Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inorganic/organic double-network ion gel membrane with a high ionic liquid content for CO2 separation

Abstract

To examine the potential of ion gels as materials for CO2 separation membranes, inorganic/organic double-network ion gel (DN ion gel) membranes with different ionic liquid (IL) contents were fabricated. The composition of the inorganic and organic networks was optimized to maximize the mechanical strength of the DN ion gel. The DN ion gel with an inorganic/organic network composition of 0.35 mol/mol showed the maximum mechanical strength because the inorganic and organic networks sufficiently acted as sacrificial bonds and hidden lengths, respectively. Using DN ion gel membranes with different IL contents prepared with the optimized precursor solution, the relationship between the CO2 permeability and IL content of the DN ion gel membranes was examined. The DN ion gel membrane with 95.2 wt% IL had a CO2 permeability of 1380 barrer, which was ~67% of the theoretical maximum predicted for the pure IL membrane. The CO2 permeability of the DN ion gel membrane exponentially increased with increasing IL content and approached the theoretical maximum. DN ion gels with high strength can be used to develop maximum-performance IL-based CO2 separation membranes by giving the membrane the maximum IL potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dai Z, Noble RD, Gin DL, Zhang X, Deng L. Combination of ionic liquids with membrane technology: a new approach for CO2 separation. J Membr Sci. 2016;497:1–20.

    Article  CAS  Google Scholar 

  2. Gao H, Bai L, Han J, Yang B, Zhang S, Zhang X. Functionalized ionic liquid membranes for CO2 separation. Chem Commun. 2018;54:12671–85.

    Article  CAS  Google Scholar 

  3. Yan X, Anguille S, Bendahan M, Moulin P. Ionic liquids combined with membrane separation processes: a review. Sep Purif Technol. 2019;222:230–53.

    Article  CAS  Google Scholar 

  4. Finotello A, Bara JE, Narayan S, Camper D, Noble RD. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids. J Phys Chem B. 2008;112:2335–9.

    Article  CAS  Google Scholar 

  5. Merkel TC, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci. 2010;359:126–39.

    Article  CAS  Google Scholar 

  6. Scovazzo P, Kieft J, Finan DA, Koval C, DuBois D, Noble R. Gas separations using non-hexafluorophosphate [PF6] anion supported ionic liquid membranes. J Membr Sci. 2004;238:57–63.

    Article  CAS  Google Scholar 

  7. Bara JE, Gabriel CJ, Hatakeyama ES, Carlisle TK, Lessmann S, Noble RD, et al. Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents. J Membr Sci. 2008;321:3–7.

    Article  CAS  Google Scholar 

  8. Scovazzo P. Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research. J Membr Sci. 2009;343:199–211.

    Article  CAS  Google Scholar 

  9. Mahurin SM, Yeary JS, Baker SN, Jiang D-e, Dai S, Baker GA. Ring-opened heterocycles: Promising ionic liquids for gas separation and capture. J Membr Sci. 2012;401-402:61–7.

    Article  CAS  Google Scholar 

  10. Gouveia ASL, Tome LC, Lozinskaya EI, Shaplov AS, Vygodskii YS, Marrucho IM. Exploring the effect of fluorinated anions on the CO2/N2 separation of supported ionic liquid membranes. Phys Chem Chem Phys. 2017;19:28876–84.

    Article  CAS  Google Scholar 

  11. Tome LC, Guerreiro DC, Teodoro RM, Alves VD, Marrucho IM. Effect of polymer molecular weight on the physical properties and CO2/N2 separation of pyrrolidinium-based poly(ionic liquid) membranes. J Membr Sci. 2018;549:267–74.

    Article  CAS  Google Scholar 

  12. Carlisle TK, Nicodemus GD, Gin DL, Noble RD. CO2/light gas separation performance of cross-linked poly(vinylimidazolium) gel membranes as a function of ionic liquid loading and cross-linker content. J Membr Sci. 2012;397-398:24–37.

    Article  CAS  Google Scholar 

  13. Cowan MG, Gin DL, Noble RD. Poly(ionic liquid)/ionic liquid ion-gels with high “free” ionic liquid content: platform membrane materials for CO2/light gas separations. Acc Chem Res. 2016;49:724–32.

    Article  CAS  Google Scholar 

  14. Zhou J, Mok MM, Cowan MG, McDanel WM, Carlisle TK, Gin DL, et al. High-permeance room-temperature ionic-liquid-based membranes for CO2/N2 separation. Ind Eng Chem Res. 2014;53:20064–7.

    Article  CAS  Google Scholar 

  15. Kasahara S, Kamio E, Yoshizumi A, Matsuyama H. Polymeric ion-gels containing an amino acid ionic liquid for facilitated CO2 transport media. Chem Commun. 2014;50:2996–9.

