rev E. 2000;61:1743–54.

    CAS  Google Scholar 

  11. Forrest JA, Dalnoki-Veress K. When does a glass transition temperature not signify a glass transition? ACS Macro Lett. 2014;3:310–4.

    CAS  Google Scholar 

  12. Priestley RD, Cangialosi D, Napolitano S. On the equivalence between the thermodynamic and dynamic measurements of the glass transition in confined polymers. J Non-Cryst Solids. 2015;407:288–95.

    CAS  Google Scholar 

  13. Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature 2001;410:259–67.

    CAS  PubMed  Google Scholar 

  14. Lappala A, Sefton A, Fenimore PW, Terentjev EM. Connectivity and free-surface effects in polymer glasses. Sci Rep. 2019;9:3830.

    PubMed  PubMed Central  Google Scholar 

  15. Chandran S, Baschnagel J, Cangialosi D, Fukao K, Glynos E, Janssen LMC, et al. Processing pathways decide polymer properties at the molecular level. Macromolecules. 2019;52:7146–56.

    CAS  Google Scholar 

  16. Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 1965;43:139–46.

    CAS  Google Scholar 

  17. Lubchenko V, Wolynes PG. Theory of structural glasses and supercooled liquids. Annu Rev Phys Chem. 2007;58:235–66.

    CAS  PubMed  Google Scholar 

  18. Sato A, Sasaki T. Cooperativity of dynamics in supercooled polymeric materials and its temperature dependence predicted from a surface controlled model. Eur Polym J. 2018;99:485–94.

    CAS  Google Scholar 

  19. Sasaki T, Nakane T, Sato A. Segmental dynamics of free-standing and supported polymer thin films predicted from a surface-controlled model. Polymer. 2019;172:265–71.

    CAS  Google Scholar 

  20. Paeng K, Swallen SF, Ediger MD. Direct measurement of molecular motion in freestanding polystyrene thin films. J Am Chem Soc. 2011;133:8444–7.

    CAS  PubMed  Google Scholar 

  21. Gauer U, Wunderlich B. Study of microphase separation in block copolymers of styrene and α-methylstyrene in the glass transition region using quantitative thermal analysis. Macromolecules. 1980;13:1618–25.

    Google Scholar 

  22. Ding J, Xue G, Dai Q, Cheng R. Glass transition temperature of polystyrene microparticles. Polymer. 1993;34:3325–7.

    CAS  Google Scholar 

  23. Sasaki T, Shimizu A, Mourey TH, Thurau CT, Ediger MD. Glass transition of small polystyrene spheres in aqueous suspensions. J Chem Phys. 2003;119:8730–5.

    CAS  Google Scholar 

  24. Zhang C, Guo Y, Priestley RD. Glass transition temperature of polymer nanoparticles under soft and hard confinement. Macromolecules. 2011;44:4001–6.

    CAS  Google Scholar 

  25. Guo Y, Zhang C, Lai C, Priestley RD, D’Acunzi M, Fytas G. Structural relaxation of polymer nanospheres under soft and hard confinement: Isobaric versus isochoric conditions. ACS Nano. 2011;5:5365–73.

    CAS  PubMed  Google Scholar 

  26. Zhang C, Guo Y, Shepard KB, Priestley RD. Fragility of an isochorically confined polymer glass. J Phys Chem Lett. 2013;4:431–6.

    CAS  PubMed  Google Scholar 

  27. Zhang C, Boucher VM, Cangialosi D, Priestley RD. Mobility and glass transition temperature of polymer nanospheres. Polymer. 2013;54:230–5.

    CAS  Google Scholar 

  28. Kim H, Cang Y, Kang E, Graczykowski B, Secchi M, Montagna M, et al. Direct observation of polymer surface mobility via nanoparticle vibrations. Nat Commun. 2018;9:2918.

