Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mechanical behavior of unidirectional carbon fiber-reinforced polyamide 6 composites under transverse tension and the structure of polyamide 6 among carbon fibers

Abstract

The mechanical properties of unidirectional carbon fiber (CF)-reinforced polyamide 6 (PA6) composites subjected to transverse tension were studied in terms of the structure of the PA6 matrix among the CFs. Two types of CFs with different surface profiles (one smooth and one rough) were used as reinforcements in this study. The surface profile of the CFs had no effect on the tensile strength or Young’s modulus of the composites, whereas the surface profile influenced the strain at break of the composites. According to the results of X-ray diffraction analyses, the crystalline structure of the PA6 matrix in the composites was not substantially influenced by the type of CF. Polarized micrographs of the composites revealed that the birefringence of the PA6 matrix at the interface of the CFs with rough surfaces was remarkably higher than that of the matrix away from the fibers (i.e., in the bulk region). The difference in the local crystalline structure of the PA6 matrix among the CFs can affect the mechanical behavior of the unidirectional PA6/CF composites under transverse tension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Talreja R, Singh CV. Damage and Failure of Composite Materials. New York: Cambridge University Press; 2012.

  2. Chohan V, Galiotis C. Effects of interface, volume fraction and geometry on stress redistribution in polymer composites under tension. Compos Sci Technol. 1997;57:1089–101.

    Article  CAS  Google Scholar 

  3. Hayes SA, Lane R, Jones FR. Fibre/matrix stress transfer through a discrete interphase. Part 1: single-fiber model composites. Compos A. 2001;32:379–89.

    Article  Google Scholar 

  4. Gao SL, Mäder E. Characterisation of interphase nanoscale property variations in glass fiber reinforced polypropylene and epoxy resin composites. Compos A. 2002;33:559–76.

    Article  Google Scholar 

  5. Wang XQ, Zhang JF, Wang ZQ, Zhou S, Sun XY. Effects of interphase properties in unidirectional fiber reinforced composite materials. Mater Des. 2011;32:3486–92.

    Article  CAS  Google Scholar 

  6. González C, LLorca J. Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling. Compos Sci Technol. 2007;67:2795–806.

    Article  Google Scholar 

  7. Yang L, Yan Y, Liu YJ, Ran ZG. Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression. Compos Sci Technol. 2012;72:1818–25.

    Article  CAS  Google Scholar 

  8. Liu BY, Liu Z, Wang XJ, Zhang G, Long SR, Yang J. Interfacial shear strength of carbon fiber reinforced polyphenylene sulfide measured by the microbond test. Polym Test. 2013;32:724–30.

    Article  CAS  Google Scholar 

  9. Liu WB, Zhang S, Hao LF, Jiao WC, Yang F, Li XF, et al. Interfacial shear strength in carbon fiber-reinforced poly(phthalazinone ether ketone) composites. Polym Composite. 2013;34:1921–6.

    Article  CAS  Google Scholar 

  10. Thomason JL, Yang L. Temperature dependence of the interfacial shear strength in glass-fiber polypropylene composites. Compos Sci Technol. 2011;71:1600–5.

    Article  CAS  Google Scholar 

  11. Ning NY, Fu SR, Zhang W, Chen F, Wang K, Deng H, et al. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Prog Polym Sci. 2012;37:1425–55.

    Article  CAS  Google Scholar 

  12. Sihn S, Kim RY, Kawabe K, Tsai SW. Experimental studies of thin-ply laminated composites. Compos Sci Technol. 2007;67:996–1008.

    Article  CAS  Google Scholar 

  13. Kawabe K. International Patent 2010. Wo 2010/137525 Al.

  14. Kang SK, Lee DB, Choi NS. Fiber/epoxy interfacial shear strength measured by the microdroplet test. Compos Sci Technol. 2009;69:245–51.

    Article  CAS  Google Scholar 

  15. Choi NS, Park JE. Fiber/matrix interfacial shear strength measured by a quasi-disk microbond specimen. Compos Sci Technol. 2009;69:1615–22.

    Article  CAS  Google Scholar 

  16. Illers KH. Polymorphie, kristallinität und Schmelzwärme von poly(ε‐caprolactam), 2. Kalorimetrische Untersuchungen. Makromol Chem. 1978;179:497–507.