    Article  CAS  Google Scholar 

  16. Hayashi E, Thomas ML, Hashimoto K, Tsuzuki S, Ito A, Watanabe M. Application of protic ionic liquids to CO2 separation in a sulfonated polyimide-derived ion gel membrane. ACS Appl Polym Mater. 2019;1:1579–89.

    Article  CAS  Google Scholar 

  17. Fujii K, Asai H, Ueki T, Sakai T, Imaizumi S, Chung U-i, et al. High-performance ion gel with tetra-PEG network. Soft Matter. 2012;8:1756–9.

    Article  CAS  Google Scholar 

  18. Lodge TP. Materials science: a unique platform for materials design. Science. 2008;321:50–1.

    Article  CAS  Google Scholar 

  19. Gu Y, Zhang S, Martinetti L, Lee KH, McIntosh LD, Frisbie CD, et al. High toughness, high conductivity ion gels by sequential triblock copolymer self-assembly and chemical cross-linking. J Am Chem Soc. 2013;135:9652–5.

    Article  CAS  Google Scholar 

  20. Moghadam F, Kamio E, Yoshizumi A, Matsuyama H. An amino acid ionic liquid-based tough ion gel membrane for CO2 capture. Chem Commun. 2015;51:13658–61.

    Article  CAS  Google Scholar 

  21. Moghadam F, Kamio E, Yoshioka T, Matsuyama H. New approach for the fabrication of double-network ion-gel membranes with high CO2/N2 separation performance based on facilitated transport. J Membr Sci. 2017;530:166–75.

    Article  CAS  Google Scholar 

  22. Kamio E, Yasui T, Iida Y, Gong JP, Matsuyama H. Inorganic/organic double-network gels containing ionic liquids. Adv Mater. 2017;29:1704118.

    Article  Google Scholar 

  23. Yasui T, Kamio E, Matsuyama H. Inorganic/organic double-network ion gels with partially developed silica-particle network. Langmuir. 2018;34:10622–33.

    Article  CAS  Google Scholar 

  24. Fujii K, Makino T, Hashimoto K, Sakai T, Kanakubo M, Shibayama M. Carbon dioxide separation using a high-toughness ion gel with a tetra-armed polymer network. Chem Lett. 2015;44:17-9/1-9/3, 3 pp.

  25. Gu Y-Y, Lodge TP. Synthesis and gas separation performance of triblock copolymer ion gels with a polymerized ionic liquid mid-block. Macromolecules. 2011;44:1732–6.

    Article  CAS  Google Scholar 

  26. Moghadam F, Kamio E, Matsuyama H. High CO2 separation performance of amino acid ionic liquid-based double network ion gel membranes in low CO2 concentration gas mixtures under humid conditions. J Membr Sci. 2017;525:290–7.

    Article  CAS  Google Scholar 

  27. Kamio E, Matsuki T, Moghadam F, Matsuyama H. Development of facilitated transport membranes with low viscosity aprotic heterocyclic anion type ionic liquid as a CO2 carrier. Sep Sci Technol. 2017;52:197–208.

    Article  CAS  Google Scholar 

  28. Gong JP, Katsuyama Y, Kurokawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003;15:1155–8.

    Article  CAS  Google Scholar 

  29. Yasui T, Kamio E, Matsuyama H. Tough and stretchable inorganic/organic double network ion gel containing gemini-type ionic liquid as a multiple hydrogen bond cross-linker. RSC Adv. 2019;9:11870–6.

    Article  CAS  Google Scholar 

  30. Yasui T, Kamio E, Matsuyama H. Inorganic/organic nanocomposite ion gels with well dispersed secondary silica nanoparticles. RSC Adv. 2020;10:14451–7.

    Article  CAS  Google Scholar 

  31. Yasui T, Fujinami S, Hoshino T, Kamio E, Matsuyama H. Energy dissipation via the internal fracture of the silica particle network in inorganic/organic double network ion gels. Soft Matter. 2020;16:2363–70.

    Article  CAS  Google Scholar 

  32. Ogston AG. The spaces in a uniform random suspension of fibres. Trans Faraday Soc. 1958;54:1754–7.

    Article  Google Scholar 

  33. Hou Y, Baltus RE. Experimental measurement of the solubility and diffusivity of CO2 in room-temperature ionic liquids using a transient thin-liquid-film method. Ind Eng Chem Res. 2007;46:8166–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Parts of this work were supported by KAKENHI (18K04812) of the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideto Matsuyama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamio, E., Minakata, M., Iida, Y. et al. Inorganic/organic double-network ion gel membrane with a high ionic liquid content for CO2 separation. Polym J 53, 137–147 (2021). https://doi.org/10.1038/s41428-020-0393-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0393-y

This article is cited by

Search

Quick links