    PubMed  PubMed Central  Google Scholar 

  29. Sasaki T, Kawagoe S, Mitsuya H, Irie S, Sakurai K. Glass transition of crosslinked polystyrene shells formed on the surface of calcium carbonate whisker. J Polym Sci B Polym Phys. 2006;44:2475–85.

    CAS  Google Scholar 

  30. Sasaki T, Misu M, Shimada T, Teramoto M. Glass transition and its characteristic length for thin crosslinked polystyrene shells of rodlike capsules. J Polym Sci B Polym Phys. 2008;46:2116–25.

    CAS  Google Scholar 

  31. Sasaki T, Kuroda R, Teramoto M, Yonezawa S, Tsuji H, Sakurai K, et al. Glass transition properties of PMMA thin shells deposited on rodlike calcium carbonate particles. Polym J. 2011;43:464–70.

    CAS  Google Scholar 

  32. Sasaki T, Suzuki K, Yonezawa S, Irie S, Sakurai K. Preparation and glass transition of crosslinked poly(vinyl acetate) thin shells on the surface of a calcium carbonate core. Polym J. 2011;43:881–6.

    CAS  Google Scholar 

  33. Kang E, Graczykowski B, Jonas U, Christie D, Gray LAG, Cangialosi D, et al. Shell architecture strongly influences the glass transition, surface mobility, and elasticity of polymer core-shell nanoparticles. Macromolecules. 2019;52:5399–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bares J. Glass transition of the polymer microphase. Macromolecules. 1975;8:244–6.

    CAS  Google Scholar 

  35. McKenna GB. Confit III summary and perspectives on dynamics in confinement. Eur Phys J Spec Top. 2007;141:291–301.

    Google Scholar 

  36. Rharbi Y. Reduction of the glass transition temperature of confined polystyrene nanoparticles in nanoblends. Phys Rev E. 2008;77:031806.

    Google Scholar 

  37. Robertson CG, Hogan TE, Rackaitis M, Puskas JE, Wang X. Effect of nanoscale confinement on glass transition of polystyrene domains from self-assembly of block copolymers. J Chem Phys. 2010;132:104904.

    CAS  PubMed  Google Scholar 

  38. Stevenson JD, Schmalian J, Wolynes PG. The shapes of cooperatively rearranging regions in glass-forming liquids. Nat Phys. 2006;2:268–74.

    CAS  Google Scholar 

  39. Salez T, Salez J, Dalnoki-Veress K, Raphael E, Forrest JA. Cooperative strings and glassy interfaces. Proc Natl Acad Sci. 2015;112:8227–31.

    CAS  PubMed  Google Scholar 

  40. Arutkin M, Raphael E, Forrest JA, Salez T. Cooperative strings in glassy nanoparticles. Soft Matter. 2017;13:141–6.

    CAS  Google Scholar 

  41. Napolitano S, Wubbenhorst M. The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat Commun. 2011;2:260.

    Google Scholar 

  42. Sun S, Xu H, Han J, Zhu Y, Zuo B, Wang X, et al. The architecture of the adsorbed layer at the substrate interface determines the glass transition of supported ultrathin polystyrene films. Soft Matter. 2016;12:8348–58.

    CAS  PubMed  Google Scholar 

  43. Braatz ML, Meléndez LI, Sferrazza M, Napolitano S. Unexpected impact of irreversible adsorption on thermal expansion: Adsorbed layers are not that dead. J Chem Phys. 2017;146:203304.

    PubMed  Google Scholar 

  44. Zuo B, Wang F, Hao Z, He H, Zhang S, Priestley RD, et al. Influence of the interfacial effect on polymer thin-film dynamics scaled by the distance of chain mobility suppression by the substrate. Macromolecules. 2019;52:3753–62.

    CAS  Google Scholar 

  45. Wittmann JC, Kovacs AJ. Influence de la Stereorégularite des chaînes sur les transitions du polyméthacrylate de méthyle. J Polym Sci C. 1967;16:4443–52.