    Article  CAS  Google Scholar 

  17. Irisawa T, Inagaki R, Iida J, Iwamura R, Ujihara K, Kobayashi S, et al. The influence of oxygen containing functional groups on carbon fibers for mechanical properties and recyclability of CFRTPs made with in-situ polymerizable polyamide 6. Compos A. 2018;112:91–99.

    Article  CAS  Google Scholar 

  18. Olympus Mircroscopy Resouce Center. Michel-Levy Birefriengence chart. 2019. https://www.olympus-lifescience.com/ja/microscope-resource/primer/java/polarizedlight/michellevy/. Accessed 26 Dec 2019.

  19. Vautard F, Fioux P, Vidal L, Stiffer F, Roucoules V, Schultz J, et al. Use of plasma polymerization to improve adhesion strength in carbon fiber composites cured by electron beam. ACS Appl Mater Inter. 2014;6:1662–74.

    Article  CAS  Google Scholar 

  20. Sang L, Wang YK, Chen GY, Liang JC, Wei ZY. A comparative study of the crystalline structure and mechanical properties of carbon fiber/polyamide 6 composites enhanced with/without silane treatment. RSC Adv. 2016;6:107739–47.

    Article  CAS  Google Scholar 

  21. Millot C, Fillot LA, Lame O, Sotta P, Seguela R. Assessment of polyamide-6 crystallinity by DSC. J Therm Anal Calorim. 2015;122:307–14.

    Article  CAS  Google Scholar 

  22. Liang JC, Xu YQ, Wei ZY, Song P, Chen GY, Zhang WX. Mechanical properties, crystallization and melting behaviors of carbon fiber-reinforced PA6 composites. J Therm Anal Calorim. 2014;115:209–18.

    Article  CAS  Google Scholar 

  23. Yan XL, Imai Y, Shimamoto D, Hotta Y. Relationship study between crystal structure and thermal/mechanical properties of polyamide 6 reinforced and unreinforced by carbon fiber from macro and local view. Polymer. 2014;55:6186–94.

    Article  CAS  Google Scholar 

  24. Park SJ, Seo MK, Lee YS. Surface characteristics of fluorine-modified PAN-based carbon fibers. Carbon. 2003;41:723–30.

    Article  CAS  Google Scholar 

  25. Ho KKC, Lee AF, Bismarck A. Fluorination of carbon fibers in atmospheric plasma. Carbon. 2007;45:775–84.

    Article  CAS  Google Scholar 

  26. Kobayashi D, Hsieh YT, Takahara A. Interphase structure of carbon fiber reinforced polyamide 6 revealed by microbeam X-ray diffraction with synchrotron radiation. Polymer. 2016;89:154–8.

    Article  CAS  Google Scholar 

  27. Cain Y, Petermann J, Wittich H. Transcrystallization in fiber-reinforced isotactic polypropylene composites in a temperature gradient. J Appl Polym Sci. 1997;65:67–75.

    Article  Google Scholar 

  28. Zhang S, Xu D, Yang W, Tang P, Bin Y. Temperature dependence of morphology of transcrystalline at the interface of carbon fiber and poly (l-lactic acid) composite under a temperature gradient stage. Macromol Symp. 2016;365:10–16.

    Article  CAS  Google Scholar 

  29. Thomason JL, Van Rooyen AA. Transcrystallized interphase in thermoplastic composites. Part II Influence of interfacial stress, cooling rate, fibre properties and polymer molecular weight. J Mater Sci. 1992;27:897–907.

    Article  CAS  Google Scholar 

  30. Yang S, Yu H, Lei F, Li J, Guo S, Wu H, et al. Formation mechanism and morphology of β‑transcrystallinity of polypropylene induced by two-dimensional layered interface. Macromolecules. 2015;48:3965–73.

    Article  CAS  Google Scholar 

  31. Gao Y, Xie M, Liu L, Li J, Kuang J, Ma W, et al. Effect of supra-molecular microstructures on the adhesion of SWCNT fiber/iPP interface. Polymer. 2013;54:456–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (grant No. JP18K14001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Uematsu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uematsu, H., Kurita, D., Nakakubo, S. et al. Mechanical behavior of unidirectional carbon fiber-reinforced polyamide 6 composites under transverse tension and the structure of polyamide 6 among carbon fibers. Polym J 52, 1195–1201 (2020). https://doi.org/10.1038/s41428-020-0371-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0371-4

Search

Quick links