    Google Scholar 

  46. Saito S. Temperature dependence of dielectric relaxation behavior for various polymer systems. Colloid Polym Sci. 1963;189:116–25.

    CAS  Google Scholar 

  47. Capaccioli S, Ruocco G, Zamponi F. Dynamically correlated regions and configurational entropy in supercooled liquids. J Phys B. 2008;112:10652–58.

    CAS  Google Scholar 

  48. Paeng K, Ediger MD. Molecular motion in free-standing thin films of poly(methyl methacrylate), poly(4-tert-butylstyrene), poly(α-methylstyrene), and poly(2-vinylpyridine). Macromolecules. 2011;44:7034–42.

    CAS  Google Scholar 

  49. Fryer DS, Nealey PF, de Pablo JJ. Thermal probe measurements of the glass transition temperature for ultrathin polymer films as a function of thickness. Macromolecules. 2000;33:6439–47.

    CAS  Google Scholar 

  50. Fryer DS, Peters RD, Kim EJ, Tomaszewski JE, de Pablo JJ, Nealey PF, et al. Dependence of the glass transition temperature of polymer films on interfacial energy and thickness. Macromolecules. 2001;34:5627–34.

    CAS  Google Scholar 

  51. Roth CB, Pound A, Kamp SW, Murray CA, Dutcher JR. Molecular-weight dependence of the glass transition temperature of freely-standing poly(methyl methacrylate) films. Eur Phys J E. 2006;20:441–8.

    CAS  PubMed  Google Scholar 

  52. Mattsson J, Forrest JA, Borjesson L. Quantifying glass transition behavior in ultrathin free-standing polymer films. Phys Rev E. 2000;62:5187–200.

    CAS  Google Scholar 

  53. Boucher VM, Cangialosi D, Yin H, Schonhals A, Alegria A, Colmenero J. Tg depression and invariant segmental dynamics in polystyrene thin films. Soft Matter. 2012;8:5119–22.

    CAS  Google Scholar 

  54. Martínez-Tong DE, Soccio M, Sanz A, García C, Ezquerra TA, Nogales A. Chain arrangement and glass transition temperature variations in polymer nanoparticles under 3D-confinement. Macromolecules. 2013;46:4698–705.

    Google Scholar 

  55. Pressly J, Riggleman RA, Winey KI. Increased polymer diffusivity in thin-film confinement. Macromolecules. 2019;52:6116–25.

    CAS  Google Scholar 

  56. Li S, Ding M, Shi T. Spatial distribution of entanglements and dynamics in polymer films confined by smooth walls. Polymer. 2019;172:365–71.

    CAS  Google Scholar 

  57. Hanakata PZ, Douglas JF, Starr FW. Local variation of fragility and glass transition temperature of ultra-thin supported polymer films. J Chem Phys. 2012;137:244901.

    PubMed  PubMed Central  Google Scholar 

  58. Hanakata PZ, Betancourt BAP, Douglas JF, Starr FW. A unifying framework to quantify the effects of substrate interactions, stiffness, and roughness on the dynamics of thin supported polymer films. J Chem Phys. 2015;142:234907.

    PubMed  Google Scholar 

  59. Zhang W, Starr FW, Douglas JF. Collective motion in the interfacial and interior regions of supported polymer films and its relation to relaxation. J Phys Chem B. 2019;123:5935–41.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP16K05907 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

TS designed and supervised the research. TN carried out the calculations. YT supported the calculations. TN and TS wrote the paper.

Corresponding author

Correspondence to Takashi Sasaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakane, T., Tsuzuki, Y. & Sasaki, T. Glass transition and fragility of nanosized polymeric fibers and spheres predicted from a surface-controlled model. Polym J 53, 363–372 (2021). https://doi.org/10.1038/s41428-020-00431-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00431-5

This article is cited by

Search

Quick links